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Abstract: Mitochondria supply cells with energy in the form of ATP, guide apoptosis, and
contribute to calcium buffering and reactive oxygen species production. To support these diverse
functions, mitochondria form an extensive network with smaller clusters that are able to move along
microtubules aided by motor proteins. Mitochondria are also associated with the actin network,
which is involved in cellular responses to various mechanical factors. In this review, we discuss
mitochondrial structure and function in relation to the cytoskeleton and various mechanical factors
influencing cell functions. We first summarize the morphological features of mitochondria with an
emphasis on fission and fusion as well as how network properties govern function. We then review
the relationship between the mitochondria and the cytoskeletal structures, including mechanical
interactions. We also discuss how stretch and its dynamic pattern affect mitochondrial structure
and function. Finally, we present preliminary data on how extracellular matrix stiffness influences
mitochondrial morphology and ATP generation. We conclude by discussing the more general role
that mitochondria may play in mechanobiology and how the mechanosensitivity of mitochondria
may contribute to the development of several diseases and aging.
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1. Introduction

Eukaryotic cells maintain a complex internal structure to perform specialized tasks such as
migration, contraction, and cell division, as well as to respond to various chemical and mechanical
cues from the environment. All these activities require energy that is primarily produced by the
mitochondria in the form of ATP via the process of oxidative phosphorylation. Beyond this central role,
mitochondria also guide apoptosis and contribute to calcium buffering and reactive oxygen species
(ROS) production [1].

To support its diverse functions, mitochondria form an extensive network inside the cell with
smaller mitochondrial clusters that have the ability to move along the cytoskeleton aided by motor
proteins [2]. Furthermore, the network itself is highly dynamic in that it is constantly undergoing fission
and fusion [3,4]. These processes are essential for both the integrity of the cell and the survivability
of the organism. Indeed, genetically knocking out proteins responsible for fission [5] as well as
fusion [6] in mice produces embryos which die before birth. Although there is extensive literature on
mitochondrial network properties and dynamics [4,7–11], less is known about how other intracellular
structures such as the cytoskeleton [12] and extracellular mechanical factors such as the stretching
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of the cells [13] affect mitochondrial functions. Since the effects of stretch on the cell are transmitted
primarily via the cytoskeletal networks to which mitochondria are attached, it is conceivable that
both the cytoskeletal organization and mechanical factors in general influence mitochondrial network
structure and function.

The goal of this review is to present an overview of two important regulators of the mitochondria,
the intracellular cytoskeleton and the extracellular mechanical factors. One important mechanical
factor is the deformation that the cell is exposed to in the body during normal tissue function. It has
recently been found that the in vivo natural dynamic nature of stretch pattern helps maintain general
mitochondrial function [14]. Additionally, since the mechanical stiffness (defined loosely as the
response in stress to a unit change in strain of the material) of the extracellular matrix (ECM) has
emerged as a major regulator of many cell functions [15], it is important to address the question of
whether ECM mechanics also influences mitochondrial function.

The organization of this review is as follows. We first briefly review the morphological features
of the mitochondria with an emphasis on how specific network properties govern function. We then
review the relationship between mitochondria and the cytoskeletal structures, focusing on the
interactions between the two networks. Next, we discuss how stretch and its dynamic pattern
affect mitochondrial structure and function. Finally, we present some preliminary data on how ECM
stiffness influences mitochondrial morphology and ATP generation. We conclude by discussing the
more general role that mitochondria may play in mechanobiology and how the mechanosensitivity of
mitochondria may contribute to the development of several diseases and aging.

2. General Mitochondrial Structure and Function

2.1. Intra-Mitochondrial Structure and ATP Generation

Mitochondria are thought to have originated from free-living alpha-proteobacteria that developed
a symbiotic relationship with the host cell [16]. There is now overwhelming phylogenic evidence
for this scenario [17], supported by the facts that mitochondria have their own DNA, denoted by
mtDNA, and that several mitochondrial proteins also have bacterial origin [18]. Similar to bacteria,
these organelles are bound by an outer membrane and an inner membrane. The outer membrane
allows the exchange of metabolites between the inner membrane and cytosol, but can also seal
the mitochondria from releasing harmful agents into the cytosol such as ROS and mtDNA [19,20].
Nevertheless, in subtoxic amounts, mitochondrial ROS serve as signaling molecules following release
into the cytosol [21].

The inner membrane consists of distinct morphological regions including the membrane boundary,
the cristae junctions, and the cristae [22]. The cristae are the invagination of the inner membrane
that significantly increase the surface area; this is also where proteins of the electron transport chain
(ETC) are located. The cristae morphology is organized by the mitofilins that accumulate between the
inner and outer membranes [23]. Inside the inner membrane is the mitochondrial matrix where the
Krebs cycle takes place. The Krebs cycle feeds NADH and FAD into two transmembrane proteins, the
respiratory complex I and II, respectively. Energetic electrons move along the respiratory complexes
of the ETC while protons are transported from the matrix into the intermembrane space, leading to
a build-up of charge and proton gradient across the inner membrane, called the electromotive force,
acting like a battery which stores electrochemical energy. The terminal component of the ETC is the
ATP synthase, which uses the electromotive force to attach an inorganic phosphate group to ADP and
produces ATP. The entire process is known as oxidative phosphorylation. A fraction of the ATP is
subsequently utilized by the mitochondria and the rest is released into the cytoplasm as a form of
chemical energy for various cellular processes (Figure 1).
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Figure 1. The mitochondria are the powerhouses of the cell. Left: A cartoon of a mitochondrion 
showing its outer and inner membranes, the cristae, and the matrix. Fat and sugar enter the 
mitochondria through channels of the outer membrane. Right: The Krebs, or citric acid, cycle feeds 
the chain of respiratory complexes I through IV which create an electrical and proton (H+) gradient, 
the electromotive force across the inner membrane. ATP synthase utilizes the electromotive force to 
generate ATP from ADP and inorganic phosphate (Pi) (Right image from Wikipedia [24]). 

2.2. Mitochondrial Dynamics 

The above picture paints mitochondria as isolated organelles utilizing food from their 
immediate neighborhood within the cell. However, it is now known that mitochondria are highly 
dynamic and interacting organelles [20]. Inside the mitochondria, the cristae can significantly 
remodel themselves in response to environmental cues and stresses. For example, the availability of 
energy-rich substrates modulates mitochondrial cristae architecture [25], which in turn drives 
respiratory complex assembly and mitochondria-dependent cell growth [26]. The dimer form of ATP 
synthase dissociates during aging, which is followed by a loss of cristae invagination [27] perhaps 
suggesting a correlation between ATP synthase and cristae structure. However, the primary 
regulatory protein responsible for cristae maintenance is the dynamin-related GTPase protein Optic 
Atrophy 1 (OPA1), which appears to have distinct functions in mitochondrial fusion and in cristae 
remodeling, at least during apoptosis [28]. 

Individual mitochondrial clusters are also capable of fusion (Figure 2), forming large organelles 
that range in size from a few tens to thousands, depending on the cell type. These clusters form a 
dynamically interconnected reticular network which can spread over the entire cell volume. The 
network elements have a cylindrical shape with a diameter of a few hundred nanometers. The 
formation of this network by fusion involves merging both the outer and inner membranes of two 
separate mitochondrial clusters, and their content including mtDNA becomes completely mixed 
within 12 h [29]. The outer membrane fusion is governed by the mitofusins Mfn1 and Mfn2 [6], 
whereas the inner membrane fusion is regulated by OPA1 [30]. Interestingly, while the fusion of outer 
membranes is independent of oxidative phosphorylation, the inner membrane fusion requires 
enzymatic cleavage of OPA1 which is stimulated by high membrane potential [31], suggesting that 
only healthy and active mitochondria can fuse properly. 

The large mitochondrial clusters can also undergo fission (Figure 2), whereby a mitochondrial 
cluster splits into two or more clusters. Following fission, the smaller clusters may become nearly 
spherical with diameters of about a few hundred nanometers. Fission is necessary for the distribution 
of mitochondria during cell division and embryonic growth [32]. However, if fission is not controlled 
and balanced by fusion, the network becomes too fragmented which leads to glucose oxidation, 
mitochondrial inner membrane potential decline, and hence the downregulation of ATP production 

Figure 1. The mitochondria are the powerhouses of the cell. Left: A cartoon of a mitochondrion showing
its outer and inner membranes, the cristae, and the matrix. Fat and sugar enter the mitochondria
through channels of the outer membrane. Right: The Krebs, or citric acid, cycle feeds the chain
of respiratory complexes I through IV which create an electrical and proton (H+) gradient, the
electromotive force across the inner membrane. ATP synthase utilizes the electromotive force to
generate ATP from ADP and inorganic phosphate (Pi) (Right image from Wikipedia [24]).

2.2. Mitochondrial Dynamics

The above picture paints mitochondria as isolated organelles utilizing food from their immediate
neighborhood within the cell. However, it is now known that mitochondria are highly dynamic and
interacting organelles [20]. Inside the mitochondria, the cristae can significantly remodel themselves in
response to environmental cues and stresses. For example, the availability of energy-rich substrates
modulates mitochondrial cristae architecture [25], which in turn drives respiratory complex assembly
and mitochondria-dependent cell growth [26]. The dimer form of ATP synthase dissociates during
aging, which is followed by a loss of cristae invagination [27] perhaps suggesting a correlation between
ATP synthase and cristae structure. However, the primary regulatory protein responsible for cristae
maintenance is the dynamin-related GTPase protein Optic Atrophy 1 (OPA1), which appears to have
distinct functions in mitochondrial fusion and in cristae remodeling, at least during apoptosis [28].

Individual mitochondrial clusters are also capable of fusion (Figure 2), forming large organelles
that range in size from a few tens to thousands, depending on the cell type. These clusters form
a dynamically interconnected reticular network which can spread over the entire cell volume.
The network elements have a cylindrical shape with a diameter of a few hundred nanometers.
The formation of this network by fusion involves merging both the outer and inner membranes
of two separate mitochondrial clusters, and their content including mtDNA becomes completely
mixed within 12 h [29]. The outer membrane fusion is governed by the mitofusins Mfn1 and Mfn2 [6],
whereas the inner membrane fusion is regulated by OPA1 [30]. Interestingly, while the fusion of
outer membranes is independent of oxidative phosphorylation, the inner membrane fusion requires
enzymatic cleavage of OPA1 which is stimulated by high membrane potential [31], suggesting that
only healthy and active mitochondria can fuse properly.

The large mitochondrial clusters can also undergo fission (Figure 2), whereby a mitochondrial
cluster splits into two or more clusters. Following fission, the smaller clusters may become nearly
spherical with diameters of about a few hundred nanometers. Fission is necessary for the distribution
of mitochondria during cell division and embryonic growth [32]. However, if fission is not controlled
and balanced by fusion, the network becomes too fragmented which leads to glucose oxidation,
mitochondrial inner membrane potential decline, and hence the downregulation of ATP production [8].
The process of fission is coordinated by a set of events to which components of the cytoplasm,
cytoskeletal elements, as well as organelles can contribute in three steps: (1) marking the fission site;
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(2) assembly of cytosolic dynamin-related protein 1 (DRP1) into a superstructure at the fission site;
and (3) constriction of the membranes at the fission to split the mitochondrial cluster into daughter
clusters [20,33].

Int. J. Mol. Sci. 2017, 18, 1812  4 of 17 

 

[8]. The process of fission is coordinated by a set of events to which components of the cytoplasm, 
cytoskeletal elements, as well as organelles can contribute in three steps: (1) marking the fission site; 
(2) assembly of cytosolic dynamin-related protein 1 (DRP1) into a superstructure at the fission site; 
and (3) constriction of the membranes at the fission to split the mitochondrial cluster into daughter 
clusters [20,33]. 

 
Figure 2. Intracellular and extracellular processes contributing to mitochondrial structure and 
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mitophagy, and biogenesis. See text for explanation for how the various molecules such as OPA1, 
Mfn1, Mfn2, and DRP1 govern these processes. The grey mitochondrion is damaged and degraded 
by mitophagy. Green lines represent microtubules, along which small mitochondrial clusters can 
travel with the aid of motor proteins. The dashed line represents the site of fission and the red arrows 
indicate the cyclic nature of fission and fusion. Note that biogenesis increases mitochondrial volume 
and is regulated by the peroxisome proliferator-activated receptor γ coactivator (PGC-1α). Cells are 
connected to the ECM (extracellular matrix) and exposed to external mechanical forces (F) at focal 
adhesions (FA), involving integrin receptors (Int) on the cell surface and Arg-Gly-Asp (RGD) binding 
sites on collagens fibers (Col-I). The cytoskeleton is linked to FAs and therefore mechanical forces 
from the ECM are transmitted to the mitochondria. 

Fission and fusion rates are believed to be in well-coordinated balance [34]. Specifically, the 
interaction of two heptad-repeat regions of Mfn2 inhibits fusion, whereas their binding to DRP1 
promotes fusion [35]. Furthermore, the long form of OPA1 is able to mediate fusion, while the 
enzymatically processed short form of OPA1 promotes fission [36]. Interestingly, the latter study also 
found that the short form of OPA1 co-localizes with contact sites of the mitochondria with the 
endoplasmic reticulum (ER). Mitochondrial fission is also mediated by physical interactions with 
narrow ER tubules. When aquaporin water channels allow swelling of the ER tubules, the constriction 
of the tubules contributes to the mechanical force required for fission [37]. Indeed, fission occurs at 
the contact sites between mitochondria and ER tubules and the constriction is initiated before the 
recruitment of DRP1 [38]. Further roles of the ER and mitochondrial tethering are discussed in more 
detail elsewhere [34]. Two additional processes contribute to the full dynamics of mitochondria; 
biogenesis, the production of mitochondrial content both by the nucleus and the mitochondria, and 
mitophagy, the degradation and elimination of damaged mitochondria (Figure 2). 

2.3. Mitochondrial Network Properties 

The organization and apparent complexity of the mitochondrial clusters prompted more 
quantitative investigations of the structure from a network perspective using fluorescence imaging 
and mathematical analyses. One study reported that fission and fusion are not fully independent and 
that they may form a cycle (Figure 2) in which the probability that fission is followed by fusion and 
fusion is followed by fission is ~0.8 [39]. Furthermore, in neuronal cells, fission was found to be driven 
by mitochondrial cluster length, whereas fusion was governed by cluster motility in such a way that 

Figure 2. Intracellular and extracellular processes contributing to mitochondrial structure and function.
Intracellular mitochondrial (orange) dynamics include the processes of fusion, fission, mitophagy, and
biogenesis. See text for explanation for how the various molecules such as OPA1, Mfn1, Mfn2, and
DRP1 govern these processes. The grey mitochondrion is damaged and degraded by mitophagy. Green
lines represent microtubules, along which small mitochondrial clusters can travel with the aid of motor
proteins. The dashed line represents the site of fission and the red arrows indicate the cyclic nature
of fission and fusion. Note that biogenesis increases mitochondrial volume and is regulated by the
peroxisome proliferator-activated receptor γ coactivator (PGC-1α). Cells are connected to the ECM
(extracellular matrix) and exposed to external mechanical forces (F) at focal adhesions (FA), involving
integrin receptors (Int) on the cell surface and Arg-Gly-Asp (RGD) binding sites on collagens fibers
(Col-I). The cytoskeleton is linked to FAs and therefore mechanical forces from the ECM are transmitted
to the mitochondria.

Fission and fusion rates are believed to be in well-coordinated balance [34]. Specifically, the
interaction of two heptad-repeat regions of Mfn2 inhibits fusion, whereas their binding to DRP1
promotes fusion [35]. Furthermore, the long form of OPA1 is able to mediate fusion, while the
enzymatically processed short form of OPA1 promotes fission [36]. Interestingly, the latter study
also found that the short form of OPA1 co-localizes with contact sites of the mitochondria with the
endoplasmic reticulum (ER). Mitochondrial fission is also mediated by physical interactions with
narrow ER tubules. When aquaporin water channels allow swelling of the ER tubules, the constriction
of the tubules contributes to the mechanical force required for fission [37]. Indeed, fission occurs
at the contact sites between mitochondria and ER tubules and the constriction is initiated before
the recruitment of DRP1 [38]. Further roles of the ER and mitochondrial tethering are discussed in
more detail elsewhere [34]. Two additional processes contribute to the full dynamics of mitochondria;
biogenesis, the production of mitochondrial content both by the nucleus and the mitochondria, and
mitophagy, the degradation and elimination of damaged mitochondria (Figure 2).

2.3. Mitochondrial Network Properties

The organization and apparent complexity of the mitochondrial clusters prompted more
quantitative investigations of the structure from a network perspective using fluorescence imaging
and mathematical analyses. One study reported that fission and fusion are not fully independent
and that they may form a cycle (Figure 2) in which the probability that fission is followed by fusion
and fusion is followed by fission is ~0.8 [39]. Furthermore, in neuronal cells, fission was found to be
driven by mitochondrial cluster length, whereas fusion was governed by cluster motility in such a
way that the total rates of fission and fusion were matched and maintained in a homeostatic state [39].
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It is also important to note that the precise rates and probabilities depended on the cell type. The
energetic state of mitochondria is critically linked to its structure, since dissipating the inner membrane
potential, inhibiting complex III and complex V (ATP synthase) of the ETC, or reducing cytosolic ATP
by inhibiting glycolysis all reduced fission and fusion rates, attenuated motility as measured by the
diffusion coefficient, decreased the probability of bursting cluster motion, and increased mitochondrial
fragment numbers [40].

To characterize the structure of individual clusters, one can measure the length of the cluster along
the backbone [39], compute an apparent aspect ratio (AR = ratio of major to minor axis of an ellipse
fit to the cluster shape) or use the form factor (FF = perimeter squared divided by the product of 4π
and the area) [41]. The AR characterizes how globular a cluster is, whereas FF is related to the extent
of branching along the backbone of the cluster. The entire mitochondrial network complexity can be
quantified by the fractal dimension Df that is related to the space filling capacity of the network [7,14];
if in two dimensions (2D) Df is close to 1, the network consists mostly of lines, and if Df is close
to 2, the network tends to be a compact 2D object such as a filled circle. To study what governs
the structural properties of the mitochondrial network, it is useful to image some fluorescent labels
associated with the mitochondria and compute the above indices before and after applying various
stimuli or inhibitors. For example, mitochondrial average cluster size in vascular smooth muscle
cells (VSMC) in culture without stretch was found to depend on a number of inhibitors including
blebbistatin, an inhibitor of non-muscle myosin II, dynasore, an inhibitor of DRP1, and paprotrain, an
inhibitor of mitotic kinesin-like protein 2 that allows mitochondria to move along microtubules [14].
Furthermore, chronic inhibition of complex I with rotenone in human skin fibroblasts as a model of
mitochondrial dysfunction significantly increased FF, suggesting that hyperproduction of ROS leads to
mitochondrial outgrowth [42].

When the entire mitochondrial network is considered, a global picture arises that this network
spans the cell efficiently, which is most likely an evolutionary consequence of optimal spatial
distribution of energy supply in the form of ATP. This global network can be characterized by its
connectivity using percolation theory [43]. Consider a simple lattice in which each neighboring site is
occupied with probability p. A cluster is defined as a set of connected occupied sites. As p increases
from 0, defining a completely empty and disconnected lattice, to 1, a fully connected lattice, the size
of clusters gradually increases. There is a point at which a large cluster spans the lattice, providing
full connectivity from one side to the other. The transition from a disconnected lattice to one that
includes a connected cluster spanning the system occurs when p crosses a critical percolation threshold,
denoted by pc. The structure of the percolation cluster at p = pc is a self-similar fractal. Thus, such
a percolation transition should occur when a critical density of mitochondria is linked into a global
network via fusion. To test this idea, Aon et al. [7] showed in isolated ventricular myocytes that the
mitochondria form a network near the critical point, and the fractal properties of the network agree
well with a percolation-like mitochondrial network. Even more interesting is to consider how signaling
through such a network occurs. When mitochondria accumulate sufficient amounts of ROS that exceed
a threshold, a small additional release of ROS, produced locally by leakage of the ETC, triggers a ROS
wave that spreads through the connected cluster, first depolarizing the inner membrane potential,
followed by a transition to oscillations. The biological consequences, argued the authors [7], are that a
transition to the oscillatory behavior may destabilize cardiac “action potential repolarization in the
whole heart, suggesting that criticality at the microscopic level may be translated into the death of the
organism”. This scenario suggests that mitochondria can signal across cells, reaching the tissue level to
influence the fate of organs and the organism.

3. Cytoskeletal–Mitochondrial Interactions

In the previous sections, we presented a brief overview of the structure, dynamics, and regulation
of mitochondria. In this section, we discuss the interactions between mitochondria and the components
of the cytoskeleton (Figure 2). The functional roles of the cytoskeleton, a filamentous protein network,
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are to provide cells with resistance to deformation, allow shape change during movement, transport
cargo including mitochondria, and mechanotransduction, the conversion of mechanical stimuli to
signaling [44]. Additionally, both internal and external physical forces can be transmitted through
the cytoskeleton to other organelles including the nucleus and the mitochondria. Interestingly, the
cytoskeletal network itself can respond to external forces by exhibiting hysteresis and memory, and
long-lived cytoskeletal structures can be epigenetically inherited by future generations following cell
division [44]. Because of this fundamental mechanical role of the cytoskeleton in general cell behavior,
our focus will be mostly on the mechanical aspects of the relationship between the cytoskeletal and the
mitochondrial networks.

The cytoskeleton is composed of three main types of polymers: actin filaments, microtubules,
and intermediate filaments. These filaments form interconnected networks with the help of
cross-linkers, motor proteins, and stabilizers. The amount and structural organization of these networks
determine the shape and mechanics of the cell. These networks can also respond to external forces
by reorganizing their network structure and communicating mechanical forces to each other and to
various organelles. The reorganization often involves polymerization and depolymerization, regulated
by factors such as nucleation-promoting factors, which initiate growth, capping proteins, which stop
polymerization, polymerases, which enhance polymer growth and depolymerizing factors, which
disassemble the filaments and networks [44]. All three cytoskeletal networks have been associated
with various mitochondrial functions.

3.1. Interactions of Mitochondria with the Actin Cytoskeleton

An early study suggested a spatial co-localization of gamma actin with skeletal muscle cell
mitochondria [45], whereas a later study showed that in chick sympathetic neurons, mitochondria
can move along the axon in both directions and their motility requires either microtubules or actin,
depending on which cytoskeletal network is present [46]. However, it was subsequently reported that
in axons and dendrites, mitochondria showed a preferred movement along microtubules, although
some limited movement along actin was possible [47]. While mitochondrial movement requires
actin in plants and fungi or microtubules in mammalian cells, actin also helps the immobilization of
mitochondria in neurons at locations where ATP is needed [48], by strengthening its Ca2+-dependent
interaction with actin [49]. Actin also participates in the redistribution of the mitochondrial network
during mitosis. The transport of mitochondria towards the daughter cell at the end of mitosis is
promoted by the cell cycle-dependent recruitment of Cenp-F, a cytoskeleton-associated protein, by a
mitochondrial protein called Miro [50].

The cortical actin structure depends on the availability of both ATP and non-muscle myosin
II, and this myosin cross-linked actin network determines the stiffness of the cell [51]. Inhibiting
non-muscle myosin II indeed alters the cortical actin [52], but this inhibition also reduces the average
mitochondrial cluster size in VSMCs [14]. However, mitochondria also influence many actin-related
cell functions. For example, since ATP is mostly produced by the mitochondria, cell stiffness also
depends on mitochondrial ATP production. The same applies for cell contraction. Indeed, it was
shown recently in VSMCs and aorta rings that inhibiting the ATP synthase with oligomycin reduced
active force generation [14]. Thus, there is a subtle and bi-directional relationship between cortical
actin and mitochondrial structure that contributes to overall cell mechanical functions such as stiffness
and contractility.

3.2. Microtubules Regulate Mitochondrial Function

Mitochondria have long been known to strongly interact with microtubules in many cell
types [53]. Tubulins, both alpha and beta, were found to be localized in mitochondria and were
closely associated with mitochondrial voltage-dependent anion channels (VDACs) [54]. The strategic
localization of beta-tubulin II near VDACs allows it to regulate the so-called mitochondrial permeability
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transition [55], in which the pores, mostly VDACs, on the outer membrane open, leading to necrosis
and apoptosis [56].

Microtubule filaments serve as railroad tracks upon which mitochondrial clusters travel within
the cell, utilizing motor proteins (Figure 2) such as dyneins and kinesins, which allow movement
toward microtubule’s minus and plus ends, respectively [57]. Disassembling microtubules completely
eliminates mitochondrial motility [47], which is necessary for fusion and fission and hence for the
maintenance of healthy mitochondrial structure and bioenergetics. Indeed, graph theoretical analysis
and mathematical modeling provide evidence that besides the fusion and fission rates, mitochondrial
structure is determined by the retrograde and anterograde movements and the balance between these
rates is responsible for the heterogeneous distribution of mitochondria in the cell [58]. Microtubules
also contribute to cell shape and stability by their ability to carry compressive forces [59]. External
forces can alter cell shape, resulting in a reorganization of microtubules; indeed, cyclic uniaxial stretch
changed cell orientation and microtubule structure [60], which can affect mitochondrial cluster and
network properties and hence ATP production. This phenomenon is further discussed below in
relation to how external mechanical forces influence mitochondria.

3.3. Contribution of Intermediate Filaments

There is evidence that intermediate filaments also contribute to mitochondrial structure and
function [12]. For example, plectin, a cytoskeletal crosslinker, is spatially associated with desmin,
an intermediate filament, which is co-localized in an ordered fashion with mitochondria along
the length of the sarcomere of striated muscle, suggesting the possibility that these proteins
contribute to the branching pattern of mitochondria [61]. Vimentin is another intermediate
filament which is also associated with mitochondria, since vimentin-null cells showed mitochondrial
fragmentation and disorganization perhaps by modulating the association of mitochondria with
microtubules [62]. The fact that vimentin plays a role in cell mechanics as well as protects the cell
against compressive stresses [63] further suggests the possibility that external mechanical stresses may
regulate mitochondrial structure and function.

4. Mechanobiology of Mitochondrial Structure and Function

Nearly all cell types in the body are exposed to mechanical factors such as shear stress, external
pressure, tensile stress, and the stiffness of the surrounding ECM. These mechanical factors affect cell
function via the interaction of cell surface receptors such as integrins at focal adhesions with binding
sites on ECM fibers, such as Arg-Gly-Asp (RGD) on collagen type I (Figure 2). Cells have co-evolved
with the ECM to respond to such stimuli and continuously attempt to maintain a homeostatic state
with the ECM. Indeed, vascular endothelial cells are sensitive to shear stress [64], whereas kidney
cilia [65], bone [66], cartilage [67], and eye [68] cells respond to pressure. Muscle contraction generates
stresses on muscle cells [69] as well as nerve cells [70]; cyclic variations in blood pressure in the arteries
produce circumferential stresses acting on VSMCs [71]; and breathing cyclically stretches all cells of
the lung [72]. With regard to ECM stiffness, the best example is that stem cells are neurogenic on soft
ECMs that mimic the brain, myogenic on stiffer ECMs that mimic muscle, and osteogenic on very stiff
ECMs that mimic bone [73].

4.1. Effects of Transient and Monotonous Stretch

Since the cytoskeleton is the primary load-bearing element that responds to all external
mechanical stimuli, the strong link between the cytoskeletal and mitochondrial networks suggests that
mitochondria should also be mechanosensitive. Nevertheless, mitochondrial responses to mechanical
stimuli received attention only relatively recently. For example, in an in vitro sustained stretch model
(24 h with 20% area strain) of abnormal mechanical milieu, cardiomyocytes underwent apoptosis
because cytochrome c was released from mitochondria [74]. Mitochondrial membrane potential
also declined, which seems to have resulted in mitochondrial fragmentation as seen in Figure 2B
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in Reference [74]. The authors concluded that the Bcl-2 proteins contributed to stretch-induced
mitochondrial apoptosis. Respiratory muscle weakness was studied in intensive care units due to
impairments in diaphragm contractility using a five-day mechanical ventilation model in piglets [75].
While mitochondrial content did not change, the activity of complex IV of the ETC decreased by
21%. Mechanical ventilation, however, takes away the natural variability in tidal breathing (see more
details below) and hence this study suggests that long-term abnormal monotonous mechanical stimuli
can result in specific molecular changes in the mitochondria. Cyclic mechanical strain increased
ROS production in endothelial cells in an actin cytoskeleton-dependent manner [13]. Similarly,
cyclic stretch upregulated ROS production in lung epithelial cell types in culture in a duration
and amplitude-dependent fashion, suggesting that overdistension of the lung during mechanical
ventilation may lead to mitochondrial ROS-induced lung injury [76]. Interestingly, the study also
found direct evidence based on imaging that a global equibiaxial strain (17% strain applied to the elastic
membrane on which cells were cultured) resulted in local stretching of the mitochondria with up to 32%
linear strain. Furthermore, when lung fibroblasts were exposed to large transient equibiaxial stretches
of up to 30%, mitochondria were seen to rupture (Figure 3) at discrete locations immediately after the
stretch [77]. To visualize mitochondria, cells were labeled with tetramethylrhodamine methyl ester
(TMRM), a dye whose intensity is related to the inner mitochondrial membrane potential [78] and hence
to ATP production [79]. The results suggest that external mechanical stresses are capable of directly and
immediately initiating fission. The reason for this is that the cytoskeleton is in a so-called pre-stressed
state with tensile forces on actin fibers due to myosin motor activity [80], which primes the cytoskeleton
for the rapid transmission of mechanical forces to long distances. Indeed, this is reminiscent of the
fast and long-range mechanical force transmission from focal adhesions to the nucleus [81]. While the
above studies confirm that external mechanical forces, both transient and long-term monotonous, can
influence the structure and function of mitochondria, the internal mechanical microenvironment has
also been shown to drive fission via an elastocapillary instability [82].
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Figure 3. Cells were cultured on elastic membranes that could be stretched equibiaxially in a stretching
device. (A) A cell labeled for cytosol (green), mitochondria (red: tetramethylrhodamine methyl ester,
TMRM), and nucleus (blue) at 0% (left) and 14% (right) strains. (B) The top row shows the mitochondrial
network of an entire cell imaged during constant strain application at increments of 0, 7, 14, and 30%
change in membrane surface area. The bottom row shows the zoomed-in details of an individual
cluster (green rectangle in top row) changing shape as higher strains are applied (green arrow), as well
as a cluster undergoing fission and splitting into two smaller clusters (red arrow) [77].
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4.2. Fluctuations Influence Mechanotransduction

Mechanical stresses acting on tissues and cells in the body display significant variations and
fluctuations. Beat by beat blood pressure changes exhibit significant variability, which is elevated
in hypertension [83,84]. Breathing generates large breath-to-breath variability of tidal volume [85].
Since both the magnitudes and timing of mechanical stresses regulate the actual cellular signaling
response [86], it is expected that fluctuations in the mechanical stimuli influence the details of
mechanotransduction, a process called fluctuation-driven mechanotransduction (FDM) [87]. It is
conceivable that over evolutionary time scales, FDM has become built into all mechanosensitive
cellular processes. However, in standard laboratory conditions, mechanotransduction is studied
using static or cyclic but monotonous stretch (MS). Several recent studies presented evidence that
fluctuations in cycle-by-cycle strain or shear stress, called variable stretch (VS) or variable shear
stress (VSS), respectively, fundamentally alter cellular behavior, including cytoskeletal organization,
bioenergetics, and signaling [14,88,89].

Recently, we reported that FDM directly affects mitochondrial structure and function. Specifically,
ATP production rate assayed by visualizing TMRM in VSMCs cultured on elastic membranes
and stretched equi-biaxially was twice as high following four hours of VS compared to MS [14].
Furthermore, VS also directly affected components and phosphorylation of the ETC complexes: ATP
synthase as well as cytochrome c oxidase and its phosphorylated form were upregulated together
with Mfn1 and Mfn2, but not DRP1. Interestingly, VS also induced mitochondrial biogenesis since
the master regulator of biogenesis under external stimuli, the peroxisome proliferator-activated
receptor γ coactivator [90], PGC-1α (Figure 2), increased compared to MS [14]. These biochemical
shifts were accompanied by various structural changes such as increased organization of the actin,
microtubule, and mitochondrial networks, characterized by their fractal dimension and coefficient of
variation [14]. To test the possible mechanisms of FDM, inhibitors of actin polymerization, microtubule
depolymerization, ATP synthase, focal adhesion kinase (FAK), or calcium availability were used.
The results showed that both ATP production and mitochondrial cluster size were decreased, but VS
maintained a higher membrane potential than MS. However, inhibitors of microtubule and vimentin
assembly eliminated the membrane potential differences between MS and VS cells. Furthermore,
inhibiting non-muscle myosin II, DRP1, which regulates fission [91], or the mitotic kinesin-like protein
2 reduced membrane potential in VS cells to the levels in MS cells. Finally, the functional consequence
of FDM-induced ATP production was an increase in myosin light chain phosphorylation both in
VSMCs in culture and aorta rings, which in turn resulted in a higher contractile force generation
during VS in aorta rings [14]. Thus, VSMCs are capable of utilizing fluctuations in their mechanical
environment and the extracted energy surplus manifests in increased chemical energy stored in ATP
as a result of the reorganization and interaction of the cytoskeletal and mitochondrial networks. This is
a structure-complexity-function relationship that arises from macroscopic mechanical fluctuations
producing changes in cytoskeletal and mitochondrial network complexity, which regulates oxidative
phosphorylation and enhances bioenergetics. Figure 4 compares the relation between network
complexity and ATP production for unstretched (US), MS, and VS cells. To put this in perspective,
US cells produce and consume the least ATP, while VS cells produce and consume the largest amount
of ATP. Thus, US cells are the closest to while VS cells are the furthest away from thermodynamic
equilibrium, because they are able to harness energy from environmental fluctuations to charge
mitochondria, the battery of life. This far-from-equilibrium operation is supported by a higher
complexity of the mitochondrial network structure. Nevertheless, it remains to be seen if FDM has
similar effects in other cell types.
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Figure 4. Relationship between complexity, measured by the fractal dimension Df, and function,
assessed by a fluorescent dye (TMRM, see text) intensity that is related to ATP production rate in
VSMCs. There is a linear relation between the log of ATP production and Df. The dots represent binned
data from about 2000 cells showing unstretched control cells (US), 4 h of monotonously stretched (MS)
cells (10% area strain at 1 Hz), and 4 h of stretching cells with a variable stretch (VS) pattern in which
every cycle is different with the amplitudes uniformly distributed between 7.5% and 12.5% area strain.
The US cells are in the lower left corner. These cells produce little energy and their mitochondrial
fractal organization is the least complex. MS cells produce somewhat more energy and their Df is
also higher, whereas VS cells produce the most ATP and have the highest complexity in terms of their
fractal organization. The images show mitochondrial networks corresponding to US, MS, and VS cells.
ATP production rate is related to the intensity of red color. The results were obtained by reanalyzing
the data from [14].

4.3. Effects of ECM Stiffness on Mitochondria

There is little data in the literature related to whether ECM stiffness affects mitochondrial structure
and function. Recently, it was reported that in cardiac myocytes, baseline metabolism is influenced by
ECM stiffness and, even more interestingly, the ability of cells to adapt to metabolic stress is regulated
by both ECM stiffness and fiber alignment [92]. To complement these findings, below we present
preliminary data that suggest a weak dependence of mitochondrial structure and function on ECM
stiffness in VSMCs in culture, in qualitative agreement with the result in cardiac myocytes.

To test the effects of substrate stiffness on mitochondrial structure and function, the stiffness of
an elastic gel (NuSil® 8100, NuSil Silicone Technologies, Carpinteria, CA, USA) was characterized for
different ratios of the polymer and its crosslinker [93]. Ratios of 1:1, 1:2, and 1:5 polymer to crosslinker
were mixed and placed into an oven at 70 ◦C for 24 h. Stiffer gels were obtained by adding Sylgard
184 (Dow Corning, Auburn MI, USA) mixed at 1:10 ratio to the 1:1 NuSil at 20% and 33% by weight.
Gel stiffness was determined using a uniaxial stretching device (n = 5 for each stiffness) as described
previously [94]. The dimensions of the gel were measured before attachment into a stretching device,
which imposed a known displacement and measured the resulting force. Stress and strain were
calculated using the measured force and dimensions of the sample and the slope of a straight-line
fit was taken as the stiffness. New gel layers were then prepared and ligated with type I collagen
(Advanced Biomatrix, Carlsbad, CA, USA). VSMC isolated from bovine thoracic aortae were seeded on
gels with nominal stiffness values of 1, 12.5, 50, and 75 kPa, and cells were subsequently labeled with
TMRM. As Figure 5 demonstrates, the effects of stiffness on mitochondrial cluster size was statistically
significant (p < 0.001), though moderate, showing at most 18% difference in median values between
cells seeded on 12.5 kPa and the rest. The effect of stiffness on TMRM intensity was also significant
(p < 0.001) and more pronounced, with the maximum intensity also occurring at 12.5 kPa and the
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largest difference among groups being 27%. It is interesting to note that 12.5 kPa is close to the in vivo
stiffness of the vascular wall [95], and it is tempting to conclude that the organization and function of
mitochondria in VSMCs are optimized for the local vascular wall ECM stiffness.
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Figure 5. Mitochondrial structure-function relations as a function of substrate stiffness. VSMCs were
seeded on substrates of different stiffness, labeled with TMRM, and cluster sizes and mean intensities
were measured. The horizontal lines in the boxes are the median, the box represents the 25th percentile,
and the horizontal bars are the 75th percentile of the data. The symbols are data outside the 75th
percentile. (A) Cluster sizes were stiffness dependent, but only the clusters on 12.5 kPa stiffness were
different from the rest. (B) Intensities were also stiffness dependent, and again only data on 12.5 kPa
stiffness were different from the rest.

5. Possible Implications for Disease and Aging

In this review, we discussed mitochondrial structure and function in relation to the cytoskeleton
and various mechanical factors influencing cells throughout the body. It is apparent that the dynamics
of fission and fusion play a critical role in mitochondrial network organization, which in turn regulates
both intra-mitochondrial processes such as ATP production as well as extra-mitochondrial processes
such as apoptosis. Mitochondria as a network are also closely associated with various cytoskeletal
filamentous networks. Since the cytoskeleton is involved in all mechanosensitive processes, we argued
that the mitochondrial network as an organelle is also mechanosensitive and should be viewed as an
integral part of the cell’s mechanosensing apparatus. Furthermore, the mitochondrial network is at
the center of bi-directional mechanotransduction. On the one hand, the network responds to stretch
and its time variations imposed on the mitochondria at the scale of the cell by altering biochemical
signaling to produce ATP and ROS at a scale much lower than the network itself. On the other hand,
by regulating the cytosolic availability of ATP, ROS, and cytochrome c, the mitochondrial network
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is able to control whole cell- and possibly tissue- and organ-level processes such as apoptosis, tissue
contractility, and organ-level dysfunction.

It has long been appreciated that mitochondria contribute to a variety of diseases as well as
aging [19,30,56,96–105]. Since many diseases involve changes in mechanical factors, it is likely
that part of the reason why mitochondrial function becomes abnormal in diseases is the abnormal
mechanical environment of the cell. For example, in fibrosis, ECM stiffness increases which in turn
influences the cytoskeleton and hence triggers a mitochondrial response as well [101]. Pathologically
strong airway smooth muscle contraction is a hallmark feature of asthma. Since muscle contraction
requires ATP and because airway wall ECM stiffness also increases in asthma due to remodeling,
mitochondria should be involved in the development of asthma [103]. Similarly, aging is accompanied
by vascular wall stiffening [106], and both wall stiffness [107] and blood pressure variability [108]
increase in hypertension. As we have demonstrated here, both of these factors would have to alter
mitochondrial processes and hence this may be a new mechanism through which mitochondria may
contribute to aging and hypertension. Expanding on this idea, since nearly all cells in the body
experience some mechanical perturbation, we argue that mitochondria should be involved in every
disease in which mechanical factors are altered. Currently, the roles of mitochondrial structure and
function are underappreciated in mechanobiology, whereas mechanotransduction has not had an
impact on medicine. Future studies should thus explore the links between mechanobiology and
mitochondria, which we believe may open the door to new understanding and treatment avenues for
many human diseases.

Acknowledgments: This study was supported by NIH grants HL126040 and HL123522.

Author Contributions: Erzsébet Bartolák-Suki wrote manuscript; Jasmin Imsirovic carried out experiments;
Yuichiro Nishibori carried out experiments; Ramaswamy Krishnan wrote manuscript; Béla Suki wrote manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kluge, M.A.; Fetterman, J.L.; Vita, J.A. Mitochondria and endothelial function. Circ. Res. 2013, 112, 1171–1188.
[CrossRef] [PubMed]

2. Boldogh, I.R.; Pon, L.A. Mitochondria on the move. Trends Cell Biol. 2007, 17, 502–510. [CrossRef] [PubMed]
3. Bereiter-Hahn, J.; Voth, M. Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion,

and fission of mitochondria. Microsc. Res. Tech. 1994, 27, 198–219. [CrossRef] [PubMed]
4. Palmer, C.S.; Osellame, L.D.; Stojanovski, D.; Ryan, M.T. The regulation of mitochondrial morphology:

Intricate mechanisms and dynamic machinery. Cell Signal. 2011, 23, 1534–1545. [CrossRef] [PubMed]
5. Ishihara, N.; Nomura, M.; Jofuku, A.; Kato, H.; Suzuki, S.O.; Masuda, K.; Otera, H.; Nakanishi, Y.; Nonaka, I.;

Goto, Y.; et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse
formation in mice. Nat. Cell Biol. 2009, 11, 958–966. [CrossRef] [PubMed]

6. Chen, H.; Detmer, S.A.; Ewald, A.J.; Griffin, E.E.; Fraser, S.E.; Chan, D.C. Mitofusins Mfn1 and Mfn2
coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 2003,
160, 189–200. [CrossRef] [PubMed]

7. Aon, M.A.; Cortassa, S.; O’Rourke, B. Percolation and criticality in a mitochondrial network. Proc. Natl. Acad.
Sci. USA 2004, 101, 4447–4452. [CrossRef] [PubMed]

8. Bach, D.; Pich, S.; Soriano, F.X.; Vega, N.; Baumgartner, B.; Oriola, J.; Daugaard, J.R.; Lloberas, J.;
Camps, M.; Zierath, J.R.; et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial
metabolism. A novel regulatory mechanism altered in obesity. J. Biol. Chem. 2003, 278, 17190–17197.
[CrossRef] [PubMed]

9. Rambold, A.S.; Kostelecky, B.; Elia, N.; Lippincott-Schwartz, J. Tubular network formation protects
mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. USA 2011,
108, 10190–10195. [CrossRef] [PubMed]

http://dx.doi.org/10.1161/CIRCRESAHA.111.300233
http://www.ncbi.nlm.nih.gov/pubmed/23580773
http://dx.doi.org/10.1016/j.tcb.2007.07.008
http://www.ncbi.nlm.nih.gov/pubmed/17804238
http://dx.doi.org/10.1002/jemt.1070270303
http://www.ncbi.nlm.nih.gov/pubmed/8204911
http://dx.doi.org/10.1016/j.cellsig.2011.05.021
http://www.ncbi.nlm.nih.gov/pubmed/21683788
http://dx.doi.org/10.1038/ncb1907
http://www.ncbi.nlm.nih.gov/pubmed/19578372
http://dx.doi.org/10.1083/jcb.200211046
http://www.ncbi.nlm.nih.gov/pubmed/12527753
http://dx.doi.org/10.1073/pnas.0307156101
http://www.ncbi.nlm.nih.gov/pubmed/15070738
http://dx.doi.org/10.1074/jbc.M212754200
http://www.ncbi.nlm.nih.gov/pubmed/12598526
http://dx.doi.org/10.1073/pnas.1107402108
http://www.ncbi.nlm.nih.gov/pubmed/21646527


Int. J. Mol. Sci. 2017, 18, 1812 13 of 17

10. Santel, A.; Frank, S.; Gaume, B.; Herrler, M.; Youle, R.J.; Fuller, M.T. Mitofusin-1 protein is a generally
expressed mediator of mitochondrial fusion in mammalian cells. J. Cell Sci. 2003, 116, 2763–2774. [CrossRef]
[PubMed]

11. Sukhorukov, V.M.; Dikov, D.; Reichert, A.S.; Meyer-Hermann, M. Emergence of the mitochondrial reticulum
from fission and fusion dynamics. PLoS. Comput. Biol. 2012, 8, e1002745. [CrossRef] [PubMed]

12. Anesti, V.; Scorrano, L. The relationship between mitochondrial shape and function and the cytoskeleton.
Biochim. Biophys. Acta 2006, 1757, 692–699. [CrossRef] [PubMed]

13. Ali, M.H.; Pearlstein, D.P.; Mathieu, C.E.; Schumacker, P.T. Mitochondrial requirement for endothelial
responses to cyclic strain: Implications for mechanotransduction. Am. J. Physiol. Lung Cell Mol. Physiol. 2004,
287, L486–L496. [CrossRef] [PubMed]

14. Bartolak-Suki, E.; Imsirovic, J.; Parameswaran, H.; Wellman, T.J.; Martinez, N.; Allen, P.G.; Frey, U.;
Suki, B. Fluctuation-driven mechanotransduction regulates mitochondrial-network structure and function.
Nat. Mater. 2015, 14, 1049–1057. [CrossRef] [PubMed]

15. Discher, D.E.; Janmey, P.; Wang, Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science
2005, 310, 1139–1143. [CrossRef] [PubMed]

16. Margulis, L. Symbiotic theory of the origin of eukaryotic organelles; criteria for proof. Symp. Soc. Exp. Biol.
1975, 21–38.

17. Wang, Z.; Wu, M. An integrated phylogenomic approach toward pinpointing the origin of mitochondria.
Sci. Rep. 2015, 5, 7949. [CrossRef] [PubMed]

18. Gray, M.W. Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of
mitochondria. Proc. Natl. Acad. Sci. USA 2015, 112, 10133–10138. [CrossRef] [PubMed]

19. Zhang, Q.; Raoof, M.; Chen, Y.; Sumi, Y.; Sursal, T.; Junger, W.; Brohi, K.; Itagaki, K.; Hauser, C.J. Circulating
mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010, 464, 104–107. [CrossRef]
[PubMed]

20. Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key
Mediators of Cellular Function. Annu. Rev. Physiol. 2016, 78, 505–531. [CrossRef] [PubMed]

21. Suzuki, Y.J.; Forman, H.J.; Sevanian, A. Oxidants as stimulators of signal transduction. Free Radic. Biol. Med.
1997, 22, 269–285. [CrossRef]

22. Vogel, F.; Bornhovd, C.; Neupert, W.; Reichert, A.S. Dynamic subcompartmentalization of the mitochondrial
inner membrane. J. Cell Biol. 2006, 175, 237–247. [CrossRef] [PubMed]

23. John, G.B.; Shang, Y.; Li, L.; Renken, C.; Mannella, C.A.; Selker, J.M.; Rangell, L.; Bennett, M.J.; Zha, J.
The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol. Biol. Cell 2005, 16,
1543–1554. [CrossRef] [PubMed]

24. Oxidative Phosphorylation—Wikipedia. Available online: https://en.wikipedia.org/wiki/Oxidative_
phosphorylation (accessed on 18 August 2017).

25. Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.;
McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular
adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [CrossRef] [PubMed]

26. Cogliati, S.; Frezza, C.; Soriano, M.E.; Varanita, T.; Quintana-Cabrera, R.; Corrado, M.; Cipolat, S.; Costa, V.;
Casarin, A.; Gomes, L.C.; et al. Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes
Assembly and Respiratory Efficiency. Cell 2013, 155, 160–171. [CrossRef] [PubMed]

27. Daum, B.; Walter, A.; Horst, A.; Osiewacz, H.D.; Kuhlbrandt, W. Age-dependent dissociation of ATP
synthase dimers and loss of inner-membrane cristae in mitochondria. Proc. Natl. Acad. Sci. USA 2013, 110,
15301–15306. [CrossRef] [PubMed]

28. Frezza, C.; Cipolat, S.; Martins de Brito, O.; Micaroni, M.; Beznoussenko, G.V.; Rudka, T.; Bartoli, D.;
Polishuck, R.S.; Danial, N.N.; De Strooper, B.; et al. OPA1 controls apoptotic cristae remodeling independently
from mitochondrial fusion. Cell 2006, 126, 177–189. [CrossRef] [PubMed]

29. Legros, F.; Lombes, A.; Frachon, P.; Rojo, M. Mitochondrial fusion in human cells is efficient, requires the
inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 2002, 13, 4343–4354. [CrossRef]
[PubMed]

30. Olichon, A.; Baricault, L.; Gas, N.; Guillou, E.; Valette, A.; Belenguer, P.; Lenaers, G. Loss of OPA1 perturbates
the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis.
J. Biol. Chem. 2003, 278, 7743–7746. [CrossRef] [PubMed]

http://dx.doi.org/10.1242/jcs.00479
http://www.ncbi.nlm.nih.gov/pubmed/12759376
http://dx.doi.org/10.1371/journal.pcbi.1002745
http://www.ncbi.nlm.nih.gov/pubmed/23133350
http://dx.doi.org/10.1016/j.bbabio.2006.04.013
http://www.ncbi.nlm.nih.gov/pubmed/16729962
http://dx.doi.org/10.1152/ajplung.00389.2003
http://www.ncbi.nlm.nih.gov/pubmed/15090367
http://dx.doi.org/10.1038/nmat4358
http://www.ncbi.nlm.nih.gov/pubmed/26213900
http://dx.doi.org/10.1126/science.1116995
http://www.ncbi.nlm.nih.gov/pubmed/16293750
http://dx.doi.org/10.1038/srep07949
http://www.ncbi.nlm.nih.gov/pubmed/25609566
http://dx.doi.org/10.1073/pnas.1421379112
http://www.ncbi.nlm.nih.gov/pubmed/25848019
http://dx.doi.org/10.1038/nature08780
http://www.ncbi.nlm.nih.gov/pubmed/20203610
http://dx.doi.org/10.1146/annurev-physiol-021115-105011
http://www.ncbi.nlm.nih.gov/pubmed/26667075
http://dx.doi.org/10.1016/S0891-5849(96)00275-4
http://dx.doi.org/10.1083/jcb.200605138
http://www.ncbi.nlm.nih.gov/pubmed/17043137
http://dx.doi.org/10.1091/mbc.E04-08-0697
http://www.ncbi.nlm.nih.gov/pubmed/15647377
https://en.wikipedia.org/wiki/Oxidative_phosphorylation
https://en.wikipedia.org/wiki/Oxidative_phosphorylation
http://dx.doi.org/10.15252/embj.201488349
http://www.ncbi.nlm.nih.gov/pubmed/25298396
http://dx.doi.org/10.1016/j.cell.2013.08.032
http://www.ncbi.nlm.nih.gov/pubmed/24055366
http://dx.doi.org/10.1073/pnas.1305462110
http://www.ncbi.nlm.nih.gov/pubmed/24006361
http://dx.doi.org/10.1016/j.cell.2006.06.025
http://www.ncbi.nlm.nih.gov/pubmed/16839885
http://dx.doi.org/10.1091/mbc.E02-06-0330
http://www.ncbi.nlm.nih.gov/pubmed/12475957
http://dx.doi.org/10.1074/jbc.C200677200
http://www.ncbi.nlm.nih.gov/pubmed/12509422


Int. J. Mol. Sci. 2017, 18, 1812 14 of 17

31. Mishra, P.; Carelli, V.; Manfredi, G.; Chan, D.C. Proteolytic cleavage of Opa1 stimulates mitochondrial inner
membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 2014, 19, 630–641. [CrossRef]
[PubMed]

32. Yaffe, M.P. The machinery of mitochondrial inheritance and behavior. Science 1999, 283, 1493–1497. [CrossRef]
[PubMed]

33. Hoppins, S.; Lackner, L.; Nunnari, J. The machines that divide and fuse mitochondria. Annu. Rev. Biochem.
2007, 76, 751–780. [CrossRef] [PubMed]

34. Lackner, L.L. Shaping the dynamic mitochondrial network. BMC. Biol. 2014, 12, 35. [CrossRef] [PubMed]
35. Huang, P.; Galloway, C.A.; Yoon, Y. Control of mitochondrial morphology through differential interactions

of mitochondrial fusion and fission proteins. PLoS ONE 2011, 6, e20655. [CrossRef] [PubMed]
36. Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L

and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929.
[CrossRef] [PubMed]

37. Lee, J.S.; Hou, X.; Bishop, N.; Wang, S.; Flack, A.; Cho, W.J.; Chen, X.; Mao, G.; Taatjes, D.J.; Sun, F.; et al.
Aquaporin-assisted and ER-mediated mitochondrial fission: A hypothesis. Micron 2013, 47, 50–58. [CrossRef]
[PubMed]

38. Friedman, J.R.; Lackner, L.L.; West, M.; DiBenedetto, J.R.; Nunnari, J.; Voeltz, G.K. ER tubules mark sites of
mitochondrial division. Science 2011, 334, 358–362. [CrossRef] [PubMed]

39. Cagalinec, M.; Safiulina, D.; Liiv, M.; Liiv, J.; Choubey, V.; Wareski, P.; Veksler, V.; Kaasik, A. Principles of the
mitochondrial fusion and fission cycle in neurons. J. Cell Sci. 2013, 126, 2187–2197. [CrossRef] [PubMed]

40. Giedt, R.J.; Pfeiffer, D.R.; Matzavinos, A.; Kao, C.Y.; Alevriadou, B.R. Mitochondrial dynamics and motility
inside living vascular endothelial cells: Role of bioenergetics. Ann. Biomed. Eng. 2012, 40, 1903–1916.
[CrossRef] [PubMed]

41. Koopman, W.J.; Visch, H.J.; Verkaart, S.; van den Heuvel, L.W.; Smeitink, J.A.; Willems, P.H. Mitochondrial
network complexity and pathological decrease in complex I activity are tightly correlated in isolated human
complex I deficiency. Am. J. Physiol. Cell Physiol. 2005, 289, C881–C890. [CrossRef] [PubMed]

42. Koopman, W.J.; Verkaart, S.; Visch, H.J.; van der Westhuizen, F.H.; Murphy, M.P.; van den Heuvel, L.W.;
Smeitink, J.A.; Willems, P.H. Inhibition of complex I of the electron transport chain causes O2−. -mediated
mitochondrial outgrowth. Am. J. Physiol. Cell Physiol. 2005, 288, C1440–C1450. [CrossRef] [PubMed]

43. Stauffer, D.; Aharony, A. Introduction to Percolation Theory, 2nd ed.; Taylor & Francis: London, UK; Washington,
DC, USA, 1992; 181p.

44. Fletcher, D.A.; Mullins, R.D. Cell mechanics and the cytoskeleton. Nature 2010, 463, 485–492. [CrossRef]
[PubMed]

45. Pardo, J.V.; Pittenger, M.F.; Craig, S.W. Subcellular sorting of isoactins: Selective association of gamma actin
with skeletal muscle mitochondria. Cell 1983, 32, 1093–1103. [CrossRef]

46. Morris, R.L.; Hollenbeck, P.J. Axonal transport of mitochondria along microtubules and F-actin in living
vertebrate neurons. J. Cell Biol. 1995, 131, 1315–1326. [CrossRef] [PubMed]

47. Ligon, L.A.; Steward, O. Role of microtubules and actin filaments in the movement of mitochondria in the
axons and dendrites of cultured hippocampal neurons. J. Comp. Neurol. 2000, 427, 351–361. [CrossRef]

48. Boldogh, I.R.; Pon, L.A. Interactions of mitochondria with the actin cytoskeleton. Biochim. Biophys. Acta 2006,
1763, 450–462. [CrossRef] [PubMed]

49. Kremneva, E.; Kislin, M.; Kang, X.; Khiroug, L. Motility of astrocytic mitochondria is arrested by
Ca2+-dependent interaction between mitochondria and actin filaments. Cell Calcium. 2013, 53, 85–93.
[CrossRef] [PubMed]

50. Kanfer, G.; Courtheoux, T.; Peterka, M.; Meier, S.; Soste, M.; Melnik, A.; Reis, K.; Aspenstrom, P.; Peter, M.;
Picotti, P.; et al. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat. Commun. 2015,
6, 8015. [CrossRef] [PubMed]

51. Parameswaran, H.; Lutchen, K.R.; Suki, B. A computational model of the response of adherent cells to stretch
and changes in substrate stiffness. J. Appl. Physiol. 2014, 116, 825–834. [CrossRef] [PubMed]

52. Bondzie, P.A.; Chen, H.A.; Cao, M.Z.; Tomolonis, J.A.; He, F.; Pollak, M.R.; Henderson, J.M. Non-muscle
myosin-IIA is critical for podocyte f-actin organization, contractility, and attenuation of cell motility.
Cytoskeleton 2016, 73, 377–395. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.cmet.2014.03.011
http://www.ncbi.nlm.nih.gov/pubmed/24703695
http://dx.doi.org/10.1126/science.283.5407.1493
http://www.ncbi.nlm.nih.gov/pubmed/10066164
http://dx.doi.org/10.1146/annurev.biochem.76.071905.090048
http://www.ncbi.nlm.nih.gov/pubmed/17362197
http://dx.doi.org/10.1186/1741-7007-12-35
http://www.ncbi.nlm.nih.gov/pubmed/24884775
http://dx.doi.org/10.1371/journal.pone.0020655
http://www.ncbi.nlm.nih.gov/pubmed/21647385
http://dx.doi.org/10.1083/jcb.201308006
http://www.ncbi.nlm.nih.gov/pubmed/24616225
http://dx.doi.org/10.1016/j.micron.2013.01.005
http://www.ncbi.nlm.nih.gov/pubmed/23416165
http://dx.doi.org/10.1126/science.1207385
http://www.ncbi.nlm.nih.gov/pubmed/21885730
http://dx.doi.org/10.1242/jcs.118844
http://www.ncbi.nlm.nih.gov/pubmed/23525002
http://dx.doi.org/10.1007/s10439-012-0568-6
http://www.ncbi.nlm.nih.gov/pubmed/22527011
http://dx.doi.org/10.1152/ajpcell.00104.2005
http://www.ncbi.nlm.nih.gov/pubmed/15901599
http://dx.doi.org/10.1152/ajpcell.00607.2004
http://www.ncbi.nlm.nih.gov/pubmed/15647387
http://dx.doi.org/10.1038/nature08908
http://www.ncbi.nlm.nih.gov/pubmed/20110992
http://dx.doi.org/10.1016/0092-8674(83)90293-3
http://dx.doi.org/10.1083/jcb.131.5.1315
http://www.ncbi.nlm.nih.gov/pubmed/8522592
http://dx.doi.org/10.1002/1096-9861(20001120)427:3&lt;351::AID-CNE3&gt;3.0.CO;2-R
http://dx.doi.org/10.1016/j.bbamcr.2006.02.014
http://www.ncbi.nlm.nih.gov/pubmed/16624426
http://dx.doi.org/10.1016/j.ceca.2012.10.003
http://www.ncbi.nlm.nih.gov/pubmed/23177663
http://dx.doi.org/10.1038/ncomms9015
http://www.ncbi.nlm.nih.gov/pubmed/26259702
http://dx.doi.org/10.1152/japplphysiol.00962.2013
http://www.ncbi.nlm.nih.gov/pubmed/24408996
http://dx.doi.org/10.1002/cm.21313
http://www.ncbi.nlm.nih.gov/pubmed/27232264


Int. J. Mol. Sci. 2017, 18, 1812 15 of 17

53. Heggeness, M.H.; Simon, M.; Singer, S.J. Association of mitochondria with microtubules in cultured cells.
Proc. Natl. Acad. Sci. USA 1978, 75, 3863–3866. [CrossRef] [PubMed]

54. Carre, M.; Andre, N.; Carles, G.; Borghi, H.; Brichese, L.; Briand, C.; Braguer, D. Tubulin is an inherent
component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J. Biol.
Chem. 2002, 277, 33664–33669. [CrossRef] [PubMed]

55. Kuznetsov, A.V.; Javadov, S.; Guzun, R.; Grimm, M.; Saks, V. Cytoskeleton and regulation of mitochondrial
function: The role of beta-tubulin II. Front. Physiol. 2013, 4, 82. [CrossRef] [PubMed]

56. Kim, J.S.; He, L.; Lemasters, J.J. Mitochondrial permeability transition: A common pathway to necrosis and
apoptosis. Biochem. Biophys. Res. Commun. 2003, 304, 463–470. [CrossRef]

57. Vale, R.D. The molecular motor toolbox for intracellular transport. Cell 2003, 112, 467–480. [CrossRef]
58. Sukhorukov, V.M.; Meyer-Hermann, M. Structural Heterogeneity of Mitochondria Induced by the

Microtubule Cytoskeleton. Sci. Rep. 2015, 5, 13924. [CrossRef] [PubMed]
59. Stamenovic, D.; Mijailovich, S.M.; Tolic-Norrelykke, I.M.; Chen, J.; Wang, N. Cell prestress. II. Contribution

of microtubules. Am. J. Physiol. Cell Physiol. 2002, 282, C617–C624. [CrossRef] [PubMed]
60. Morioka, M.; Parameswaran, H.; Naruse, K.; Kondo, M.; Sokabe, M.; Hasegawa, Y.; Suki, B.; Ito, S.

Microtubule dynamics regulate cyclic stretch-induced cell alignment in human airway smooth muscle
cells. PLoS ONE 2011, 6, e26384. [CrossRef] [PubMed]

61. Reipert, S.; Steinbock, F.; Fischer, I.; Bittner, R.E.; Zeold, A.; Wiche, G. Association of mitochondria with
plectin and desmin intermediate filaments in striated muscle. Exp. Cell Res. 1999, 252, 479–491. [CrossRef]
[PubMed]

62. Tang, H.L.; Lung, H.L.; Wu, K.C.; Le, A.H.; Tang, H.M.; Fung, M.C. Vimentin supports mitochondrial
morphology and organization. Biochem. J. 2008, 410, 141–146. [CrossRef] [PubMed]

63. Mendez, M.G.; Restle, D.; Janmey, P.A. Vimentin enhances cell elastic behavior and protects against
compressive stress. Biophys. J. 2014, 107, 314–323. [CrossRef] [PubMed]

64. James, N.L.; Harrison, D.G.; Nerem, R.M. Effects of shear on endothelial cell calcium in the presence and
absence of ATP. FASEB. J. 1995, 9, 968–973. [PubMed]

65. Praetorius, H.A.; Frokiaer, J.; Leipziger, J. Transepithelial pressure pulses induce nucleotide release in
polarized MDCK cells. Am. J. Physiol. Renal. Physiol. 2005, 288, F133–F141. [CrossRef] [PubMed]

66. Jacobs, C.R.; Temiyasathit, S.; Castillo, A.B. Osteocyte mechanobiology and pericellular mechanics. Annu.
Rev. Biomed. Eng. 2010, 12, 369–400. [CrossRef] [PubMed]

67. Shao, Y.Y.; Wang, L.; Welter, J.F.; Ballock, R.T. Primary cilia modulate Ihh signal transduction in response to
hydrostatic loading of growth plate chondrocytes. Bone 2012, 50, 79–84. [CrossRef] [PubMed]

68. Luo, N.; Conwell, M.D.; Chen, X.; Kettenhofen, C.I.; Westlake, C.J.; Cantor, L.B.; Wells, C.D.; Weinreb, R.N.;
Corson, T.W.; Spandau, D.F.; et al. Primary cilia signaling mediates intraocular pressure sensation. Proc. Natl.
Acad. Sci. USA 2014, 111, 12871–12876. [CrossRef] [PubMed]

69. Martineau, L.C.; Gardiner, P.F. Insight into skeletal muscle mechanotransduction: MAPK activation is
quantitatively related to tension. J. Appl. Physiol. 2001, 91, 693–702. [PubMed]

70. Tock, Y.; Ljubisavljevic, M.; Thunberg, J.; Windhorst, U.; Inbar, G.F.; Johansson, H. Information-theoretic
analysis of de-efferented single muscle spindles. Biol. Cybern. 2002, 87, 241–248. [CrossRef] [PubMed]

71. Osol, G. Mechanotransduction by vascular smooth muscle. J. Vasc. Res. 1995, 32, 275–292. [CrossRef]
[PubMed]

72. Waters, C.M.; Sporn, P.H.; Liu, M.; Fredberg, J.J. Cellular biomechanics in the lung. Am. J. Physiol. Lung Cell
Mol. Physiol. 2002, 283, L503–L509. [CrossRef] [PubMed]

73. Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell
2006, 126, 677–689. [CrossRef] [PubMed]

74. Liao, X.D.; Wang, X.H.; Jin, H.J.; Chen, L.Y.; Chen, Q. Mechanical stretch induces mitochondria-dependent
apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts. Cell Res. 2004, 14,
16–26. [CrossRef] [PubMed]

75. Fredriksson, K.; Radell, P.; Eriksson, L.I.; Hultenby, K.; Rooyackers, O. Effect of prolonged mechanical
ventilation on diaphragm muscle mitochondria in piglets. Acta Anaesthesiol. Scand. 2005, 49, 1101–1107.
[CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.75.8.3863
http://www.ncbi.nlm.nih.gov/pubmed/80800
http://dx.doi.org/10.1074/jbc.M203834200
http://www.ncbi.nlm.nih.gov/pubmed/12087096
http://dx.doi.org/10.3389/fphys.2013.00082
http://www.ncbi.nlm.nih.gov/pubmed/23630499
http://dx.doi.org/10.1016/S0006-291X(03)00618-1
http://dx.doi.org/10.1016/S0092-8674(03)00111-9
http://dx.doi.org/10.1038/srep13924
http://www.ncbi.nlm.nih.gov/pubmed/26355039
http://dx.doi.org/10.1152/ajpcell.00271.2001
http://www.ncbi.nlm.nih.gov/pubmed/11832347
http://dx.doi.org/10.1371/journal.pone.0026384
http://www.ncbi.nlm.nih.gov/pubmed/22022610
http://dx.doi.org/10.1006/excr.1999.4626
http://www.ncbi.nlm.nih.gov/pubmed/10527638
http://dx.doi.org/10.1042/BJ20071072
http://www.ncbi.nlm.nih.gov/pubmed/17983357
http://dx.doi.org/10.1016/j.bpj.2014.04.050
http://www.ncbi.nlm.nih.gov/pubmed/25028873
http://www.ncbi.nlm.nih.gov/pubmed/7615166
http://dx.doi.org/10.1152/ajprenal.00238.2004
http://www.ncbi.nlm.nih.gov/pubmed/15367389
http://dx.doi.org/10.1146/annurev-bioeng-070909-105302
http://www.ncbi.nlm.nih.gov/pubmed/20617941
http://dx.doi.org/10.1016/j.bone.2011.08.033
http://www.ncbi.nlm.nih.gov/pubmed/21930256
http://dx.doi.org/10.1073/pnas.1323292111
http://www.ncbi.nlm.nih.gov/pubmed/25143588
http://www.ncbi.nlm.nih.gov/pubmed/11457783
http://dx.doi.org/10.1007/s00422-002-0341-2
http://www.ncbi.nlm.nih.gov/pubmed/12386740
http://dx.doi.org/10.1159/000159102
http://www.ncbi.nlm.nih.gov/pubmed/7578796
http://dx.doi.org/10.1152/ajplung.00141.2002
http://www.ncbi.nlm.nih.gov/pubmed/12169567
http://dx.doi.org/10.1016/j.cell.2006.06.044
http://www.ncbi.nlm.nih.gov/pubmed/16923388
http://dx.doi.org/10.1038/sj.cr.7290198
http://www.ncbi.nlm.nih.gov/pubmed/15040886
http://dx.doi.org/10.1111/j.1399-6576.2005.00718.x
http://www.ncbi.nlm.nih.gov/pubmed/16095451


Int. J. Mol. Sci. 2017, 18, 1812 16 of 17

76. Chapman, K.E.; Sinclair, S.E.; Zhuang, D.; Hassid, A.; Desai, L.P.; Waters, C.M. Cyclic mechanical strain
increases reactive oxygen species production in pulmonary epithelial cells. Am. J. Physiol. Lung Cell Mol.
Physiol. 2005, 289, L834–L841. [CrossRef] [PubMed]

77. Imsirovic, J.; Wellman, T.J.; Mondonedo, J.R.; Bartolak-Suki, E.; Suki, B. Design of a Novel Equi-Biaxial
Stretcher for Live Cellular and Subcellular Imaging. PLoS ONE 2015, 10, e0140283. [CrossRef] [PubMed]

78. Ehrenberg, B.; Montana, V.; Wei, M.D.; Wuskell, J.P.; Loew, L.M. Membrane potential can be determined in
individual cells from the nernstian distribution of cationic dyes. Biophys. J. 1988, 53, 785–794. [CrossRef]

79. Kadenbach, B.; Ramzan, R.; Wen, L.; Vogt, S. New extension of the Mitchell Theory for oxidative
phosphorylation in mitochondria of living organisms. Biochim. Biophys. Acta 2010, 1800, 205–212. [CrossRef]
[PubMed]

80. Ingber, D.E. Cellular mechanotransduction: Putting all the pieces together again. FASEB J. 2006, 20, 811–827.
[CrossRef] [PubMed]

81. Hu, S.; Chen, J.; Butler, J.P.; Wang, N. Prestress mediates force propagation into the nucleus. Biochem. Biophys.
Res. Commun. 2005, 329, 423–428. [CrossRef] [PubMed]

82. Gonzalez-Rodriguez, D.; Sart, S.; Babataheri, A.; Tareste, D.; Barakat, A.I.; Clanet, C.; Husson, J.
Elastocapillary Instability in Mitochondrial Fission. Phys. Rev. Lett. 2015, 115, 088102. [CrossRef] [PubMed]

83. Mancia, G.; Parati, G.; Hennig, M.; Flatau, B.; Omboni, S.; Glavina, F.; Costa, B.; Scherz, R.; Bond, G.;
Zanchetti, A.; et al. Relation between blood pressure variability and carotid artery damage in hypertension:
Baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). J. Hypertens. 2001, 19,
1981–1989. [CrossRef] [PubMed]

84. Schillaci, G.; Bilo, G.; Pucci, G.; Laurent, S.; Macquin-Mavier, I.; Boutouyrie, P.; Battista, F.; Settimi, L.;
Desamericq, G.; Dolbeau, G.; et al. Relationship between short-term blood pressure variability and
large-artery stiffness in human hypertension: Findings from 2 large databases. Hypertension 2012, 60,
369–377. [CrossRef] [PubMed]

85. Dellaca, R.L.; Aliverti, A.; Lo Mauro, A.; Lutchen, K.R.; Pedotti, A.; Suki, B. Correlated variability in the
breathing pattern and end-expiratory lung volumes in conscious humans. PLoS ONE 2015, 10, e0116317.
[CrossRef] [PubMed]

86. Hoffman, B.D.; Grashoff, C.; Schwartz, M.A. Dynamic molecular processes mediate cellular
mechanotransduction. Nature 2011, 475, 316–323. [CrossRef] [PubMed]

87. Suki, B.; Parameswaran, H.; Imsirovic, J.; Bartolak-Suki, E. Regulatory Roles of Fluctuation-Driven
Mechanotransduction in Cell Function. Physioly 2016, 31, 346–358. [CrossRef] [PubMed]

88. Arold, S.P.; Bartolak-Suki, E.; Suki, B. Variable stretch pattern enhances surfactant secretion in alveolar type
II cells in culture. Am. J. Physiol. Lung Cell Mol. Physiol. 2009, 296, L574–L581. [CrossRef] [PubMed]

89. Uzarski, J.S.; Scott, E.W.; McFetridge, P.S. Adaptation of endothelial cells to physiologically-modeled, variable
shear stress. PLoS ONE 2013, 8, e57004. [CrossRef] [PubMed]

90. Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.;
Scarpulla, R.C.; et al. Mechanisms controlling mitochondrial biogenesis and respiration through the
thermogenic coactivator PGC-1. Cell 1999, 98, 115–124. [CrossRef]

91. Otera, H.; Ishihara, N.; Mihara, K. New insights into the function and regulation of mitochondrial fission.
Biochim. Biophys. Acta 2013, 1833, 1256–1268. [CrossRef] [PubMed]

92. Lyra-Leite, D.M.; Andres, A.M.; Petersen, A.P.; Ariyasinghe, N.R.; Cho, N.; Lee, J.A.; Gottlieb, R.A.;
McCain, M.L. Mitochondrial Function in Engineered Cardiac Tissues is Co-Regulated by Extracellular
Matrix Elasticity and Tissue Alignment. Am. J. Physiol. Heart Circ. Physiol. 2017. [CrossRef] [PubMed]

93. Yoshie, H.; Koushki, N.; Kaviani, R.; Rajendran, K.; Dang, Q.; Husain, A.; Yao, S.; Li, C.; Sullivan, J.K.;
Saint-Geniez, M.; et al. Traction force screening enabled by compliant PDMS elastomers. bioRxiv 2017.
[CrossRef]

94. Araujo, A.D.; Majumdar, A.; Parameswaran, H.; Yi, E.; Spencer, J.L.; Nugent, M.A.; Suki, B. Dynamics of
enzymatic digestion of elastic fibers and networks under tension. Proc. Natl. Acad. Sci. USA 2011, 108,
9414–9419. [CrossRef] [PubMed]

95. Sehgel, N.L.; Sun, Z.; Hong, Z.; Hunter, W.C.; Hill, M.A.; Vatner, D.E.; Vatner, S.F.; Meininger, G.A.
Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on
aging. Hypert 2015, 65, 370–377. [CrossRef] [PubMed]

http://dx.doi.org/10.1152/ajplung.00069.2005
http://www.ncbi.nlm.nih.gov/pubmed/15964900
http://dx.doi.org/10.1371/journal.pone.0140283
http://www.ncbi.nlm.nih.gov/pubmed/26466363
http://dx.doi.org/10.1016/S0006-3495(88)83158-8
http://dx.doi.org/10.1016/j.bbagen.2009.04.019
http://www.ncbi.nlm.nih.gov/pubmed/19409964
http://dx.doi.org/10.1096/fj.05-5424rev
http://www.ncbi.nlm.nih.gov/pubmed/16675838
http://dx.doi.org/10.1016/j.bbrc.2005.02.026
http://www.ncbi.nlm.nih.gov/pubmed/15737604
http://dx.doi.org/10.1103/PhysRevLett.115.088102
http://www.ncbi.nlm.nih.gov/pubmed/26340213
http://dx.doi.org/10.1097/00004872-200111000-00008
http://www.ncbi.nlm.nih.gov/pubmed/11677363
http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.197491
http://www.ncbi.nlm.nih.gov/pubmed/22753222
http://dx.doi.org/10.1371/journal.pone.0116317
http://www.ncbi.nlm.nih.gov/pubmed/25803710
http://dx.doi.org/10.1038/nature10316
http://www.ncbi.nlm.nih.gov/pubmed/21776077
http://dx.doi.org/10.1152/physiol.00051.2015
http://www.ncbi.nlm.nih.gov/pubmed/27511461
http://dx.doi.org/10.1152/ajplung.90454.2008
http://www.ncbi.nlm.nih.gov/pubmed/19136581
http://dx.doi.org/10.1371/journal.pone.0057004
http://www.ncbi.nlm.nih.gov/pubmed/23457646
http://dx.doi.org/10.1016/S0092-8674(00)80611-X
http://dx.doi.org/10.1016/j.bbamcr.2013.02.002
http://www.ncbi.nlm.nih.gov/pubmed/23434681
http://dx.doi.org/10.1152/ajpheart.00290.2017
http://www.ncbi.nlm.nih.gov/pubmed/28733449
http://dx.doi.org/10.1101/162206
http://dx.doi.org/10.1073/pnas.1019188108
http://www.ncbi.nlm.nih.gov/pubmed/21606336
http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.04456
http://www.ncbi.nlm.nih.gov/pubmed/25452471


Int. J. Mol. Sci. 2017, 18, 1812 17 of 17

96. Bonnet, S.; Michelakis, E.D.; Porter, C.J.; Andrade-Navarro, M.A.; Thebaud, B.; Bonnet, S.; Haromy, A.;
Harry, G.; Moudgil, R.; McMurtry, M.S.; et al. An abnormal mitochondrial-hypoxia inducible
factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in
fawn hooded rats: Similarities to human pulmonary arterial hypertension. Circulation 2006, 113, 2630–2641.
[CrossRef] [PubMed]

97. Bratic, A.; Larsson, N.G. The role of mitochondria in aging. J. Clin. Investig. 2013, 123, 951–957. [CrossRef]
[PubMed]

98. Chistiakov, D.A.; Sobenin, I.A.; Revin, V.V.; Orekhov, A.N.; Bobryshev, Y.V. Mitochondrial aging and
age-related dysfunction of mitochondria. BioMed Res. Int. 2014, 2014, 238463. [CrossRef] [PubMed]

99. Gomes, A.P.; Price, N.L.; Ling, A.J.; Moslehi, J.J.; Montgomery, M.K.; Rajman, L.; White, J.P.; Teodoro, J.S.;
Wrann, C.D.; Hubbard, B.P.; et al. Declining NAD(+) induces a pseudohypoxic state disrupting
nuclear-mitochondrial communication during aging. Cell 2013, 155, 1624–1638. [CrossRef] [PubMed]

100. Irwin, W.A.; Bergamin, N.; Sabatelli, P.; Reggiani, C.; Megighian, A.; Merlini, L.; Braghetta, P.; Columbaro, M.;
Volpin, D.; Bressan, G.M.; et al. Mitochondrial dysfunction and apoptosis in myopathic mice with collagen
VI deficiency. Nat. Genet. 2003, 35, 367–371. [CrossRef] [PubMed]

101. Mora, A.L.; Bueno, M.; Rojas, M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis.
J. Clin. Investig. 2017, 127, 405–414. [CrossRef] [PubMed]

102. Nunnari, J.; Suomalainen, A. Mitochondria: In sickness and in health. Cell 2012, 148, 1145–1159. [CrossRef]
[PubMed]

103. Reddy, P.H. Mitochondrial Dysfunction and Oxidative Stress in Asthma: Implications for
Mitochondria-Targeted Antioxidant Therapeutics. Pharmaceutical 2011, 4, 429–456. [CrossRef] [PubMed]

104. Sutendra, G.; Dromparis, P.; Wright, P.; Bonnet, S.; Haromy, A.; Hao, Z.; McMurtry, M.S.; Michalak, M.;
Vance, J.E.; Sessa, W.C.; et al. The role of Nogo and the mitochondria-endoplasmic reticulum unit in
pulmonary hypertension. Sci. Transl. Med. 2011, 3, 88ra55. [CrossRef] [PubMed]

105. Zhou, R.H.; Vendrov, A.E.; Tchivilev, I.; Niu, X.L.; Molnar, K.C.; Rojas, M.; Carter, J.D.; Tong, H.; Stouffer, G.A.;
Madamanchi, N.R.; et al. Mitochondrial oxidative stress in aortic stiffening with age: The role of smooth
muscle cell function. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 745–755. [CrossRef] [PubMed]

106. Roccabianca, S.; Figueroa, C.A.; Tellides, G.; Humphrey, J.D. Quantification of regional differences in aortic
stiffness in the aging human. J. Mech. Behav. Biomed. Mater. 2014, 29, 618–634. [CrossRef] [PubMed]

107. Mitchell, G.F.; Guo, C.Y.; Benjamin, E.J.; Larson, M.G.; Keyes, M.J.; Vita, J.A.; Vasan, R.S.; Levy, D.
Cross-sectional correlates of increased aortic stiffness in the community: The Framingham Heart Study.
Circuation 2007, 115, 2628–2636. [CrossRef] [PubMed]

108. Mancia, G.; Bombelli, M.; Facchetti, R.; Madotto, F.; Corrao, G.; Trevano, F.Q.; Grassi, G.; Sega, R. Long-term
prognostic value of blood pressure variability in the general population: Results of the Pressioni Arteriose
Monitorate e Loro Associazioni Study. Hypertension 2007, 49, 1265–1270. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1161/CIRCULATIONAHA.105.609008
http://www.ncbi.nlm.nih.gov/pubmed/16735674
http://dx.doi.org/10.1172/JCI64125
http://www.ncbi.nlm.nih.gov/pubmed/23454757
http://dx.doi.org/10.1155/2014/238463
http://www.ncbi.nlm.nih.gov/pubmed/24818134
http://dx.doi.org/10.1016/j.cell.2013.11.037
http://www.ncbi.nlm.nih.gov/pubmed/24360282
http://dx.doi.org/10.1038/ng1270
http://www.ncbi.nlm.nih.gov/pubmed/14625552
http://dx.doi.org/10.1172/JCI87440
http://www.ncbi.nlm.nih.gov/pubmed/28145905
http://dx.doi.org/10.1016/j.cell.2012.02.035
http://www.ncbi.nlm.nih.gov/pubmed/22424226
http://dx.doi.org/10.3390/ph4030429
http://www.ncbi.nlm.nih.gov/pubmed/21461182
http://dx.doi.org/10.1126/scitranslmed.3002194
http://www.ncbi.nlm.nih.gov/pubmed/21697531
http://dx.doi.org/10.1161/ATVBAHA.111.243121
http://www.ncbi.nlm.nih.gov/pubmed/22199367
http://dx.doi.org/10.1016/j.jmbbm.2013.01.026
http://www.ncbi.nlm.nih.gov/pubmed/23499251
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.667733
http://www.ncbi.nlm.nih.gov/pubmed/17485578
http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.088708
http://www.ncbi.nlm.nih.gov/pubmed/17452502
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	General Mitochondrial Structure and Function 
	Intra-Mitochondrial Structure and ATP Generation 
	Mitochondrial Dynamics 
	Mitochondrial Network Properties 

	Cytoskeletal–Mitochondrial Interactions 
	Interactions of Mitochondria with the Actin Cytoskeleton 
	Microtubules Regulate Mitochondrial Function 
	Contribution of Intermediate Filaments 

	Mechanobiology of Mitochondrial Structure and Function 
	Effects of Transient and Monotonous Stretch 
	Fluctuations Influence Mechanotransduction 
	Effects of ECM Stiffness on Mitochondria 

	Possible Implications for Disease and Aging 

