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Abstract: Many countries are facing the aging of their population, and many more will face a 
similar obstacle in the near future, which could be a burden to many healthcare systems. Increased 
susceptibility to infections, cardiovascular and neurodegenerative disease, cancer as well as 
reduced efficacy of vaccination are important matters for researchers in the field of aging. As older 
adults show higher prevalence for a variety of diseases, this also implies higher risk of 
complications, including nosocomial infections, slower recovery and sequels that may reduce the 
autonomy and overall quality of life of older adults. The age-related effects on the immune system 
termed as “immunosenescence” can be exemplified by the reported hypo-responsiveness to 
influenza vaccination of the elderly. T cells, which belong to the adaptive arm of the immune 
system, have been extensively studied and the knowledge gathered enables a better understanding 
of how the immune system may be affected after acute/chronic infections and how this matters in 
the long run. In this review, we will focus on T cells and discuss the surface and molecular markers 
that are associated with T cell senescence. We will also look at the implications that senescent T 
cells could have on human health and diseases. Finally, we will discuss the benefits of having these 
markers for investigators and the future work that is needed to advance the field of T cell 
senescence markers. 
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1. Introduction 

Cellular senescence and human aging research has been performed with much more attention 
in recent years. The aging population (alternatively named as the “grey tsunami”) together with the 
increased number of aged patients visiting healthcare institutions have been identified as potential 
upcoming burdens. The number of individuals aged 60 and above is expected to increase ~56% (900 
million to 1400 million) from 2015–2030 and ~49% (1400 million to 2100 million) from 2030–2050. 
This dramatic increase in the number of older adults could have a huge impact on many economic 
and healthcare policies [1,2]. The impending “grey tsunami” is partly due to humans having a 
longer lifespan with the discovery of many medical interventions in the past few decades. Vaccines, 
drugs and antibiotics have saved many lives from life-threatening situations and infections, which 
were deemed incurable in the past [3–5]. This still greatly reduces the mortality rate of humans due 
to pathogens. However, having a longer life span brings up other issues, which are defined as 
age-related diseases such as dementia, rheumatoid arthritis, cancer, heart diseases and sarcopenia. 
These diseases have been associated with aging as they are more prevalent in the older population 
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[6–10]. Although the discovery of vaccines enables us to train the immune system against harmful 
pathogens and it has prevented many deadly infections [11], hypo-responsiveness to vaccination is a 
barrier to further enhancement of healthy aging. The reduced efficacy of vaccines in the elderly 
could be due to the age-related changes in the immune system, also known as immunosenescence 
[12–14]. In the field of immunosenescence, a bulk of data exists on T cells and this is mainly 
explained by the array of markers identified to define the various subpopulations and functions 
[15,16]. Therefore, in this review, we will discuss and clarify the research on T cells, which are also 
the major subpopulation of lymphocytes in the human circulation. First, we will give a brief 
introduction to the immune system and the general concept of cellular senescence. Then we will 
discuss the markers that are commonly used in the field for T cells and their biological relevance. 
After understanding T cells senescence, we will identify its implication for human health and 
diseases. Finally, we will address future research, in terms of markers and phenotyping of T cells, 
with a focus on the T cells with an innate-like profile (Mucosal associated invariant T (MAIT), 
invariant natural killer T (iNKT) and γδ) as opposed to the classical adaptive T cells and other new 
players that are involved in cellular senescence. 

2. Immune System, T Cells and Cellular Senescence 

The immune system is made up of many different immune cell types, each with its own unique 
functions, to collectively protect the host against foreign pathogens [17,18]. T cells comprise around 
7–24% of the immune cells and around ~70% of the lymphocytes in human blood. Classical T cells 
have the “memory” component, which allows them to respond faster in subsequent infection and 
are also long-lived [19,20]. They can be broadly classified into the Helper T cells (CD4) and Cytotoxic 
T Cells (CD8) [21,22]. CD4 T cells’ role in the immune system is to assist other immune cells in the 
different immunological processes [23]. To achieve this, CD4 T cells interacts with antigen 
presenting cells (APC) such as dendritic cells (DCs) with their surface receptors (CD27 to CD70 and 
CD28 to CD80/CD86) to get activated [24]. This allows T cells to proliferate extensively and secrete 
cytokines into the environment to aid the other immune cells. There are several subtypes of CD4 T 
cells based on the cytokines secreted, and this will facilitate the needs of various immunological 
processes such as B cell maturation and macrophage activation [25,26]. Cytotoxic CD8 T cells, as 
their name implies, kill virus-infected cells that present the viral antigen on major histocompatibility 
comples (MHC) Class 1 molecule. This is achieved by secreting molecules such as perforin and 
granzymes on the viral-infected cells, creating pores in the cell membrane and inducing apoptosis 
[27]. The ability of T cells to proliferate upon antigen stimulation is crucial as it dramatically 
increases the number of antigen-specific T cells to aid in resolving the infection, otherwise known as 
clonal expansion. After the resolution of the infection, these T cells undergo apoptosis during the 
contraction phase to return to the steady state [28]. However, as T cells replicate multiple times due 
to repeated stimulation with pathogens during a host’s lifetime, they further differentiate, lose their 
proliferation capacity and may reach the stage of replicative senescence [29,30]. The inability of T 
cells to proliferate is partly due to the erosion of telomeres and the loss of telomerase activity [31]. 
This phenomenon is analogous to the Hayflick Limit, which was established on fibroblasts, whereby 
Hayflick and co-workers found that the fibroblasts could no longer proliferate after ~50 passages in 
vitro [32]. Besides having an impaired proliferative capacity and shorter telomere length, senescent 
fibroblasts also adopt a pro-inflammatory profile, whereby they could secrete pro-inflammatory 
cytokines into the environment and cause tissue damage by chronic inflammation [33]. However, 
these features of senescence are established on the fibroblasts and classical T cells may shares similar 
features but the signals and pathways leading to those functional hallmarks may be different. 
Whether cellular senescence share common pathways across all immune cells and all mammalian 
cells still needs to be demonstrated. 

3. Following T Cell Journey through Differentiation: Surface Markers as Guides 

The study of T cell surface markers and functional capacity as it differentiates or “ages” is well 
studied and established [15,34–38]. Naïve (N) T cells express markers such as CD45RA and C-C 
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chemokine receptor 7 (CCR7) [39], which allows them to home into the lymph nodes, along with 
CD27, CD28, which are co-stimulatory molecules that are used to interact with B cells and antigen 
presenting cells (APC) for the generation of immunoglobulin, long term maintenance and activation 
of T cells to produce cytokines [40]. As such, N T cells are defined as CD45RA+, CD45RO−, CD27+, 
CD28+ and CCR7+. Central Memory (CM) T cells (CD45RA−, CD45RO+, CD27+, CD28+ and CCR7+) 
are capable of producing high levels of interleukin-2 (IL-2) and interferon γ (IFNγ) (but not effector 
molecules such as tumor necrosis factor  TNFα, IL-4, IL-5 and cytotoxic molecules (e.g., perforin 
and granzymes)) [34,41]. Effector memory (EM) T cells (CD45RA−, CD45RO+, CD27−, CD28− and 
CCR7−) on the other hand have the capacity to produce high levels of effector molecules as 
mentioned above in general (although there are some differences between CD4 and CD8) but not 
IL-2. Lastly, terminal effector (TE) T cells (CD45RA+, CD45RO−, CD27−, CD28− and CCR7−) have 
limited proliferative capacity but tend to secrete a wider range of cytokines following activation [34]. 
T cells in a replicative senescence state, which are more prevalent in the EM and especially TE, do 
not express co-stimulatory molecules such as CD27 and CD28. Instead, they express markers such as 
Killer cell lectin-like receptor sub family G (KLRG-1) and CD57 [15,42]. KLRG-1 has an 
immunoreceptor tyrosine-based inhibitory motif (ITIM) and studies have shown that when KLRG-1 
is prevented to ligate on T cells by blocking-antibodies, it enhanced the proliferation capacity 
through the increase of AKT, cyclin D, cyclin E and a decrease of cyclin inhibitor p27 [43,44]. CD57 
on the other hand, is a glycoepitope and its expression is controlled by 
galactosylgalactosylxylosylprotein 3-β-glucuronosyltransferase 1 (B3GAT1). Even though the ligand 
for CD57 still remains unknown, studies have shown that the proliferation capacity of T cells 
expressing CD57 is severely impaired, suggesting CD57 to be the best marker of replicative 
senescence [45,46]. Therefore, using CD27, CD28, CD57, KLRG-1 and one of the CD45 isoforms 
(RA/RO) allows one to track the “age” of the circulating T cells. However, whether these markers 
could be applied to the innate-like T cells and whether a similar sequence of differentiation happens 
in tissues remains to be investigated (Figure 1). 

4. Molecular Markers of Senescent T Cells 

Following surface markers to understand T cell biology has been possible and eased by the use 
of technologies such as flow cytometry. However, while some markers have been biologically 
related to the process studied, some are just surrogate markers of T cell differentiation without 
knowledge of the molecular and signaling pathways responsible for the regulation of the marker or 
its function. The best example in the context of T cell senescence is CD57. Independent of surface 
markers, studies have demonstrated T cell regulation at the molecular level. Many of these 
molecular changes involve proteins associated with the telomeres or the cell cycle. With the loss of 
CD27 and CD28, molecules such as p16 and p21 that are involved in cell cycle regulation, are 
upregulated [47]. p16 is more associated with “stresses” that cause premature senescence and p21 
that is directly induced by p53 and is more associated with senescence due to telomere damage [48–
50]. Both regulate the cell cycle by inhibiting cyclin dependent kinase (CDK)4 and CDK6, which 
keeps retinoblastoma (RB) protein hypo-phosphorylated. This inhibits the cell cycle process of the 
transition from G1 to S phase, which leads to replicative senescence [51,52]. Another hallmark of 
senescent T cells is the shortening of telomeres. The shortening of telomeres is due to both the 
continuous replication of the T cells and a reduction in human telomerase RNA component (hTERC) 
expression, which is a factor for the telomerase activity [53]. The expression of hTERC has been 
associated with both CD27 and CD28 expression, suggesting that the loss of these surface markers 
could result in the reduction of the telomerase activity or vice versa (Figure 1). This reduced activity 
of telomerase has been associated with defective phosphorylation of Akt (Ser473) in CD27− CD28− 
subset [54]. However, by blocking KLRG-1 signalling pathway, another group showed that they 
were able to induce proliferation but not telomerase acitivity, even though Akt (Ser473) was 
upregulated [44]. This suggests that phosphorylation of Akt (Ser473) alone is not sufficient and 
might require other players such as ERK in order to restore telomerase activity. Another possibility 
for the reduction in telomerase activity could be intrinsic. Recently, a study has shown that the 
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phosphorylation of p38 via AMPK and Tab1, inhibited telomerase activity and drove senescence of 
the T cell. This signaling was induced by low-nutrient sensing and DNA damage within the cell. 
Blockades of this pathway have been shown to restore the proliferative function of senescent T cells, 
which could be use in future therapy [55]. This concept has only been proven in T cells. Whether can 
we adopt a similar approach for other types of senescent cells (e.g., fibroblasts) remains to be 
investigated, as there could be underlying mechanisms that differentiate T cells and other cell types. 

 

Figure 1. Summary table of surface, functional and molecular markers in the different stages for 
Adaptive T cells (CD4 and CD8). - = not expressed, + = expressed. Additional + = higher expression. 

5. T Cells: Senescence Does Not Equate to Exhaustion 

It is not surprising that investigators are often confused with the terms senescence and 
exhaustion of T cells. Senescence and exhausted T cells do have some similarity in certain aspects of 
functionality but they are not entirely the same [56]. Therefore, it is important to note the differences 
between senescence and exhaustion of T cells, as this will allow accurate interpretation of results and 
propose the right therapeutic approach to be used. First, the markers expressed by senescent T cells 

Surface Markers Naïve (N) Central Memory 
(CM)

Effector Memory 
(EM)

Terminal Effector 
(TE)

CD27 + + +/- -

CD28 + + +/- -

CCR7 + + - -

CD45RO - + + -

CD45RA + - - +

CD57 - - + ++

KLRG1 - +/- + ++

Functional Markers Naïve (N) Central Memory 
(CM)

Effector Memory 
(EM)

Terminal Effector 
(TE)

IL-2 + ++ -/low -/low

IFN-γ - -/+ + ++

TNF-α - - ++ +++

IL-4 - - + +

IL-5 - - + +

GRANZYME B - - + ++

PERFORIN - - + ++

Molecular Markers Naïve (N) Central Memory 
(CM)

Effector Memory 
(EM)

Terminal Effector 
(TE)

p16 - - + ++

p21 - - + ++

hTerC ++ ++ + +

Telomere Length ++++ +++ + +

Tbet - - + ++

Zeb2 - - - +

NAIVE CENTRAL 
MEMORY

EFFECTOR 
MEMORY

TERMINAL 
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are markers such as CD57 and KLRG-1, which indicates replicative senescent [15]. On the other 
hand, the markers associated with exhaustion of T cells are programmed cell death 1 (PD-1), 
lymphocyte activation gene 3 (LAG-3), T cell immunoglobulin mucin 3 (TIM-3) and cytotoxic T 
lymphocyte-associated protein 4 (CTLA-4) [57]. Second, senescent T cells adopt a pro-inflammatory 
profile and are able to secrete high levels of pro-inflammatory cytokines with stimulation which is 
similar to the senescence associated secreting phenotype (SASP) that was established on fibroblasts 
[33]. The SASP concept has been established in non-immune cells but it remains to be proven in T 
cells. However, as SASP cells are unable to proliferate but can produce a higher range of 
pro-inflammatory molecules, it is likely that senescent T cells exhibit some aspects of SASP. This 
hypothesis may be true in view of the increasing diversity of cytokines produced in the sequence of 
T cell differentiation: N→CM→EM→TE→CD57/KLRG-1. On the contrary, exhausted T cells are 
unable to both proliferate and to secrete cytokine upon stimulation suggesting again that the two 
definitions refer to different cellular status. Third, senescent T cells are more prevalent in the 
highly-differentiated phenotypes (EM/TE) and resistant to apoptosis. Exhausted T cells on the other 
hand, are usually CM/EM T cells that have undergone repetitive or chronic stimulation [56]. They 
are programmed to undergo apoptosis as PD-1 pathway seems to strongly associate with survival 
[58]. 

Lastly, replicative senescent seems to be irreversible whereas exhaustion is reversible. Studies 
have shown that blockade of PD-1 ligation is able to recover the function of cytokine secretion in T 
cells [59,60]. “Reversing exhaustion” has been very successful in human clinical trials, raising the 
5-year survival rate of different type of cancer patients in advanced cancer stages. Anti-PD1 
(nivolumab) and anti-CTLA4 (Ipilimumab) are the two main candidates for checkpoint blockade 
immunotherapy currently [61–65]. However, many other checkpoint inhibitors such as anti-LAG3 
and anti-TIM3 are also being explored to remove the “brakes” on the T cells, which will enable it to 
unleash its full functional capacity against cancer cells. As mentioned above, senescent T cells were 
recently shown to regain function by inhibiting p38 mitogen-activated protein kinase (MAPK) 
pathway [55]. Restoring function of senescent T cells is very relevant in the context of human aging 
while restoring the function of exhausted T cells is more relevant in a pathological context (e.g., 
cancer immunotherapy, infectious diseases). Having clarified the differences between senescent and 
exhausted T cells, the markers associated with each phenotype could be co-expressed on the surface 
of the T cells, which means they could be both senescent and exhausted. It is not clear, however, 
whether senescent T cells are more susceptible to exhaustion and vice-versa. 

6. Implications of T Cells Senescence in Persistent Infections and Human Aging 

Senescent T cells were shown to expand in patients with chronic and persistent infections such 
as cytomegalovirus (CMV), human immunodeficiency virus (HIV) along with an additive effect of 
chronological aging. CMV itself is asymptomatic in most of the hosts unless they are 
immune-compromised. However, the constant reactivation of the virus could have driven the 
accumulation of senescent T cells as the immune system tries to control virus reactivation [66,67]. 
HIV infection shares some similarities with the hallmarks of immunosenescence described above. It 
is of note that HIV is one of the situations where exhausted T cells are also present. HIV-infected 
patients usually exhibit high levels of inflammation molecules (IL-6, TNFα, C-reactive protein 
(CRP)), reduced vaccine efficacy and the expansion of senescent T cells. With the highly active 
antiretroviral therapy (HAART) therapy, the inflammatory status is reduced, suggesting that the 
constant replication of the virus could have driven inflammation [68]. In human aging, the 
accumulation of senescent T cells in the elderly is not surprising as the host have encountered a 
lifetime of infections, which could drive the differentiation of the T cells and ultimately reach the 
senescence stage [69]. The thymus, an organ where T cells develop and mature, involutes during 
aging and the main sites that are affected are the cortex and medulla though the mechanisms are 
unknown [70,71]. With a reduced in overall hematopoietic output that shifts towards a myeloid 
profile [72,73] and together with thymic involution, which results in decreased production of new 
naïve T cells [67], the T cell profile of the individual naturally shifts from being a “naive” profile (a 
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profile that have less differentiated T cells: N and CM) to an “experienced” profile (a profile that 
have more differentiated T cells: EM and TE) as they age. Several interventions by systemic 
administration of cytokines have been able to partially restore the function of the thymus in the 
aging host as reviewed in [74,75]. However, none has been the magic bullet to completely restore the 
function and turn the thymus back to its “youthful days”. Thymic involution is happening during 
adulthood and is probably programmed to happen to adapt to the physiology of an older organism. 
It is conceivable to consider this as one of the mechanisms to save resources for other more 
important functions later in life. Obviously, naïve T cells are required in the first part of life where 
new antigens still need to be identified. Later in life this is probably less important compared to 
sustaining immunological memory. Altogether, there is a significant increase in the frequency of 
senescent T cells during aging. These cells in a resting state are able to secrete low levels of 
pro-inflammatory cytokines such as TNFα and IL-6 [33,47]. This will contribute to the low-grade 
systemic chronic inflammation in the elderly, which has been associated with many age-related 
diseases such as dementia, metabolic syndrome and heart diseases [76,77]. Next, senescent T cells 
also have a limited repertoire to antigens compared to naïve T cell diverse repertoire [78,79]. With an 
increase of senescent T cells and a decrease of naïve T cells in the elderly, this could diminish the 
“protection range and capacity” against pathogens in the elderly compared to the young. Therefore, 
the accumulation of senescent T cells is detrimental to the host but these beliefs might not hold true 
for other cell types such as fibroblast, whereby there are benefits of having senescent cells, such as 
wound healing [80,81]. 

7. Are the Markers Suitable for All T Cells? 

The surface and molecular markers described above are well established for classical T cells. 
However, with the discovery of innate-like/non-classical T cells such as γδ T cells, mucosal 
associated invariant T (MAIT), invariant Natural Killer T cells (iNKT) and germline-encoded, 
mycolyl lipid–reactive (GEM) T cells in recent years, whether the markers expression on the surface 
of the adaptive counterpart has the same implication on these cell type remains to be investigated. 
Though these innate-like T cells might be less abundant in the periphery compared to the classical T 
cells, they contribute to the host defense by responding to other types of antigens and could 
proliferate extensively once activated [82,83]. They are also found to be more abundant in several 
tissues and contribute to the local immunosurveillence [84]. Recent work on the MAITs suggests that 
the classical T cell phenotype might not be applicable for the MAITs [85]. Though it is entirely 
possible that MAIT are not susceptible to cellular aging with chronological aging but there have also 
been no functional tests to indicate that the same markers and classification have to be used as 
compared to CD4 and CD8. For the γδ T cells, our work in 2014 suggested that, similar to MAIT, γδ 
T cells are either not susceptible to cellular aging or they simply do not follow the same rules as αβ T 
cells [86]. With further studies in the last two years, the data now seem to converge to the fact that 
Vδ2 (a subset of the γδ) does not follow the same markers as CD4 and CD8 (at least for CD27, CD28) 
in terms of cytokine production [87,88]. Eberl et al. also tested the biological relevance of ligating 
KLRG-1 on Vδ2 and it does not have the inhibitory effect as shown on CD4, CD8 and even natural 
killer (NK) cells [89]. This suggests that expression and implication of markers used are very 
different depending on the cell type. Surprisingly, Vδ1 (another subset of γδ) does follow the trend 
of CD8, an increase of “TE” phenotype in the periphery with CMV and an additive effect of human 
chronological aging [90]. A recent study by Davey et al. have also shown that CD27+CD45RA+ 
(“Naïve”) and CD27−CD45RA+ (TE) Vδ1 does have very different functional capacity and repertoire 
diversity, which is similar to CD8. However, this concept does not apply to Vδ2 [91]. These results 
collectively suggest that even within the same γδ T cell family, there is discrepancy in terms of 
marker expression and its implications. Besides surface markers comparison, another aspect that 
future research should address is the molecular and transcription factors that innate-like T cells 
express during the “differentiation” stages. Whether innate-like T cells exhibit similar molecular 
features as their adaptive counterpart such as p16, p21, shortened telomere length, reduced hTERC 
activity, being resistant to apoptosis during senescence and whether the “senescence programming” 
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involves the high expression of Tbet and Zeb2 as shown in CD8 [92] remains to be investigated. 
Therefore, future work should look to elucidate relevant surface and molecular markers for these 
innate-like T cells, which will be useful for studies that are investigating this group of T cells in 
different diseases and conditions. 

8. New Players in the Field of Senescence? 

In addition to the markers mentioned above, recent studies have uncovered new players and 
their role in the field of cellular senescence. Mitochondria can be affected by cellular senescence in 
several aspects such as caveolin-1 deficiency, which has been shown to induce cellular senescence by 
affecting the functionality of the mitochondria [93]. The other aspect is mitochondrial DNA 
hypomethylation, which is a feature of induced senenscence in human fetal heart mesenchymal stem 
cells and can be induced by reactive oxidative species [94]. Lipid and nicotinamide (NAD) 
metabolism are also two other features of mitochondria that could be associated with cellular 
senescence as they are correlated with age-related diseases [95–98] Besides mitochondria, studies 
have investigated at the RNA level and assessed the role of non-coding RNA (i.e., micro RNAs, long 
noncoding RNAa and circular RNAs) with cellular senescence in aging organs/tissue. [99–102]. On 
the epigenetic level, CD4 and CD8 T cells have been shown to have an overall decrease in 
methylation as they progressed from Naïve to TE [103,104]. However, the epigenomic profile of 
innate and adaptive immune cells are distinctively different, which makes it hard to assess and 
compare, which could also mean that “road to senescence” is completely different [105]. At the DNA 
level, cGMP-AMP (cGAMP) synthase (cGAS), a cytosolic DNA sensor that associates itself with 
chromatin in high levels during DNA damage, is found to be essential for cellular senescence [106]. 
Collectively, these studies suggest that many aspects of cell biology are affected by cellular 
senescence; from surface marker protein expression down to the metabolism and DNA of the cell. 
However, whether these markers are associated and applicable to all cell types or whether there are 
unique pathways for specific cell type remains a question to be answered. 

9. Conclusions 

In conclusion, having markers of relevant biological functions in T cells such as CD57 and 
KLRG-1 (senescent markers) allows the community to understand the T cell profile in a particular 
condition with a simple flow cytometry experiment. This greatly increases the speed and feasibility 
of the analysis without the need to perform time-consuming, expensive and complex functional 
assays. Having said that, one must be careful in using these markers appropriately as the implication 
of marker expression between cell types could differ, as shown in Vδ2 T cells compared to CD4 and 
CD8. The discovery and use of more biologically relevant markers is definitely beneficial as flow 
cytometry enables investigators to perform much more complex phenotyping nowadays. With more 
parameters and options of reagents, users can input more parameters into the studies to elucidate 
the different phenotype of T cells and assess how different they are in various disease conditions. 
However, biomarkers are often only surrogate markers, often resulting from unknown mechanisms 
and more research is needed to understand the biological process behind the expression or 
repression of the candidate biomarkers. Therefore, markers are always useful, provided they have 
functional relevance. 
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Abbreviations 

APC Antigen Presenting Cells 
CD Cluster of Differentiation 
cGAS cGMP-AMP Synthase 
CM Central Memory 
CMV Cytomegalovirus 
CTLA-4 Cytotoxic T Lymphocyte-Associated Protein 4 
DC Dendritic Cells 
DNA Deoxyribonucleic Acid 
EM Effector Memory 
GEM T Germline-Encoded, Mycolyl T Cells 
HIV Human Immunodeficiency Virus 
IFNγ Interferon Gamma 
iNKT Invariant Natural Killer T Cells 
IL Interleukin 
KLRG-1 Killer Lectin-Like Receptor Sub Family G Protein 1 
LAG3 Lymphocyte Activation Gene 3 
MAIT Mucosal Associated Invariant T Cells 
N Naive 
NAD Nicotinamide 
NK Natural Killer 
PD-1 Programmed Cell Death Protein 1 
RNA Ribonucleic Acid 
RB Retinoblastoma 
SASP Senescence Associated Secretory Phenotype 
TEMRA Terminal Effector Memory RA 
TNFα Tumor Necrosis Factor Alpha 
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