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Abstract: Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an
important role, and disorders of lipid management intensify this process. Agmatine, an endogenous
polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria
and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on
the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout
(apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as
estimated by en face and cross-section methods with an influence on macrophage but not on
smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity
within the plaque area. What is more, the action of agmatine was associated with an increase in
the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that
agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and
cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified
27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/-
mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration
of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed
changes and elevations of HDL plasma require further investigation.
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1. Introduction

Despite remarkable progress in medicine, cardiovascular diseases, among them atherosclerosis
and atherosclerosis-related organ injury, are still one of the major causes of morbidity [1].
Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by endothelial
dysfunction, infiltration of inflammatory cells, and gradual formation of atherosclerotic plaque with
its lipid-rich core and rupture-prone fibrous cap [2]. In every stage of atherogenesis, disorders of lipid
metabolism (hypercholesterolemia, elevated levels of free fatty acids in the blood) and disturbances
of lipoprotein turnover (elevated level of low density lipoproteins (LDL) and lowered level of high
density lipoproteins (HDL)) intensify this process.

Mitochondria are organelles that accomplish several vital functions, including oxidative
phosphorylation and metabolism of fatty acids, as well as integration of signaling for apoptosis
and cellular senescence. Many factors (e.g., angiotensin II, tumor necrosis factor alpha (TNF-«x))
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that play the main role in pathogenesis of atherosclerosis have been shown to cause mitochondrial
damage. Indeed, mitochondrial injury, associated with derangement of their metabolic and signaling
capabilities and the increased production of reactive oxygen species (ROS), has been described
in various cells within the vessel wall (especially endothelial cells) [3,4]. Either disturbances in
lipid /lipoprotein metabolism or the development of non-alcoholic fatty liver disease (NAFLD) has
been recently connected to impairment of mitochondrial function in the hepatocytes [5]. The protection
of mitochondria may represent a new promising strategy to attenuate atherosclerosis [6].

Agmatine is an endogenous polyamine that is synthesized by decarboxylation of L-arginine
by arginine decarboxylase (ADC). It is present in plasma and can be selectively concentrated in
several organs (i.e., in the liver) [7-9]. Agmatine has been shown to exert a wide array of biologic
effects as follows: it regulates blood pressure, inhibits the proliferation of smooth muscle cells, and
exhibits anti-inflammatory and neuroprotective function [10-12]. Agmatine also exhibits a protective
effect on mitochondria, where it is actively concentrated by an energy-dependent mechanism [13-16].
The multifaceted metabolic and molecular effects of long-term administration of agmatine have
been comprehensively studied [17]. Agmatine, among others, has been shown to directly stimulate
mitochondprial oxidation of fatty acids in the liver [18]. Recently, exogenous agmatine has been found
to inhibit atherogenesis in cholesterol-fed rabbits and this action was attributed to its antioxidant
and anti-inflammatory potential (i.e., inhibitory action on inducible nitric oxide synthase (iNOS)).
In cholesterol-fed rabbits agmatine was able to decrease plasma levels of LDL and increase the levels of
HDL [19]. However, the profound metabolic and inflammatory effects related to massive feeding with
cholesterol make this model unreliable for detailed studies of mechanisms by which agmatine affects
lipid metabolism [20]. The widely accepted model devoid of such drawback is apoE-knockout (apoE-/-)
mice, which spontaneously develop hypercholesterolemia, dyslipidemia, and arterial lesions on the
chow diet [21]. The current study was designed to investigate the influence of prolonged treatment
with agmatine on the development of atherosclerosis and changes in lipid profile in apoE-/- mice using
morphological, biochemical, and molecular methods. We hypothesized that in the apoE-knockout mice
the liver may represent an important target organ, and the hepatocyte mitochondria may represent
the target organelle for exogenous agmatine. As mitochondrial proteomics represents a valuable tool
for the study of metabolic disorders and the mechanisms of actions of metabolic drugs [22], we also
applied the methods of differential proteomics to elucidate the effect of exogenous agmatine on the
liver mitochondria of apoE-/- mice.

2. Results

2.1. Body Weight

The mean body weight in the control (30.69 £ 2.37 g) and agmatine-treated (32.06 & 2.79 g) groups
did not differ (p = 0.14). Also food intake was similar in both groups.

2.2. Effects of Agmatine on Atherosclerosis

Significant reduction of atherosclerotic lesions resulted in the aortas of apoE-knockout mice when
treated with agmatine. Measured by en face method, the percentage of area occupied by atherosclerosis
lesions in the agmatine-treated group was 8.72 &+ 3.1%, whereas the percentage in the control group
was 13.7 £ 3.6% (p < 0.05) (Figure 1a). Nearly 40% of the difference in surface of atherosclerotic lesions
was revealed with the cross-section method of aortic roots. The areas of Oil Red O stained changes
were 52,786 + 16,499 um? in the agmatine-treated group versus 87,582 =+ 23,847 um? in the control
group (Figure 1b).
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Figure 1. Oil Red O stained representative aortas in control group and agmatine-treated group.
Percentage of area occupied by atherosclerotic lesions measured by the en face method in the control
group and agmatine-treated group (a); representative micrographs showing Oil Red O stained lesions in
control group and agmatine-treated group. Atherosclerotic lesions area is measured by the cross-section
method in control group and agmatine-treated group (b). Black lines indicate mean values (* p < 0.05).
Each dot represents a single mouse in control (black dots, n = 10) or agmatine-treated (white dots, n = 8)
group. The scale bar represents 500 pm.

Immunohistochemical staining showed that not only the size of the atherosclerotic plaque but
also the composition of the lesions was favorably changed by agmatine treatment. The plaque area
covered by CD68 immunopositive macrophages was reduced in agmatine-treated mice compared
to the control group (22.2 £ 4.8% vs. 35.8 £ 7.5%, p < 0.05) (Figure 2a), while the content of smooth
muscle cells in the fibromuscular cap was similar in both groups (4.9 &= 3.0% vs. 3.1 £ 2.0%, p = 0.16)
(Figure 2b). Agmatine treatment did not significantly change gelatinase activity within the plaque area
detected by in situ zymography (28.51 & 10.23% vs. 24.17 & 7.1%) (p = 0.24) (Figure 2c).

Treatment with agmatine significantly influenced serum lipid profiles in apoE-/- mice. The level
of HDLs was significantly higher in the agmatine-treated group compared to the control animals,
while there were no differences in the levels of LDLs or triglycerides. Agmatine showed the
tendency to increase total cholesterol levels, although the changes did not reach statistical significance
(Table 1). Plasma levels of inflammatory markers monocyte chemoattractant protein 1 (MCP-1) and
interleukin-12 (IL-12) in the agmatine group showed a slight but significant increase compared to the
control group (Table 2).
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Figure 2. Representative micrographs showing immunohistochemical staining of aortic roots
from control and agmatine-treated apoE-knockout mice. The figure shows immunohistochemical
visualization and quantitative analysis of CD68-positive macrophages (green) (a), smooth muscle
a-actin (SMA)-positive cells (red) (b), and gelatinase activity (green) (c). (* p < 0.05; Mean + SD).
The scale bar represents 500 um.

Table 1. Plasma lipids level in control and agmatine-treated groups, presented as mean + SD.

TC (mmol/L) TG (mmol/L) HDL (mmol/L) LDL (mmol/L)

control 13.8+£03 14+02 37409 82408
. 19 +4.1 .
agmatine (0= 0.052) 1.7 4+ 0.6 (NS) 8.6+ 18 11.7 £ 2.4 (NS)

TC, total cholesterol; TG, triglyceride; HDL, high density lipoproteins; LDL, low density lipoproteins; NS,
non-significant difference between group; * p < 0.05.

Table 2. Vascular Cell Adhesion Protein 1 (VCAM-1), Interleukin-12 (IL-12), Monocyte Chemoattractant
Protein 1 (MCP-1), and Serum Amyloid A (SAA) in a control and agmatine-treated groups, presented
as mean =+ SD.

VCAM-1 (ng/mL) IL-12 (pg/mL) MCP-1 (pg/mL) SAA (ng/mL)
control 9.09 4+ 0.34 8.95 £ 0.52 45.16 = 6.96 84,222 + 20,109
agmatine 10.11 £ 1.16 (NS) 10.57 £0.82* 64.82 £ 5.65* 101,360 £ 54,611 (NS)

NS, non-significant difference between group; * p < 0.05.



Using Profiler PCR Arrays liver gene expression was analyzed. The expression of 11 out of the
84 fatty acid metabolism genes was significantly changed in the agmatine-treated group compared
to the control group; among them nine genes were significantly upregulated (Table 3, Figure 3a).
Also, as a result of agmatine treatment, the expression of 26 genes related to lipoprotein signaling
and cholesterol biosynthesis was found to be changed, whereof 22 of were significantly upregulated
(Table 4, Figure 3b).
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Table 3. The genes involved in fatty acid metabolism that showed differential expression between
agmatine group vs. control group (fold change > 2.0, p < 0.05).

Gene Name Description Fold Change p Value (t-Test)
Acsbg2 Acyl-CoA synthetase bubblegum family member 2 2.08 0.000608
Acsm?2 Acyl-CoA synthetase medium-chain family member 2 2.99 0.013220

Cptla Carnitine palmitoyltransferase 1a, liver 2.07 0.000061
Decrl 2,4-dienoyl CoA reductase 1, mitochondrial 247 0.041195
Fabpl Fatty acid binding protein 1, liver 3.51 0.001004
Fabp2 Fatty acid binding protein 2, intestinal 6.53 0.019459
Fabp5 Fatty acid binding protein 5, epidermal 2.01 0.021016
Mcee Methylmalonyl CoA epimerase 2.06 0.011877
Prkag2 Protein kinase, AMP-activated, gamma 2 non-catalytic subunit 2.33 0.003263
Acaala Acetyl-Coenzyme A acyltransferase 1A —2.04 0.007525
Fabp4 Fatty acid binding protein 4, adipocyte —2.47 0.015985
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Figure 3. Volcano plot graphs of mouse fatty acid metabolism PCR array (a) and mouse lipoprotein
signaling and cholesterol metabolism PCR array (b). Graphs show the log, of fold change of
gene expression between the agmatine group and control group versus p value from the t test.

° up-regulation,

down-regulation. Blue line indicates threshold 0.

05 for p value.

Table 4. The genes involved in lipoprotein signaling and cholesterol biosynthesis that showed
differential expression between agmatine group vs. control group (fold change > 2.0, p < 0.05).

Gene Name Description Fold Change p Value (t-Test)
Abca2 ATP-binding cassette, sub-family A (ABC1), member 2 2.46 0
Akrldl Aldo-keto reductase family 1, member D1 2.79 0.003913
Angptl3 Angiopoietin-like 3 2.37 0.001165
Cyb5r3 Cytochrome b5 reductase 3 2.36 0.000713
Cypb1 Cytochrome P450, family 51 11.18 0.000105
Cyp7al Cytochrome P450, family 7, subfamily a, polypeptide 1 3.22 0.000004
Dhcr24 24-dehydrocholesterol reductase 2.31 0.005083
Dhcr7 7-dehydrocholesterol reductase 4.96 0.002081
Ebp Phenylalkylamine Ca2+ antagonist (emopamil) binding protein 2.49 0.000205
Fdft1 Farnesyl diphosphate farnesyl transferase 1 6.22 0.005329
Fdps Farnesyl diphosphate synthetase 21.31 0.000338
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Table 4. Cont.

Gene Name Description Fold Change p Value (t-Test)

Hmgcr 3-hydroxy-3-methylglutaryl-Coenzyme A reductase 5.33 0.008786
Hmges1 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 12.10 0.011450
Idil Isopentenyl-diphosphate delta isomerase 18.94 0.002732
Insigl Insulin induced gene 1 7.87 0.011090
Mouod Mevalonate (diphospho) decarboxylase 9.78 0.008416
Mvok Mevalonate kinase 7.08 0.000262
Nsdhl NAD(P) dependent steroid dehydrogenase-like 11.77 0.000001
Osbpl5 Oxysterol binding protein-like 5 2.25 0.000091
Pcsk9 Proprotein convertase subtilisin/kexin type 9 10.98 0.012371
Pmok Phosphomevalonate kinase 7.94 0.001513
Srebfl Sterol regulatory element binding transcription factor 1 10.17 0.004453
Apoa4 Apolipoprotein A-IV —6.23 0.021159
Hmgcs2 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 —3.28 0.000045
Insig2 Insulin induced gene 2 —2.78 0.000292
Lipe Lipase, hormone sensitive —2.05 0.004930

2.4. Influence of Agmatine on Liver Mitoproteome

The representative 2DE gel image of liver mitochondrial proteins of apoE-knockout, as well
as selected pairs of spots showing differences between apoE-knockout and agmatine-treated
apoE-knockout mice, is presented in Figure 4a,b, respectively. Table 5 lists the LC-MS/MS analysis
from numbered spots showing significant differences. Collectively, 27 differentially expressed spots
were detected and identified by software (PDQuestTM) and analyzed by mass spectrometry. Figure 5
shows the quantitative results of differences in expression of mitochondrial proteins. The accuracy of
the isolation protocol and the purity of the mitochondrial fractions were assessed by immunoblotting
for a-tubulin and cytochrome ¢ oxidase (COX-IV) (Figure 4c).
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Figure 4. Representative 2D map of mitochondrial proteins expressed in apoE-knockout mice (a),
with magnifications of spot pairs corresponding to peroxisomal acyl-Coenzyme A oxidase 1 (ACOX1),
acyl-Coenzyme A oxidase 1, palmitoyl (A2A850), and hydroxymethylglutaryl-CoA synthase (HMCS2)
(b). The arrows mark 27 spots showing differences between control and agmatine-treated group (spot
numbers correspond to the numbers in Table 5). Purity of mitochondrial fraction was assessed by the
Western blotting method, showing the absence of cytosolic a-tubulin I in mitochondrial fraction (c).
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Table 5. Differentially expressed proteins in liver mitochondria of agmatine-treated vs. control apoE-knockout mice *.
No. Protein SwissProt Molecular p Unique Total Protein Fold
Accession Number  Mass (kDa) Peptides  Peptides Coverage (%) Change
1 Regucalcin RGN_MOUSE 33.4 4.94 7 10 27 1.440
2 ATP synthase subunit beta, mitochondrial ATPB_MOUSE 56.3 5.19 5 8 11 —1.740
3 2-hydroxyacyl-CoA lyase 1 HACL1_MOUSE 63.6 5.89 7 12 14 2.370
4 Hydroxymethylglutaryl-CoA synthase, mit HMCS2_MOUSE 56.8 8.65 2 4 4.1 —1.320
5 Cytochrome b5 CYB5_MOUSE 15.2 4.96 2 4 16.,4 1.680
6 Isocitrate dehydrogenase [NADP] IDHC_MOUSE 46.6 6.48 5 8 13 1.970
7 Delta-1-pyrroline-5-carboxylate dehydrogenase AL4A1_MOUSE 61.8 8.58 2 2 2.70 2.130
8 Urate oxidase URIC_MOUSE 35 8.48 5 6 17 2.650
9 Peroxisomal acyl-Coenzyme A oxidase 1 ACOX1_MOUSE 74.6 8.64 5 6 9.40 3.150
10 Acyl-Coenzyme A oxidase 1, palmitoyl A2A850_MOUSE 74.6 8.64 6 15 11 2.840
11 Urate oxidase URIC_MOUSE 35 8.48 11 19 33 2.180
12 60 kDa heat shock protein, mitochondrial CH60_MOUSE 60.9 591 3 5 5.1 —-1.790
13 Voltage-dependent anion-selective channel 1 VDAC1_MOUSE 32.3 8.55 5 9 20 1.510
14 ATP synthase subunit alpha, mitochondrial ATPA_MOUSE 59.7 9.22 4 8 7.10 1.980
15 Elongation factor 1-alpha 1 EF1A1_MOUSE 50.1 9.1 4 4 8.00 1.650
16 Cathepsin Z CATZ_MOUSE 34 6.13 4 13 17.6 2.230
17 Ornithine aminotransferase, mitochondrial OAT_MOUSE 48.3 6,19 4 8 9.8 —1.860
18 Carbamoyl-phosphate synthase [ammonia], mit CPSM_MOUSE 164.5 6.48 4 7 3.9 —1.840
19 Nucleoside diphosphate kinase B NDKB_MOUSE 17.3 6.97 7 13 48.,60 1.520
20 Hydroxyacyl-coenzyme A dehydrogenase HCDH_MOUSE 34.4 8.76 2 5 6.10 —1.660
21 ES1 protein homolog, mitochondrial ES1_MOUSE 28.1 9 2 2 6.80 —1.570
22 Carbamoyl-phosphate synthase [ammonia], mit CPSM_MOUSE 164.5 6.48 3 4 2.40 —1.610
23 Carbamoyl-phosphate synthase [ammonia], mit CPSM_MOUSE 164.5 6.48 4 6 3.50 —2.630
24 Carbamoyl-phosphate synthase [ammonia], mit CPSM_MOUSE 164.5 6.48 5 11 5.30 —1.660
25 Carbonic anhydrase 3 CAH3_MOUSE 29.3 6.97 4 6 15 1.200
26 Glutamate dehydrogenase 1, mitochondrial DHE3_MOUSE 61.3 6.71 4 5 7.90 —1.560
27 Glutathione S-transferase P 1 GSTP1_MOUSE 23.6 8.13 3 6 20 1.420

plindicates isoelectric point; * p < 0.05; n = 3 per group.
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Figure 5. Relative changes in expression of mitochondrial proteins in agmatine-treated apoE-/- mice,
compared to control apoE-/- mitochondria. Corresponding spot numbers are shown in brackets
(n = 3 per group).

3. Discussion

3.1. Effect of Agmatine on the Development and Structure of Atherosclerotic Lesions in ApoE-Knockout Mice

Our study indicates that exogenous agmatine, used for four months, significantly inhibits the
development of atherosclerosis in apoE-knockout mice. So far, the anti-atherogenic action of exogenous
agmatine has been reported only once in cholesterol-fed rabbits [19]. The model of apoE-/- mice,
which develop dyslipidemia and atherosclerotic plaques spontaneously, is devoid of overwhelming
metabolic and inflammatory disturbances caused by cholesterol overloading, and is more reliable
for studies of mechanisms of the anti-atherosclerotic action of potential drugs [21]. The daily dose in
our experiments (20 mg/kg/day) should be considered as a medium one as the oral agmatine dose
practiced in literature in mice and rats ranges from 1 to 200 mg/kg. Importantly, our administration of
agmatine did not lead to abnormalities in food intake and weight gain in mice as well as it did not
cause any observable adverse effects. Thus, in our experiment exogenous agmatine appeared to be an
effective and safe inhibitor of atherogenesis in apoE-knockout mice.

In our study, agmatine not only reduced the area of atherosclerotic lesions but also changed their
structure by reducing the number of macrophages in atherosclerotic plaques. The action of agmatine
could be connected to the stabilization of atherosclerotic plaques as macrophages can play a key role
in atherosclerotic plaque destabilization and rupture. However, the model of atherosclerosis used
in this study does not allow for a direct assessment of risk of atherosclerotic plaque destabilization
(the plaque rupture in apoE-knockout mice fed with a standard diet is very rare), so verification of the
hypothesis about the plaque-stabilizing effect of agmatine requires further research.

Despite the inhibitory effect on macrophages accumulation in plaques, agmatine did not reduced
the level of proinflammatory proteins in the blood. In contrast, it showed a tendency to increase
plasma levels of MCP-1 and IL-12. In the context of the general inhibitory effect of agmatine on the
development of atherosclerosis, such a surprising effect requires future verification, perhaps by in vitro
studies using endothelial cells (major source of MCP-1) and phagocytic/dendritic cells (major source
of IL-12).
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3.2. Mechanisms of Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice

An approximate threefold increase of the level of HDL in the blood was the most striking
action of agmatine observed in apoE-knockout mice. At the same time, agmatine did not significantly
change the level of other lipoproteins. Numerous studies, both retrospective and long-term prospective
follow-up, have shown that a low HDL level is associated with an increased risk of coronary events [23]
and high HDL levels have a protective effect in this regard [24,25]. The beneficial effect of HDL is
primarily associated with reverse cholesterol transport (RCT), a pathway that transports cholesterol
from extrahepatic cells and tissues to the liver and intestine for excretion, by reducing accumulation
of cholesterol in the wall of the arteries. In this context, HDLs are capable not only of counteracting
the development of atherosclerosis but may also reverse the current changes in the arteries [26].
In our study, agmatine strongly elevated the HDL level in the blood of apoE-/- mice, which gives
rise to the hypothesis that such an action might be responsible for its anti-atherosclerotic effect.
The question arises: what could be the molecular mechanism(s) of influence of agmatine on the lipid
and lipoprotein metabolism in apoE-knockout mice? There could be many potential pathways targeted
by agmatine in this regard, for example the increase in the blood HDL level could depend either on
the increased formation of young HDL or on the inhibition of the metabolism of mature lipoproteins
or the degradation of their major apolipoprotein—apoA I. Considering the complexity of liver lipid
and lipoprotein metabolism, and the wide array of biological and metabolic activities of agmatine,
we have assessed its influence on mRNA expression of factors related to the hepatic metabolism of
fatty acids, cholesterol, and lipoproteins; we have also undertaken open comprehensive analysis of
agmatine-derived changes in the expression of proteins in mitochondrial fraction isolated from the
liver of apoE-/- mice.

3.3. The Effect of Agmatine on mRNA Expression of Factors Involved in Hepatic Lipid Metabolism

The PCR arrays showed a significant increase of expression of factors involved in fatty acid
metabolism in agmatine-treated group mice as compared to the control group. Agmatine increased the
expression of two genes encoding the enzyme acyl-CoA synthetase (Acsbg2 and Acsm2), which belongs
to a large family of enzymes catalyzing the first step in the metabolism of fatty acids. Acsbg2 (acyl-CoA
synthetase bubblegum family member 2) encodes an enzyme that mediates activation of long-chain
fatty acids for both synthesis of cellular lipids, and their degradation via beta-oxidation; Acsm2
(acyl-CoA synthetase medium-chain family member 2) activates medium-chain length fatty acids.
Moreover, agmatine has increased the expression of mRNA for Cpt1 (carnitine palmitoyltransferase
I), a key enzyme involved in the transport of fatty acids into mitochondria and Decr1 (2,4-dienoyl
CoA reductase 1, mitochondrial), an enzyme that participates in the further steps of beta oxidation
(mainly unsaturated fatty acids) [27]. In our experiment, agmatine also increased the expression of
mRNA for Mcee (methylmalonyl CoA epimerase), an enzyme that catalyzes the conversion of D- and
L-methylmalonyl-CoA during the degradation of branched chain amino acids, odd chain-length fatty
acids, or cholesterol [28].

The expression of genes for fatty-acid-binding protein (FABP) was altered with agmatine treatment.
Agmatine increased the expression of the gene for L-FABP (liver-type fatty acid binding protein), but
decreased the expression of the gene for A-FABP (adipocyte-type fatty acid binding protein). A-FABP,
in addition to facilitating the fatty acid metabolism, may be involved in inflammatory processes, as
was shown, so that its expression in macrophages is induced by oxidized low density lipoprotein
(oxLDL) and proinflammatory cytokines [29,30]. It has also been shown that A-FABP inhibitors
protected against atherosclerosis in apoE-knockout mice [31,32]. Our data demonstrate the broad effect
of agmatine on the expression of genes coding factors involved in fatty acid metabolism: enzymes
involved in liver 3-oxidation, the transportation of fatty acids into mitochondria, and proteins involved
in the intracellular circulation of lipids. Our results are consistent with functional ones reported by
Nissim et al., according to which agmatine increases (3-oxidation of fatty acids in isolated mitochondria
and perfused rat liver [18]. However, whether or not an increase of 3-oxidation in the liver may link
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agmatine with increased HDL levels requires further investigation. Niacin, a model compound raising
the blood level of HDL, is also known to increase 3-oxidation of fatty acids in the liver [13,33,34].
In addition to the aforementioned effect on the expression of enzymes involved in mitochondrial fatty
acids metabolism, agmatine has reduced the expression of the gene encoding of the enzyme involved
in B-oxidation in the peroxisomes—Acaala (acetyl-Coenzyme A acyltransferase 1A). Therefore, the
evaluation of the effect of agmatine on the activity of individual enzymes involved in fatty acids
metabolism requires further research.

What is more, in our experiment agmatine changed the expression of mRNAs for a number of
factors related to the cholesterol metabolism in the liver of apoE-/- mice. Observed changes are not
easy to interpret. They could indicate the intensification of hepatic cholesterol synthesis by agmatine;
however, many of aforementioned factors show various activities. For example, Dhcr24 also codes
seladin 1, which is a multifunctional protein regulating cholesterol metabolism and building lipid
membrane rafts, and also shows antioxidant and anti-apoptotic properties [35]. Upon treatment
with agmatine two isoforms of one protein may behave differently (e.g., for Insigl, the expression
increased, while for Insig2, the expression decreased), while both perform similar function. Therefore,
full explanation of the effect of agmatine on hepatic pathways of cholesterol metabolism as well as the
role of this effect in the anti-atherosclerotic effect of agmatine certainly require further investigation.

3.4. Effect of Agmatine on Liver Mitoproteome

Agmatine has been shown to accumulate in mitochondria [13]. Mitochondria are also organelles
at the crossroad of the pathways of fatty acid oxidation and the selected pathways of cholesterol
and lipoprotein metabolism. Thus, in order to evaluate the changes in expression of proteins in
mitochondria isolated from the liver of control and agmatine-treated apoE-/- mice, we used methods
of differential proteomics in our study. Several identified proteins differing in expression between
agmatine-treated and control mice appeared to be enzymes involved in the oxidation of fatty acids.
Agmatine has an increased expression of ACOX1 (peroxisomal acyl-coenzyme A oxidase 1), which
catalyzes the bottleneck reaction in beta-oxidation of very long-chain fatty acids in peroxisomes [36].
Importantly, it can also residue in the mitochondria and the deficiency in ACOX (isoform 1 and 2) has
been shown to contribute to non-alcoholic fatty liver disease, both in mice and in humans [37]. Another
protein with increased expression in the agmatine-treated group was HACL1 (2-hydroxyacyl-CoA
lyase 1). This enzyme has two important roles in alpha oxidation: the degradation of phytanic acid,
and shortening of 2-hydroxy long-chain fatty acids so that they can enter beta oxidation [38].

The agmatine-elicited changes in the mitochondrial expression of enzymes involved in
the metabolism of fatty acids are not straightforward; for example, the expression of HCDH
(hydroxyacyl-coenzyme A dehydrogenase), an enzyme involved in fatty acid oxidation, has
been reduced in the agmatine-treated group. Agmatine also decreased the expression of HMCS
(hydroxymethylglutaryl-CoA synthase), an enzyme that catalyzes the reaction in which acetyl-CoA
condenses with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). The widely
known cytosolic form of HMCS that is, HMCS 1 takes part in one of the first stages of cholesterol
synthesis, while the mitochondrial form HMCS2 participates in the formation of ketones. Clearly the
effects of agmatine on mitochondrial proteins involved in lipid metabolism require further research.

A number of mitochondrial proteins not related directly to metabolism with expressions targeted
by agmatine were revealed by proteomic approach. Some of them can be classified as proteins that
modulate oxidative stress, apoptosis, and inflammatory responses. Agmatine has increased the
expression of anti-apoptotic GST P1 (glutatione S-transferase P1) that has been reported to suppress
c-Jun N-terminal kinase (JNK)-related apoptosis [39-42]. In turn, agmatine increased the expression
of cathepsin Z (cathepsin, Z/X/P), a cysteine-type lysosomal protease, whose deficiency leads to the
accelerated aging of cells [43]. In this context, the action of agmatine on GST P1 and cathepsin Z can
be targeted to counteract apoptosis and the aging of liver cells. It is difficult to unambiguously
interpret the inhibitory effect of agmatine on the expression of Hsp60 (heat shock protein 60).
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The overexpression of Hsp60 in cardiomyocytes protects against apoptosis [44]. On the other hand,
Hsp60 is involved in the maturation of the main apoptotic executioner, caspase 3 [45]. Similarly, the
biological meaning of agmatine-derived changes in the mitochondrial levels of several other proteins
with a complex function is not easy to interpret: PSCD (P5CDH, P5CS, delta-1-pyrroline-5-carboxylate
dehydrogenase), the enzyme that plays an important role in the metabolism of proline, arginine, and
glutamate; NDPK (nucleoside diphosphate kinase), a transcription factor and an enzyme involved
in the metabolism of nucleotides [46]; CAIII (carbonic anhydrase III), the enzyme that can protect
cells from oxidative stress and participate in the metabolism of fatty acids [47]; or the regucalcin
calcium binding protein, playing a large role in maintaining intracellular calcium homeostasis [48].
Undoubtedly, the analysis of the effects of agmatine on the expression of proteins involved in defense
against ROS, regulation of apoptosis and inflammatory processes requires careful functional studies.

3.5. Conclusion and Future Directions

We have found that prolonged administration of agmatine significantly inhibited atherosclerosis in
apoE-/- mice; such an action was associated with the elevation of HDL in plasma. The comprehensive
analysis of its influence on mRNA expression of factors related to the hepatic metabolism of fatty acids,
cholesterol, and lipoproteins, as well as agmatine-derived changes in the expression of proteins in
liver mitochondria, revealed many traces of potential relevance: agmatine appeared to increase liver
expression of enzymes related to fatty acid oxidation, and changed levels of proteins that can modulate
oxidative stress, apoptosis, and inflammatory responses.

Yet, the exact mechanisms linking observed changes with HDL rise and anti-atherosclerotic action
require further clarification. The future studies should focus on the possible influence of agmatine on
HDL function and the formation/degradation of main HDL-related proteins in the liver (i.e., apoA I).
Also, the analysis of the direct cellular action of agmatine on the vessel wall (endothelial and smooth
muscle cells, macrophages and foam cells) would shed new light on its anti-atherosclerotic action.
Noteworthy, the stimulation of lipolysis by agmatine outside the liver, i.e., in thermogenic fat tissue
and skeletal muscles, could also be the case, as such action has been reported to elevate plasma HDL
levels [49]. Finally, an important question arises as to whether the anti-atherogenic action of agmatine
involves imidazoline receptors or occurs in a non-receptor manner. Intriguingly, the activation of
imidazoline I-1 receptors has been linked to the hypolipemic effect [50]. Each of these questions needs
to be resolved in future mechanistic studies.

4. Materials and Methods

4.1. Animal Experiments

Male apoE-knockout mice on the C57BL/6] background were obtained from Taconic (Ejby,
Denmark). The mice were housed in air-conditioned rooms (22.5 = 0.5 °C, 50 + 5% humidity)
with 12-h dark/12-h light cycles, with unconstrained access to food and water, in the Animal House of
Chair of Immunology of JUMC. Eight week-old mice were put on a chow diet made by Wytwornia
Pasz Morawski (Kcynia, Poland). Animals were randomly divided into two groups: the control group
(apoE-knockout mice w/o treatment, on chow diet as above, n = 10) and agmatine-treated mice (1 = 8).
In this group, agmatine (Sigma-Aldrich, St. Louis, MO, USA) was mixed without heating with the
same diet and administered to mice at a dose of 20 mg/kg of body weight per day (according to
calculation taking into account average body mass of mouse and its daily diet requirement). After four
months on the experimental diet the mice were injected with 1000 IU of fraxiparine (Sanofi-Synthelabo,
France) into the peritoneum, then were killed using a carbon dioxide chamber. Next, the blood was
collected and hearts, aortas, and livers were dissected. All animal procedures were approved by the
Jagiellonian University Ethical Committee on Animal Experiments (No. 74/2011, 8 June 2011).
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4.2. Analysis of Atherosclerotic Plaque

The aortas were prepared en face and stained Oil Red O (Sigma-Aldrich, St. Louis, MO, USA).
The aortic lesion area and total aortic area were calculated using LSM Image Browser software.

The hearts with the ascending aorta were embedded in OCT compound (CellPath, Newtown,
UK), snap frozen and sectioned (10 um thickness) for histological and immunohistochemical analysis,
according to the standardized cross-section protocol, as described before [51,52]. To evaluate the lesion
area and plaque collagen content, nine sections per animal were stained Oil Red O (Sigma-Aldrich,
St. Louis, MO, USA). Immunohistochemistry was performed with antibodies against CD68 (dilution
1:800; Serotec, Kidlington, UK) and smooth muscle «-actin (SMA) (dilution 1:800; Sigma-Aldrich,
St. Louis, MO, USA). In situ zymography was performed to demonstrate non-specific activity of
gelatinases using the standard protocol [53]. All section images were captured using an Olympus
Camedia DP71 digital camera and analyzed using LSM Image Browser software (Zeiss, Jena, Germany).

4.3. Biochemical Methods

The blood was collected from the right ventricle and centrifuged for 10 minutes, 1000 g at 4 °C.
Plasma was harvested and stored in —80 °C until assayed. The level of total cholesterol, triglycerides,
and low and high density lipoproteins (LDL and HDL) were measured using an enzymatic method
on a Cobas 8000 analyzer (Roche Diagnostics, Indianapolis, IN, USA). In addition, levels of some
inflammation markers, such as interleukin 12 (IL-12), vascular cell adhesion protein 1 (VCAM-1),
monocyte chemoattractant protein 1 (MCP-1), and serum amyloid A (SAA) were measured by ELISA
using commercially available kits (R&D Systems, Minneapolis, MN, USA).

4.4. RT? Profiler PCR Arrays

Total RNA was isolated from the liver tissues using QIAzol Lysis Reagent (QIAGEN, Valencia,
CA, USA), using a standard protocol. The concentration of RNA was determined by measuring
the absorbance in an EPOCH Microplate Spectrophotometer (BioTek Instruments Inc., Winooski,
VT, USA). The A260/A280 ratio was greater than 1.9 in all samples. The same amount of total
RNA (1 pg) for each sample was reverse-transcribed into cDNA using the RT? First Strand Kit
(SABiosciences, Frederick, MD, USA), according to the manufacturer’s instructions. The RT?
Profiler PCR Arrays were used to analyze the expression levels of 84 key genes involved in fatty
acid metabolism (PAMM-007Z, SABiosciences, Frederick, MD, USA), or lipoprotein signaling and
cholesterol metabolism (PAMM-080Z, SABiosciences, Frederick, MD, USA). PCR reactions were
performed using the 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA),
and the data was analyzed using the web-based program of RT? Profiler PCR Array Data Analysis.
A 2-fod cut off threshold was used to define up or down regulation of the genes analyzed.

4.5. Two-Dimensional Electrophoresis (2-DE) and Gel Image Analysis

The isolation of the mitochondpria fraction from the freshly-harvested livers was performed at
4 °C, as previously described [51]. Mitochondrial pellets were resuspended in 0.5 mL of lysis buffer
(9.5 M urea, 4% CHAPS, 2% DTT, 0.5% Bio-Lyte 3-10 (Bio-Rad, Hercules, CA, USA), a mix of protease
inhibitors (Sigma-Aldrich, St. Louis, MO, USA)). Then, samples were vortexed, incubated at 25 °C
for 30 min, and centrifuged at 12,000 x g for 15 min. The protein concentration was determined in
the harvested supernatant with the Bradford method [54]. Next, samples were purified with 2-DE
Clean-up kit (GE Healthcare, Wilmington, MA, USA), resuspended in 300 pL of rehydration buffer
(8 M urea, 0.5% CHAPS, 0.2% DTT and 0.2% Bio-Lyte 3-10), and loaded on linear 3-10 immobilized
pH gradient 17 cm strips (Bio-Rad, Hercules, CA, USA). The strips were focused with a multistep
voltage gradient from 400 to 3500 V (max 50 mA /IPG strip, 20 °C) for a total of 66 kVh. Then, the
strips were reduced and alkylated in buffer (6 M urea, 30% glycerol, 2% SDS and 0.01% bromophenol
blue) with the addition of 1% w/v DTT (20 min) and 4.8% w/v iodoacetamide (20 min). Second
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dimension (SDS-PAGE) polyacrylamide gels (12% T, 2.6% C) were performed using the Protean II
xi system (Bio-Rad, Hercules, CA, USA). After electrophoresis the gels were fixed in ethanol:acetic
acid:water solution (4:1:5 v/v/v) and visualized by silver staining using the Plus One silver staining kit
(GE Healthcare, Wilmington, MA, USA) with modifications to provide subsequent mass spectrometry
analysis [55]. Silver-stained gel images were taken using a GelDoc XR scanner (Bio-Rad, Hercules,
CA, USA) and analyzed with PDQuest™ 8.0.1 (Bio-Rad, Hercules, CA, USA) software dedicated
do gel image analysis, quantification, and statistical validation. In total, three biological replicates
per group, each in two technical replicates (1 = 6 gel images per group) were analyzed. A student’s
t-test, implemented in PDQuest™, was used to reveal statistically significant differences (p < 0.05)
in the protein expression, which were further analyzed with LC MS/MS system to identify proteins
of interest.

4.6. LC MS/MS

Protein spots of interest were excised from the gel and then destained, reduced, alkylated, and
digested with modified trypsin (Sigma-Aldrich, St. Louis, MO, USA), according to the protocol
described by Shevchenko et al. [56]. Peptide mixtures were resuspended in 0.1% TFA and injected
in an Acclaim PepMap100 RP C18 75 um i.d.x 25 cm column (LC Packings/Dionex) via a trap
column (PepMap100 RP C18 300 um i.d. (inner diameter) x 5 mm column, LC Packings/ Dionex).
The peptides were separated in 90 min 0-40% B phase linear gradient (buffer A: 5% acetonitrile,
0.1% formic acid; buffer B: 95% acetonitrile, 0.1% formic acid) by a Switchos/UltiMate 3000 RSLC
nano HPLC system (LC Packings/Dionex, USA) with a flow rate of 300 nL/min and applied on-line
to a LCQ (Thermo Finnigan, San Jose, CA, USA) ion-trap mass spectrometer. The ESI ion source
parameters were: ion spray voltage 1.5 kV, capillary temperature 200 °C, and capillary voltage 10 V.
The full scan mode (270-1600 Da), followed by three MS/MS scans of the most intense ions, were
used to collect the spectra. Data analysis was performed by the X!Tandem search algorithm (the GPM
Organization) and Trans-Proteomic Pipeline (TPP) software (Institute for Systems Biology) with the
following parameters: enzyme: trypsin, taxonomy: mouse (SwissProt), missed cleavage sites allowed:
2, variable modification: oxidation of methionine, fixed modification: carbamidomethyl, selected
device and parent dm: ion trap (4 Da), and peptide fragment mass tolerance: 0.4 Da.

4.7. Immunoblotting

Immunoblotting of cytochrome ¢ oxidase (COX-IV) and a-tubulin was used to assess the purity
of mitochondrial fractions, which was described previously [51]. The specific primary antibodies
were as follows: 1:5000 ANTI-COX-IV (Abcam, Cambridge, MA, USA), 1:250 ANTI-alpha-tubulin
(Sigma-Aldrich, St. Louis, MO, USA). Bands images were taken using an ImageQuant Las 500
(GE Healthcare, Chalfont, UK).

4.8. Statistical Analysis

The results are expressed as mean £ SD. The nonparametric Mann-Whitney U test (en face,
Oil Red O and IHC data) or t-test (other methods) were used for statistical analysis of the data. p < 0.05
is considered to be statistically significant.
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