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Abstract: Mitochondrial oxidative stress is thought to be a key contributor towards the development
of diabetic cardiomyopathy. Thioredoxin 2 (Trx2) is a mitochondrial antioxidant that, along with
Trx reductase 2 (TrxR2) and peroxiredoxin 3 (Prx3), scavenges H2O2 and offers protection against
oxidative stress. Our previous study showed that TrxR inhibitors resulted in Trx2 oxidation
and increased ROS emission from mitochondria. In the present study, we observed that TrxR
inhibition also impaired the contractile function of isolated heart. Our studies showed a decrease
in the expression of Trx2 in the high glucose-treated H9c2 cardiac cells and myocardium of
streptozotocin (STZ)-induced diabetic rats. Overexpression of Trx2 could significantly diminish
high glucose-induced mitochondrial oxidative damage and improved ATP production in cultured
H9c2 cells. Notably, Trx2 overexpression could suppress high glucose-induced atrial natriuretic
peptide (ANP) and brain natriuretic peptide (BNP) gene expression. Our studies suggest that high
glucose-induced mitochondrial oxidative damage can be prevented by elevating Trx2 levels, thereby
providing extensive protection to the diabetic heart.
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1. Introduction

Diabetic cardiomyopathy is a prominent cardiovascular complication of diabetes which has been
characterized functionally by decreased or preserved systolic function and diastolic dysfunction. It can
eventually result in heart failure in diabetic patients [1–4]. Studies have suggested that the development
of diabetic cardiomyopathy is associated with oxidative stress from elevated reactive oxygen species
(ROS) production and/or decreased antioxidant defense [5].

Thioredoxins (Trxs) are small redox proteins containing a characteristic dithiol active site motif,
Cys-Gly-Pro-Cys, which are highly conserved from bacteria to humans [6]. Trxs are associated
with DNA synthesis, cancer, neurodegenerative disorders [7–9], protection against apoptosis [10],
modulation of the immune response [11], and the H2O2 and lipid hydroperoxide levels [12,13].
Normally, the Trxs are kept reduced (active) by thioredoxin reductases (TrxRs) and the Trxs keep
the Prxs reduced, thereby supporting their peroxidase function. In mammalian cells, Trx1, TrxR1,
and Trx1-dependent peroxiredoxins (Prxs) constitute the cytosolic system. Trx1 was also shown to
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translocate into the nucleus or be secreted out of the cell on various stimuli. Thioredoxin 80 is a carboxy
terminal-truncated form of Trx1 which is found in plasma, and is secreted by monocytes [14,15].
The mitochondrial-specific Trx system is comprised of Trx2, TrxR2, and Prx3, and is highly expressed
in tissues with high metabolic demand, such as the heart, brain, and liver [16–18]. Studies have shown
that mice with a deletion of Trx1, TrxR1, Trx2, or TrxR2 display embryonic lethality, likely due to
increased cellular oxidative stress [19–22]. Interestingly, mice with cardiac-specific deletion (Trx2-cKO)
develop dilated cardiomyopathy [23], while mice over-expressing Trx2 attenuated AngII-induced
vascular dysfunction and hypertension [24], improved aortic endothelial cells(EC) function, and
reduced atherosclerotic lesions at aortic roots [25].

Our previous studies showed that the mitochondrial Trx2 system activity is diminished in type 2
diabetic hearts, and account for this amplified ROS emission. Since mitochondrial dysfunction is
a crucial contributor to the cardiac complications in diabetes and mitochondrial Trx2 is able to scavenge
ROS and directly catalyzes mitochondrial thiol-disulfide exchanges, we reasoned that the expression
and/or activity of Trx2 is critical to maintain normal cardiac function in diabetes. In the current
study, we found that Trx2 expression was significantly reduced in high glucose-treated H9c2 cells.
Therefore, the aim of the present study was to examine the effect of Trx2 expression on oxidative
stress-induced myocardial damage under hyperglycemic conditions.

2. Results

2.1. Inhibition of TrxR Impaired the Left Ventricle Contractile Functions of Isolated Heart

Our previous studies have shown that mitochondrial Trx2 redox status may be involved in
the contractile dysfunction of myocytes in type 2 diabetes. To investigate the in vitro role of
the TrxR/Trx system in maintaining cardiomyocyte contractility, we examined the effect of the TrxR
inhibitors auranofin (AF) and 1-chloro-2,4-dinitrobenzene (CDNB) by challenging the isolated
murine heart. As shown in Figure 1, left ventricle contractile functions—indexed by maximal
recovery of developed left ventricular pressure (LVP) and maximal rate of increase(decrease) of
left ventricular pressure(dP/dtmax) were found to be impaired in AF and CDNB groups at reperfusion.
However, the inhibition effects of CDNB on contractile functions were partly recovered after washing
out, while this washing out effect was not seen in the AF group.
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Figure 1. Effect of thioredoxin reductase (TrxR) inhibitors on the left ventricular (LV) function of 
isolated heart. (A) Freshly isolated murine hearts were perfused with auranofin (AF; 100 nmol/L) and 
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D) left ventricle contractile functions, indexed by maximal recovery of developed left ventricular 
pressure (LVP) and dP/dtmax at perfusion. Data are mean ± s.e.m. of at least four replicates. 
Differences between individual groups were analyzed using the Student’s t-test. * p < 0.05 vs. Control. 

Figure 1. Effect of thioredoxin reductase (TrxR) inhibitors on the left ventricular (LV) function of
isolated heart. (A) Freshly isolated murine hearts were perfused with auranofin (AF; 100 nmol/L)
and 1-chloro-2,4-dinitrobenzene (CDNB; 1 mmol/L) and monitored with Powerlab recording system;
(B–D) left ventricle contractile functions, indexed by maximal recovery of developed left ventricular
pressure (LVP) and dP/dtmax at perfusion. Data are mean ± s.e.m. of at least four replicates.
Differences between individual groups were analyzed using the Student’s t-test. * p < 0.05 vs. Control.
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2.2. Decreased Trx2 Expression and Increased Prx Hyperoxidation in Cardiac Cells under
Hyperglycemic Conditions

To determine whether the mitochondrial Trx2 system is involved in the regulation of
hyperglycemia-induced oxidative stress, we examined Trx2 expression level in H9c2 cells under
high glucose condition and myocardium of streptozotocin (STZ)-induced diabetic rats. H9c2 cells at
80% confluency were challenged with normal (NG, 5.5 mM glucose) or high glucose (HG, 30 mM
glucose) for 24, 48, and 72 h. As shown in Figure 2, expression of Trx2 was found to be significantly
reduced at 72 h in high glucose-treated H9c2 cells, while Prx hyperoxidation was markedly increased.
Myocardial Prx-SO2/3H and Trx2 protein expression at 12 weeks after induction of diabetes showed
a similar change with the H9c2 cells.
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Figure 2. Effect of hyperglycemia on thioredoxin 2 (Trx2) expression and hyperoxidation of
peroxiredoxins (Prxs). (A) Trx2 expression and hyperoxidation of Prx was determined by Western
blotting. H9c2 cells were treated with normal (NG; 5.5 mmol/L glucose) or high glucose (HG;
30 mmol/L glucose) for 72 h. (B) Myocardial Prx-SO2/3H and Trx2 protein expression determined by
Western blotting at 12 weeks after induction of diabetes (n = 5). * p < 0.05 vs. NG group.

2.3. Protective Effect of Trx2 on ROS Generation and Prx Hyperoxidation

To evaluate the role of Trx2 in the regulation of ROS induced by HG, we next transfected H9c2 cells
with Trx2-pmCherry (Trx2) and non-target-pmCherry (NT) plasmids. The expression of the transgenes
was observed using a fluorescence microscope. As shown in Figure 3A, expression of pmCherry was
observed in the cytoplasm, while that of Trx2-pmCherry mainly co-localized with a mitochondrial
marker (Mito Tracker dye). Trx1 was mainly in the nucleus and cytoplasm in non-transfected H9c2 cells,
and the gene transfection did not change the Trx1 expression or sublocation (Figure 3B). As shown
in Figure 4A,C, compared to NT, mitochondrial Trx2 overexpression significantly decreased the cellular
level of ROS. Trx2 overexpression also led to a reduced Prx hyperoxidation, which is induced by high
glucose treatment (Figure 4B).
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glucose-induced inhibition of ATP generation after HG treatment for 96 h (p < 0.01). 

Figure 3. Overexpression of Trx2 in H9c2 cells. (A) H9c2 Cells were transfected with Trx2-pmCherry
or non-target (NT)-pmCherry plasmid DNAs using Lipofectamine 3000. Mito-tracker (green)
and pmCherry (red) fluorescence were examined by confocal microscopy; (B) Trx2-pmCherry or
NT-pmCherry transfected cells were stained with antibody against Trx1 (green). Scale bar 30µm.
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Figure 4. Overexpression of Trx2 reduced the intracellular reactive oxygen species (ROS) level and Prx
hyperoxidation induced by high glucose. Trx2- or NT-transfected H9c2 cells were treated with HG for 72
h. (A) Confocal microscopy was carried out to visualize DCFH-DA fluorescence (green) and pmCherry
fluorescence (red); (B) Prx hyperoxidation was determined by Western blotting; (C) DCFH-DA
fluorescence was analyzed by using a FACSVerse flow cytometer. * p < 0.05 vs. NT group. Scale
bar 30 µm.

2.4. Trx2 Overexpression Reversed the Decreased ATP Generation

Interestingly, intracellular ATP level was increased after 24-h HG stimulation. However, compared
to the HG group at 24 h, the ATP level was significantly lower in H9c2 cells when exposed to high
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glucose for 72 h and 96 h. As shown in Figure 5B, overexpression of Trx2 reversed high glucose-induced
inhibition of ATP generation after HG treatment for 96 h (p < 0.01).Int. J. Mol. Sci. 2017, 18, 1958  5 of 10 
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2.5. Overexpression Trx2 Attenuated the Hypertrophy Induced by HG in H9c2 Cells

Myocardial hypertrophy contributes to the final failure of the heart in diabetes [26]. Therefore, we
examined whether Trx2 is involved in the regulation of ROS signal in cardiac hypertrophy induced
by HG. Indeed, Trx2 overexpression could markedly suppress HG-induced atrial natriuretic peptide
(ANP) and brain natriuretic peptide (BNP) gene expression as revealed by quantitative real time
polymerase chain reaction (qRT-PCR) analysis. Meanwhile, there were no significant changes in ANP
and BNP level of Trx2- or NT-transfected H9c2 cells treated with NG (Figure 6A,B). In addition, HG
stimulation led to an increase in cell surface area, which could be attenuated by Trx2 overexpression as
well (Figure 6C).
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Figure 6. Trx2 overexpression attenuated HG-induced hypertrophy. H9c2 cells were transfected
with NT or Trx2 plasmid for 24 h. After transfection, cultures were exposed to 30 mM glucose in
fresh medium without NT or Trx2 plasmid for additional 48 h. (A–C) Cellular hypertrophy was
demonstrated by changes in mRNA levels of hypertrophic biomarkers atrial natriuretic peptide (ANP),
brain natriuretic peptide (BNP), and cell surface. * p < 0.05 vs. NT group.

3. Discussion

Studies have shown that elevated production of reactive oxygen species by dysfunctional
mitochondria is a crucial contributor to myocardial apoptosis, fibrosis, and hypertrophy, and also
reduced cardiac performance and contractility. Our previous study suggested that myocytes from
db/db mice exhibit a more oxidized redox status and diminished mitochondria ROS scavenging
capacity via the reduced TrxR2/Trx2 system activity. Therefore, we asked whether the Trx activity
is essential to the contractile behavior of cardiomyocytes. These contractile inhibitions were also
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observed in isolated adult cardiomyocytes with or without β-adrenergic stimulation (data not
shown).This impact of TrxR inhibitors on contractility may be mediated by increased ROS emission by
Trx2/Prx3 oxidation, whereas the effects of CDNB appeared to be largely mediated by glutathione
(GSH) depletion. However, the TrxR inhibitors resulted in both the Trx1 and Trx2 redox status changes,
and the role of Trx2 in high glucose-treated cardiomyocytes is unclear.

Excessive mitochondrial ROS production is thought to be critical in the pathophysiology of both
type 1 and type 2 diabetes, while antioxidants’ up-regulation in the affected mitochondria may offer
more protection than untargeted antioxidants [27]. Thioredoxin 2 is the major mitochondrial redox
regulator, and plays a very important role in alleviating cellular stress [28]. In the present study,
we show that Trx2 expression is decreased in H9c2 cardiac cells treated with high glucose, which
is consistent with the observation that the Trx2 expression is decreased in mitochondria isolated
from STZ diabetic rats [29]. Studies show that the increased ROS emission from the mitochondrial
electron transport chain in diabetes plays an essential role in cardiovascular complications [30]. In our
study, overexpression of Trx2 significantly attenuates the intracellular ROS accumulation and Prxs
hyperoxidation induced by high glucose, which indicates the major role of Trx2 for mitochondrial
redox regulation in diabetes. Our study suggests that Trx2 may be an effective target for oxidative
stress and mitochondrial dysfunction to improve cardiac function in diabetes.

Mitochondrial ATP generation is a highly redox-active process, as complex I, complex III, and
complex IV, with central functions in oxidative phosphorylation, are redox-driven proton-pumps.
Complex V is a reversible proton pump which drives ATP synthesis using an electrochemical proton
gradient [28]. We show that the intracellular ATP level was increased after 24-h stimulation of
high glucose in H9c2 cells. However, ATP level was significantly lower when exposed to high
glucose in late timepoints. Thus, we reason whether Trx2 is involved in the ATP generation.
Interestingly, overexpression of Trx2 reversed high glucose-induced inhibition of ATP generation,
which may be due to the improved intracellular redox status.

It is well known that oxidative stress generated by elevated ROS participates in cardiac
hypertrophy and the final failure of the heart in diabetes [31,32]. Therefore, we examined whether
the mitochondrial Trx2 is involved in the regulation of ROS signal of cardiac hypertrophy in diabetes.
ANP and BNP genes have been reported to serve as hallmarks in the development of cardiac
hypertrophy. Interestingly, overexpression of Trx2 could markedly suppress high glucose-induced
ANP and BNP gene expression. In addition, stimulation with high glucose led to an increase in cell
surface area, which could also be attenuated by overexpression of Trx2. It is well known that there
are many factors contributing to myocardial hypertrophy. In our study, whether this inhibition of
hypertrophy in Trx2-overexpressed cells is associated with a reduction of oxidative stress due to
increased Trx/Prx activity or other Trx signaling will need further study.

In conclusion, our observations for the first time indicate that the TrxR/Trx system is important
for maintaining the contractility of cardiomyocytes. Overexpression of mitochondrial Trx2 attenuates
the intracellular ROS accumulation and ATP production. Most interestingly, mitochondrial Trx2 may
be involved in the cardiac hypertrophy signaling of diabetes. Given the potential role of Trx2 in
the mitochondrial function and the pathophysiology of diabetic cardiomyopathy, it would be of prime
interest to increase Trx2 function or expression in order to prevent or treat diabetes.

4. Materials and Methods

4.1. Materials

Dulbecco’s Modified Eagle’s Medium (DMEM) and fetal bovine serum (FBS) were purchased
from Gibco (Los Angeles, CA, USA). AF ((1-thio-β-D-glucopyranosato) (triethylphosphine)
gold 2,3,4,6-tetraacetate) and CDNB were purchased from Sigma (St. Louis, MO, USA).
TRIzol, Lipofectamine 3000, and 2,7-Dichlorodi-hydrofluorescein diacetate(DCFH-DA) fluorescent
probes were from Life Technologies (Grand Island, NY, USA). Prx-SO2/3H and 2-cys-Prx antibodies
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were from Abfrontier (Seoul, Korea). GAPDH was from Santa Cruz (CA, USA). SYBR Green PCR
Master Mix and cDNA synthesis kit were purchased from TOYOBO (Osaka, Japan).

4.2. Animals

All animal care and experimental procedures were in accordance with the animal care guidelines
of the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of
Health and approved by the Institutional Animal Research Committee of Harbin Medical University
(No. 12521181, 1 January 2011). All studies involving animals are reported in accordance with
the ARRIVE guidelines for reporting experiments involving animals. A total 16 mice were used in
the experiments described here. MaleC57BL/6 mice (20–28 g) were obtained from the Harbin Medical
University animal facility. Animals were allowed free access to food and water and maintained on
a 12-h light/dark cycle, with controlled temperature (22.5 ± 2 ◦C) and humidity (45 ± 5%).

4.3. Animal Model

Male Wistar rats (200–250 g) were obtained from the Harbin Medical University animal facility.
Diabetes was induced by tail vein injection of STZ (streptozotocin, 50 mg/kg) dissolved in 0.1 M citrate
buffer (pH 4.5), and the control group was injected with citrate buffer alone [33]. Blood glucose levels
of the rats were measured using blood glucose test strips after 72 h of STZ injection, and blood glucose
levels over 16.7 mM were accepted as diabetes.

4.4. Assessment of Left Ventricular Function in Langendorff-Perfused Hearts

Male C57BL/6 mice (n = 16) were weighed and anesthetized with 1.5% pentobarbital sodium
(60 mg·kg−1). The hearts were rapidly harvested and the aorta cannulated and retrogradely perfused
with Krebs–Henseleit (KH) buffer warmed and gassed with 95% O2 and 5% CO2. The hearts were
placed in a heated bath at 37 ◦C and paced at 300 beats/min. Before each experimental protocol was
initiated, the isolated hearts set at a mean left ventricular pressure (LVP) of 60 ± 10 mmHg and were
allowed to stabilize and wash out the potential residual catecholamine for 5–10 min. Left ventricular
function was monitored with a water-filled balloon connected to a pressure transducer coupled to
a continuous data recording system (Powerlab, AD Instruments, Castle Hill, Australia).

4.5. Cell Culture

The H9c2 embryonic rat heart-derived cell line was obtained from the Cell Bank of the Chinese
Academy of Sciences (Shanghai, China). Cells were cultured in DMEM containing 10% FBS at a density
of 5 × 104 cells/cm2 equilibrated with humidified air containing 5% CO2 at 37 ◦C.

4.6. Western Blot Analysis

H9c2 cells were lysed in 0.5 mL RIPA buffer. Solubilized proteins were collected after
centrifugation at 13,000 × g for 30 min and stored at –80 ◦C. The protein concentration of each
sample was quantified using the enhanced BCA Protein Assay kit. To detect Trx1, Prx-SO2/3H, and
GAPDH, protein lysates from each group of cells and tissues were separated by SDS-PAGE and
electrotransferred onto a PVDF membrane (Millipore, Frankfurt, Germany). Immunoblotting was
then performed using 2 µM rat antibodies. Membranes were then incubated overnight at 4 ◦C with
primary antibodies, washed with Tween Tris buffered saline(TTBS) three times each for 10 min, and
then incubated with secondary IgG antibodies at a 1:5000 dilution. Immunoreactive proteins were
then visualized using the ECL® plus Western blotting detection system. The volume of the protein
bands was quantified using a Bio-Rad Chemi EQ densitometer and Bio-Rad Quantity One software
(Bio-Rad laboratories, Hercules, CA, USA).
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4.7. Transfection of Trx2-pmCherry Plasmid

Human cDNA Trx2 expression plasmid (Trx2-pmCherry, Trx2) and empty vector plasmid
(non-targeting-pmCherry, NT) are kindly gifts form Prof. Hiroshi Tomita and Dr. Erkio Sugano.
One day before transfection, cells were plated in growth medium without antibiotics per well so
that they would be 60–70% confluent at the time of transfection. Then, cells were transfected
with Trx2-pmCherry or NT-pmCherry plasmid DNAs using Lipofectamine 3000 according to
the manufacturer’s recommendations. Concentrations of plasmid were chosen on the basis of
dose–response studies. After 24-h DNAs transfection, H9c2 cells were cultured in DMEM (2% FBS)
with NG (5.5 mM) or HG (30 mM) for 48 h.

4.8. Intracellular ROS Level and Analysis

Intracellular ROS levels were examined using the DCFH-DA staining method based on
the conversion of non-fluorescent DCFH-DA to the highly-fluorescent DCF upon intracellular oxidation
by ROS. Single H9c2 cells were loaded with DCFH-DA (10 µM) in serum-free media (1 h, 37 ◦C, in
the dark). After washing twice with PBS, the fluorescence of DCF in cells was visualized using
a Zeiss LSM 510 inverted confocal microscope. For flow cytometry analysis, cells were trypsinized,
washed twice with cold phosphate-buffered saline (PBS), resuspended in 200 µL PBS, and analyzed
immediately by using a FACSVerse flow cytometer (BD Biosciences, Heidelberg, Germany).

4.9. ATP-Luminescent Measurements

H9c2 cells were treated with 5.5 mM glucose (NG) or 25 mM glucose (HG) in the appropriate
culture medium at different time points. After treatments, 10 µL of the sample lysate supernatant
was used for intracellular total ATP level using a commercially-available luciferase–luciferin system
(ATP Determination Kit, Beyotime Biotechnology, Shanghai, China) following the manufacturer’s
protocol. Total ATP was normalized against total protein to account for any difference in cell density,
and the results were plotted as fold changes compared with the control group.

4.10. Real-Time RT-PCR

Total RNA and then cDNA were prepared using TRIzol and the cDNA Synthesis Kit.
The primer sequences were as follows: GAPDH, 5′-AAGAAGGTGGTGAAGCAGGC-3′ (forward),
5′-TCCACCACCCTGTTGCTGTA-3′ (reverse); ANP, 5′-CTCCGATAGATCTGCCCTCTTGAA-3′

(forward), 5′-GGTACCGGAAGCTGTTGCAGCCTA-3′ (reverse); BNP,
5′-TGGGCAGAAGATAGACCGGA-3′ (forward); 5′-ACAACCTCAGCCCGTCACAG-3′ (reverse).
The real-time RT-PCR analysis was performed with SYBR Green PCR Master Mix. The mRNA levels
were acquired from the value of threshold cycle (Ct) of the real-time PCR and normalized to GAPDH.
Data were obtained from three separate experiments.

4.11. Measurement of Cell Surface Area

After 24-h transfection, H9c2 cells were cultured in DMEM (2% FBS) with HG 30 mM for
48 h. The surface area of H9c2 cells in different groups was measured according to the method
of Simpson. In brief, cell images were captured by a 20×magnification digital inverted microscope
(Nikon, Tokyo, Japan). For measurements of the cell surface area, 100 cells from randomly-selected
fields in each group were measured using Image Pro-Plus 6.0 (Media Cybernetics, Inc. Rockville,
MD, USA).

4.12. Statistical Analysis

Data are expressed as the mean ± s.e.m. One-way ANOVA was performed to identify
differences between five groups followed by Tukey’s post hoc multiple comparison test.
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Specific comparisons between groups were performed Student’s t-test using Prism 4.0 Graph Pad
software (GraphPad, San Diego, CA, USA). p-values < 0.05 were considered statistically significant.

Acknowledgments: This research is supported by the Natural Science foundation of Heilongjiang Education
Department (No. 12521181). Human cDNA Trx2 expression plasmid (Trx2-pmCherry, Trx2) and empty vector
plasmid (Non-targeting-pmCherry, NT) are kindly gifts form Hiroshi Tomita and Erkio Sugano.

Author Contributions: Sa Shi ,Liming Yang, Changqing Xu and Hong Li supervised the study and participated
in the study design. Hong Li, Sa Shi, Quanfeng Li, Xiuxiang Gao, Erkio Sugano and Hiroshi Tomita performed
the experiments. All authors read and approved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fonarow, G.C.; Srikanthan, P. Diabetic cardiomyopathy. Endocrinol. Metab. Clin. N. Am. 2006, 35, 575–599.
[CrossRef] [PubMed]

2. Ruddy, T.D.; Shumak, S.L.; Liu, P.P.; Barnie, A.; Seawright, S.J.; McLaughlin, P.R.; Zinman, B. The relationship
of cardiac diastolic dysfunction to concurrent hormonal and metabolic status in type I diabetes mellitus.
J. Clin. Endocrinol. Metab. 1988, 66, 113–118. [CrossRef] [PubMed]

3. Severson, D.L. Diabetic cardiomyopathy: Recent evidence from mouse models of type 1 and type 2 diabetes.
Can. J. Physiol. Pharmacol. 2004, 82, 813–823. [CrossRef] [PubMed]

4. Karvounis, H.I.; Papadopoulos, C.E.; Zaglavara, T.A.; Nouskas, I.G.; Gemitzis, K.D.; Parharidis, G.E.;
Louridas, G.E. Evidence of left ventricular dysfunction in asymptomatic elderly patients with
non-insulin-dependent diabetes mellitus. Angiology 2004, 55, 549–555. [CrossRef] [PubMed]

5. Lorenzo, O.; Ramirez, E.; Picatoste, B.; Egido, J.; Tunon, J. Alteration of energy substrates and ROS production
in diabetic cardiomyopathy. Mediat. Inflamm. 2013, 2013, 461967. [CrossRef] [PubMed]

6. Eklund, H.; Gleason, F.K.; Holmgren, A. Structural and functional relations among Thioredoxins of different
species. Proteins 1991, 11, 13–28. [CrossRef] [PubMed]

7. Laurent, T.C.; Moore, E.C.; Reichard, P. Enzymatic Synthesis of Deoxyribonucleotides. Iv. Isolation and
Characterization of Thioredoxin, the Hydrogen Donor from Escherichia coli B. J. Biol. Chem. 1964, 239,
3436–3444. [PubMed]

8. Irwin, M.E.; Rivera-Del Valle, N.; Chandra, J. Redox control of leukemia: From molecular mechanisms to
therapeutic opportunities. Antioxid. Redox Signal. 2013, 18, 1349–1383. [CrossRef] [PubMed]

9. Krapfenbauer, K.; Engidawork, E.; Cairns, N.; Fountoulakis, M.; Lubec, G. Aberrant expression of
peroxiredoxin subtypes in neurodegenerative disorders. Brain Res. 2003, 967, 152–160. [CrossRef]

10. Saitoh, M.; Nishitoh, H.; Fujii, M.; Takeda, K.; Tobiume, K.; Sawada, Y.; Kawabata, M.; Miyazono, K.; Ichijo, H.
Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998, 17,
2596–2606. [CrossRef] [PubMed]

11. Schenk, H.; Vogt, M.; Droge, W.; Schulze-Osthoff, K. Thioredoxin as a potent costimulus of cytokine
expression. J. Immunol. 1996, 156, 765–771. [PubMed]

12. Berggren, M.I.; Husbeck, B.; Samulitis, B.; Baker, A.F.; Gallegos, A.; Powis, G. Thioredoxin peroxidase-1
(peroxiredoxin-1) is increased in thioredoxin-1 transfected cells and results in enhanced protection against
apoptosis caused by hydrogen peroxide but not by other agents including dexamethasone, etoposide, and
doxorubicin. Arch. Biochem. Biophys. 2001, 392, 103–109. [CrossRef] [PubMed]

13. Rhee, S.G.; Kang, S.W.; Netto, L.E.; Seo, M.S.; Stadtman, E.R. A family of novel peroxidases, peroxiredoxins.
Biofactors 1999, 10, 207–209. [CrossRef] [PubMed]

14. Pekkari, K.; Holmgren, A. Truncated thioredoxin: Physiological functions and mechanism.
Antioxid. Redox Signal. 2004, 6, 53–61. [CrossRef] [PubMed]

15. Pekkari, K.; Gurunath, R.; Arner, E.S.; Holmgren, A. Truncated thioredoxin is a mitogenic cytokine for
resting human peripheral blood mononuclear cells and is present in human plasma. J. Biol. Chem. 2000, 275,
37474–37480. [CrossRef] [PubMed]

16. Holmgren, A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid. Redox Signal. 2000, 2,
811–820. [CrossRef] [PubMed]

17. Santos, C.X.; Anilkumar, N.; Zhang, M.; Brewer, A.C.; Shah, A.M. Redox signaling in cardiac myocytes.
Free Radic. Biol. Med. 2011, 50, 777–793. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ecl.2006.05.003
http://www.ncbi.nlm.nih.gov/pubmed/16959587
http://dx.doi.org/10.1210/jcem-66-1-113
http://www.ncbi.nlm.nih.gov/pubmed/3275682
http://dx.doi.org/10.1139/y04-065
http://www.ncbi.nlm.nih.gov/pubmed/15573141
http://dx.doi.org/10.1177/000331970405500511
http://www.ncbi.nlm.nih.gov/pubmed/15378118
http://dx.doi.org/10.1155/2013/461967
http://www.ncbi.nlm.nih.gov/pubmed/24288443
http://dx.doi.org/10.1002/prot.340110103
http://www.ncbi.nlm.nih.gov/pubmed/1961698
http://www.ncbi.nlm.nih.gov/pubmed/14245400
http://dx.doi.org/10.1089/ars.2011.4258
http://www.ncbi.nlm.nih.gov/pubmed/22900756
http://dx.doi.org/10.1016/S0006-8993(02)04243-9
http://dx.doi.org/10.1093/emboj/17.9.2596
http://www.ncbi.nlm.nih.gov/pubmed/9564042
http://www.ncbi.nlm.nih.gov/pubmed/8543831
http://dx.doi.org/10.1006/abbi.2001.2435
http://www.ncbi.nlm.nih.gov/pubmed/11469800
http://dx.doi.org/10.1002/biof.5520100218
http://www.ncbi.nlm.nih.gov/pubmed/10609884
http://dx.doi.org/10.1089/152308604771978345
http://www.ncbi.nlm.nih.gov/pubmed/14713335
http://dx.doi.org/10.1074/jbc.M001012200
http://www.ncbi.nlm.nih.gov/pubmed/10982790
http://dx.doi.org/10.1089/ars.2000.2.4-811
http://www.ncbi.nlm.nih.gov/pubmed/11213485
http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.003
http://www.ncbi.nlm.nih.gov/pubmed/21236334


Int. J. Mol. Sci. 2017, 18, 1958 10 of 10

18. Lee, S.; Kim, S.M.; Lee, R.T. Thioredoxin and thioredoxin target proteins: From molecular mechanisms to
functional significance. Antioxid. Redox Signal. 2013, 18, 1165–1207. [CrossRef] [PubMed]

19. Conrad, M.; Jakupoglu, C.; Moreno, S.G.; Lippl, S.; Banjac, A.; Schneider, M.; Beck, H.; Hatzopoulos, A.K.;
Just, U.; Sinowatz, F.; et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart
development, and heart function. Mol. Cell. Biol. 2004, 24, 9414–9423. [CrossRef] [PubMed]

20. Nonn, L.; Williams, R.R.; Erickson, R.P.; Powis, G. The absence of mitochondrial Thioredoxin 2 causes
massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol. Cell. Biol. 2003, 23,
916–922. [CrossRef] [PubMed]

21. Tanaka, T.; Hosoi, F.; Yamaguchi-Iwai, Y.; Nakamura, H.; Masutani, H.; Ueda, S.; Nishiyama, A.; Takeda, S.;
Wada, H.; Spyrou, G.; et al. Thioredoxin-2 (Trx-2) is an essential gene regulating mitochondria-dependent
apoptosis. EMBO J. 2002, 21, 1695–1703. [CrossRef] [PubMed]

22. Jakupoglu, C.; Przemeck, G.K.; Schneider, M.; Moreno, S.G.; Mayr, N.; Hatzopoulos, A.K.; de Angelis, M.H.;
Wurst, W.; Bornkamm, G.W.; Brielmeier, M.; et al. Cytoplasmic thioredoxin reductase is essential for
embryogenesis but dispensable for cardiac development. Mol. Cell. Biol. 2005, 25, 1980–1988. [CrossRef]
[PubMed]

23. Huang, Q.; Zhou, H.J.; Zhang, H.; Huang, Y.; Hinojosa-Kirschenbaum, F.; Fan, P.; Yao, L.; Belardinelli, L.;
Tellides, G.; Giordano, F.J.; et al. Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and
apoptosis stress kinase-1 activity to maintain cardiac function. Circulation 2015, 131, 1082–1097. [CrossRef]
[PubMed]

24. Widder, J.D.; Fraccarollo, D.; Galuppo, P.; Hansen, J.M.; Jones, D.P.; Ertl, G.; Bauersachs, J. Attenuation
of angiotensin II—Induced vascular dysfunction and hypertension by overexpression of Thioredoxin 2.
Hypertension 2009, 54, 338–344. [CrossRef] [PubMed]

25. Zhang, H.; Luo, Y.; Zhang, W.; He, Y.; Dai, S.; Zhang, R.; Huang, Y.; Bernatchez, P.; Giordano, F.J.;
Shadel, G.; et al. Endothelial-specific expression of mitochondrial thioredoxin improves endothelial cell
function and reduces atherosclerotic lesions. Am. J. Pathol. 2007, 170, 1108–1120. [CrossRef] [PubMed]

26. Dong, F.; Li, Q.; Sreejayan, N.; Nunn, J.M.; Ren, J. Metallothionein prevents high-fat diet induced
cardiac contractile dysfunction: Role of peroxisome proliferator activated receptor γ coactivator 1α and
mitochondrial biogenesis. Diabetes 2007, 56, 2201–2212. [CrossRef] [PubMed]

27. Kayama, Y.; Raaz, U.; Jagger, A.; Adam, M.; Schellinger, I.N.; Sakamoto, M.; Suzuki, H.; Toyama, K.;
Spin, J.M.; Tsao, P.S. Diabetic Cardiovascular Disease Induced by Oxidative Stress. Int. J. Mol. Sci. 2015, 16,
25234–25263. [CrossRef] [PubMed]

28. Go, Y.M.; Jones, D.P. Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta 2008, 1780,
1273–1290. [CrossRef] [PubMed]

29. Arkat, S.; Umbarkar, P.; Singh, S.; Sitasawad, S.L. Mitochondrial Peroxiredoxin-3 protects against
hyperglycemia induced myocardial damage in Diabetic cardiomyopathy. Free Radic. Biol. Med. 2016,
97, 489–500. [CrossRef] [PubMed]

30. Rovira-Llopis, S.; Banuls, C.; Diaz-Morales, N.; Hernandez-Mijares, A.; Rocha, M.; Victor, V.M.
Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 2017, 11, 637–645.
[CrossRef] [PubMed]

31. Matsushima, S.; Kuroda, J.; Ago, T.; Zhai, P.; Park, J.Y.; Xie, L.H.; Tian, B.; Sadoshima, J. Increased oxidative
stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ. Res. 2013,
112, 651–663. [CrossRef] [PubMed]

32. Rosca, M.G.; Tandler, B.; Hoppel, C.L. Mitochondria in cardiac hypertrophy and heart failure. J. Mol.
Cell. Cardiol. 2013, 55, 31–41. [CrossRef] [PubMed]

33. Shi, S.; Guo, Y.; Lou, Y.; Li, Q.; Cai, X.; Zhong, X.; Li, H. Sulfiredoxin involved in the protection of
peroxiredoxins against hyperoxidation in the early hyperglycaemia. Exp. Cell Res. 2017, 352, 273–280.
[CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1089/ars.2011.4322
http://www.ncbi.nlm.nih.gov/pubmed/22607099
http://dx.doi.org/10.1128/MCB.24.21.9414-9423.2004
http://www.ncbi.nlm.nih.gov/pubmed/15485910
http://dx.doi.org/10.1128/MCB.23.3.916-922.2003
http://www.ncbi.nlm.nih.gov/pubmed/12529397
http://dx.doi.org/10.1093/emboj/21.7.1695
http://www.ncbi.nlm.nih.gov/pubmed/11927553
http://dx.doi.org/10.1128/MCB.25.5.1980-1988.2005
http://www.ncbi.nlm.nih.gov/pubmed/15713651
http://dx.doi.org/10.1161/CIRCULATIONAHA.114.012725
http://www.ncbi.nlm.nih.gov/pubmed/25628390
http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.127928
http://www.ncbi.nlm.nih.gov/pubmed/19506101
http://dx.doi.org/10.2353/ajpath.2007.060960
http://www.ncbi.nlm.nih.gov/pubmed/17322393
http://dx.doi.org/10.2337/db06-1596
http://www.ncbi.nlm.nih.gov/pubmed/17575086
http://dx.doi.org/10.3390/ijms161025234
http://www.ncbi.nlm.nih.gov/pubmed/26512646
http://dx.doi.org/10.1016/j.bbagen.2008.01.011
http://www.ncbi.nlm.nih.gov/pubmed/18267127
http://dx.doi.org/10.1016/j.freeradbiomed.2016.06.019
http://www.ncbi.nlm.nih.gov/pubmed/27393003
http://dx.doi.org/10.1016/j.redox.2017.01.013
http://www.ncbi.nlm.nih.gov/pubmed/28131082
http://dx.doi.org/10.1161/CIRCRESAHA.112.279760
http://www.ncbi.nlm.nih.gov/pubmed/23271793
http://dx.doi.org/10.1016/j.yjmcc.2012.09.002
http://www.ncbi.nlm.nih.gov/pubmed/22982369
http://dx.doi.org/10.1016/j.yexcr.2017.02.015
http://www.ncbi.nlm.nih.gov/pubmed/28202395
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Inhibition of TrxR Impaired the Left Ventricle Contractile Functions of Isolated Heart 
	Decreased Trx2 Expression and Increased Prx Hyperoxidation in Cardiac Cells under Hyperglycemic Conditions 
	Protective Effect of Trx2 on ROS Generation and Prx Hyperoxidation 
	Trx2 Overexpression Reversed the Decreased ATP Generation 
	Overexpression Trx2 Attenuated the Hypertrophy Induced by HG in H9c2 Cells 

	Discussion 
	Materials and Methods 
	Materials 
	Animals 
	Animal Model 
	Assessment of Left Ventricular Function in Langendorff-Perfused Hearts 
	Cell Culture 
	Western Blot Analysis 
	Transfection of Trx2-pmCherry Plasmid 
	Intracellular ROS Level and Analysis 
	ATP-Luminescent Measurements 
	Real-Time RT-PCR 
	Measurement of Cell Surface Area 
	Statistical Analysis 


