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Abstract: The BRS1 (BRI1 Suppressor 1) gene encodes a serine carboxypeptidase that plays a critical
role in the brassinosteroid signaling pathway. However, its specific biological function remains
unclear. In this study, the developmental role of BRS1 was investigated in Arabidopsis thaliana.
We found that overexpressing BRS1 resulted in significantly more lateral roots in different Arabidopsis
ecotypes (WS2 and Col-0) and in brassinosteroid mutants (bri1-5 and det2-28). Further research
showed that BRS1 facilitates the process whereby lateral root primordia break through the endodermis,
cortex, and epidermis. Consistent with this, BRS1 was found to be highly expressed in the root
endodermis and accumulated in the extracellular space around the dome of the lateral root primordia.
Taken together, these results highlight the role of BRS1 in the process of lateral root emergence and
provide new insight into the role of serine carboxypeptidases in plant root development.
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1. Introduction

BRS1 (BRI1 Suppressor 1) is a serine carboxypeptidase that was recognized to suppress the
phenotypes of the brassinosteroid receptor weak mutant bri1-5, which showed shorter primary
inflorescence stem and secondary inflorescence branch length, compact rosette, and late flowering
time [1]. Serine carboxypeptidases (SCPs) belong to the hydrolase family of serine peptidases [2] and
are widely expressed in plant organs. Accumulating data indicate that SCPs are involved in protein
turnover [3,4], the autolysis of cellular constituents [5,6], and seed development [7–10]; however, their
specific biological function remains to be fully elucidated.

In Arabidopsis, 54 SCP-like genes have been identified [11], and these have been divided into
three classes [12–14]. BRS1 belongs to class II and shares high sequence similarity with the other
four homologs in this class [1,15]. A knockout mutant of BRS1 was reported to exhibit no obvious
phenotype [1]. Interestingly, when the homologs of BRS1 were overexpressed, three of the five could
partially rescue the defects of bri1-5 [15]. These observations provide evidence that the BRS1 family is
functionally redundant in Arabidopsis.

BRS1 is a secreted serine carboxypeptidase, and is localized within the extracellular space
in Arabidopsis [16]. Another SCP—NtSCP1, which is localized within the extracellular space in
tobacco—has been shown to play a role in cell elongation [17]. Similarly, the overexpression of BRS1
remarkably increased the length of hypocotyl and secondary inflorescence branch [1], indicating that
BRS1 may also participate in cell shape formation due to its site of localization and hydrolase activity.
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Lateral root primordia (LRP) originate from pericycle cells [18,19] and must break through the
overlying endodermis, cortex, and epidermis before forming a new lateral root (LR). This process is
termed LR emergence, and is critical for determining the LR growth rate and distribution [20]. During
this process, the original founder cells firstly undergo several anticlinal divisions in the pericycle, and
develop as stage I, and then the cells divide periclinally to reach stage II, consisting of two cell layers,
which are still located in the pericycle cell [21–23]. With constant anticlinal and periclinal divisions,
LRPs push apart cells of the endodermis, cortex, and epidermis to pass through during stage III to
VIII, and develop autonomous LR [24,25]. The mature cells of the endodermis, cortex, and epidermis
are connected to each other via their cell walls and plasmodesmata, especially endodermal cells for
which their connections are reinforced by a surrounding Casparian strip. During the endodermis
breakthrough process, a spatial accommodation by neighboring cells is required for lateral root
expansion and consequent breakthrough outer cells; therefore, the inter-communication between LRP
and outer cells plays a critical role in regulation [26]. In summary, an intriguing question emerges
about how the overlaying cells detach from each other to make way for LRP growth [26–29].

A previous study reported that SHORT HYPOCOTYL 2 (SHY2) regulates the changes in
endodermal cell wall properties and facilitates the passage of the LRP across the endodermis [26].
Similarly, primordium initiation proteins LBD29 and LBD18 can promote cell separation for LR
emergence by increasing the activity of cell wall remodeling enzymes [20,30,31]. XTR6/XTH23 and
EXP17 also control cell wall remodeling, and are dramatically increased in expression during LRP pass
through the outer cells [24,29]. These observations indicate that the extracellular space experiences
considerable changes prior to LR emergence.

Although the hydrolase function of SCPs has been confirmed in a range of organisms, there are
few reports on their developmental function. In this study, we carefully investigated the effects of
overexpressing BRS1 on LRs and found that BRS1 facilitates LR emergence, shedding new light on the
process of LR emergence and the role of extracellular-localized SCPs.

2. Results

2.1. Overexpression of BRS1 Increases the Number of LRs in Arabidopsis

A previous study showed that length of primary inflorescence stem and secondary inflorescence
branch had been heightened, rosettes are bigger rather than curled, and flowering time has been
moved up in bri1-5 by overexpression of BRS1 [1]. In the work, we found that the LR number and
LR branching density—defined as the number of emerged LRs per unit length of the root branching
zone [32]—decreased significantly in bri1-5, however they dramatically increased in two different
BRS1 overexpression materials bri1-5 35S-BRS1 and bri1-5 brs1-1D (activation tagging line) compared
with the bri1-5 mutant (Figure 1a,c). Interestingly, overexpression of BRS1 also increased the LR
number and LR branching density in the det2-28 mutant, which is defective in brassinosteroid
biosynthesis (Figure 1a,c) [33]. These results indicated that BRS1 is involved in the LR development of
brassinosteroid-related mutants.

Further observations demonstrated that the overexpression of BRS1 also increased the LR number
and LR branching density in WT (WS2) plants (Figure 1b,d), suggesting that BRS1 functions in LR
development. However, there was no significant difference in the LR number and LR branching
density between the brs1-1 (WS2) mutant and WT (WS2, Figure 1b,d), which was consistent with BRS1
being a highly redundant gene in Arabidopsis [1,15].
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Figure 1. Overexpression of BRS1 increases the number of lateral root (LRs) in Arabidopsis.  
(a) Phenotype comparison of the wild-type plant (WS2) and a range of mutant lines: bri1-5, bri1-5 35S-
BRS1, bri1-5 brs1-1D, det2-28 and det2-28 brs1-1D. Imbibed seeds were transferred to half-strength 
Murashige and Skoog (1/2 MS) medium, and observed at 9 DAG (days after germination). Bar = 1 cm; 
(b) Phenotype comparison of the wild type plant (WS2), the brs1-1 knockout mutant, and the 35S-
BRS1 overexpression line. Imbibed seeds were transferred to 1/2 MS medium and captured photos at 
9 DAG. Bar = 1 cm; (c) Lateral root number, length of the root branching zone, and lateral root 
branching density of the wild type plant (WS2), bri1-5, bri1-5 35S-BRS1, bri1-5 brs1-1D, det2-28 and 
det2-28 brs1-1D were quantified at 9 DAG. Each data bar represents the means ± SE (n ≥ 20); (d) Lateral 
root number, length of the root branching zone, and lateral root branching density of the wild type 
plant (WS2), 35S-BRS1, and brs1-1 were quantified at 9 DAG. Each data bar represents the means ± SE 
(n ≥ 20). The asterisks indicate a significant difference from the corresponding control experiment by 
Student’s t-test (** p < 0.01). 

2.2. Overexpression of BRS1 Promotes LR Emergence 

Next, we questioned whether the increase in the LR number was caused by enhanced LRP 
initiation. To address this, the number of initiation events in seedlings of brs1-1D, brs1-1, and WS2 at 

Figure 1. Overexpression of BRS1 increases the number of lateral root (LRs) in Arabidopsis.
(a) Phenotype comparison of the wild-type plant (WS2) and a range of mutant lines: bri1-5, bri1-5
35S-BRS1, bri1-5 brs1-1D, det2-28 and det2-28 brs1-1D. Imbibed seeds were transferred to half-strength
Murashige and Skoog (1/2 MS) medium, and observed at 9 DAG (days after germination). Bar = 1 cm;
(b) Phenotype comparison of the wild type plant (WS2), the brs1-1 knockout mutant, and the 35S-BRS1
overexpression line. Imbibed seeds were transferred to 1/2 MS medium and captured photos at 9 DAG.
Bar = 1 cm; (c) Lateral root number, length of the root branching zone, and lateral root branching
density of the wild type plant (WS2), bri1-5, bri1-5 35S-BRS1, bri1-5 brs1-1D, det2-28 and det2-28 brs1-1D
were quantified at 9 DAG. Each data bar represents the means ± SE (n ≥ 20); (d) Lateral root number,
length of the root branching zone, and lateral root branching density of the wild type plant (WS2),
35S-BRS1, and brs1-1 were quantified at 9 DAG. Each data bar represents the means ± SE (n ≥ 20). The
asterisks indicate a significant difference from the corresponding control experiment by Student’s t-test
(** p < 0.01).

2.2. Overexpression of BRS1 Promotes LR Emergence

Next, we questioned whether the increase in the LR number was caused by enhanced LRP
initiation. To address this, the number of initiation events in seedlings of brs1-1D, brs1-1, and WS2 at
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6 days after germination (DAG) was counted. No significant difference in the number of initiation
events was observed between lines (Figure 2a), indicating that BRS1 may not function in LRP initiation
and that the increased number of LRP in BRS1-overexpressed lines may have resulted from the
accelerated growth rate of LRP. Therefore, the LRP growth rate was further evaluated using a root
bending test (Figure 2b) [34–37].
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Figure 2. Overexpression of BRS1 causes accelerated lateral root primordial development. (a) The total
number of lateral root primordia (LRP) initiation events (which is the sum of LRP and emerged LRs)
were calculated at 6 DAG. Each data bar represents the means ± SE (n ≥ 20); (b) The LRPs were
gravistimulated to formation. Imbibed seeds were transferred to 1/2 MS medium without sucrose, and
then the 5-day-old wild-type (Col) seedlings were turned to 90◦ and grew for 20 and 50 h and then
the LRPs were observed. Arrowhead shows the bending site, at which LRP initiate synchronously;
(c,d) The lateral root primordia growth rate analysis. (c) Imbibed seeds, the wild-type plant WS2, WS2
brs1-1D, 35S-BRS1, and brs1-1; (d) The wild-type plant Col, 35S-BRS1 GFP (Col background), and
brs1-2 (Col background) were transferred to 1/2 MS medium and planted by the method mentioned
in (b), and then the lateral root primordia (LRPs) growth rate were calculated after 22 and 54 h pgi
(postgravitropic induction). The lateral root primordia growth rate were measured by the percentage
of LRPs at different growth stages (starting from stage I to an emerged lateral root, Em) [21]. Each data
bar represents the means ± SE (n ≥ 26). The cross star symbol highlighted the proportion of emerged
lateral roots.



Int. J. Mol. Sci. 2017, 18, 1549 5 of 11

In the WT (WS2), LRP were fully induced at the bending point after 22 h gravistimulus treatment,
and more than 90% of plants had obvious primordia (including stages I and II; Figure 2c). The induction
rate was similar in the Col background, with the mutants brs1-2 and 35S-BRS1, and a similar proportion
of LRP was observed at stages I and II in these lines after 20 h post-gravitropic induction (Figure 2d),
confirming that the initiation and early development of LRP (from stage I to stage II) was not affected by
BRS1. However, about 40% of the 35S-BRS1 seedlings showed emerged LRs after 54 h of post-gravitropic
induction—a higher proportion than the number of emerged LRs observed in WS2 and brs1-1 (about 10%),
indicating that the overexpression of BRS1 resulted in faster LR emergence (Figure 2c). The same
results were obtained in the Col (Figure 2d) ecotype background, suggesting that BRS1 functions in the
acceleration of LR emergence in parental roots, resulting in a visible increase in LR number.

2.3. BRS1 Is Highly Expressed in the Root Endodermis

Analysis using the GUS (β-glucuronidase) stain revealed that BRS1 was strongly expressed in
leaves (Figure 3a), shoot primordia (Figure 3b), and roots (Figure 3c), which was consistent with the
previously reported tissue expression of BRS1 [1,16]. However, BRS1 was not evenly expressed in roots,
with higher expression observed in distal roots compared with root tips, the division zone, and the
elongation zone (Figure 3c), and especially high expression in the regions near to the LRs (indicated by
the arrows in Figure 3c). Notably, the expression of BRS1 showed clear cell type preference, with
considerably higher expression in the endodermal cells of the parental root (Figure 3d–n) compared
with the cortex, epidermis, and LRP.
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Figure 3. Expression pattern of BRS1 in Arabidopsis. (a) GUS (β-glucuronidase) staining assay of
BRS1p-GUS in the shoots of 12-day-old seedlings, bar = 100 µm; (b) 2-day-old seedlings, bar = 100 µm;
(c) the whole root of 7-day-old seedlings; The arrow marked the LRs and LRPs; (d–l) A close-up view
of the LRP in successive stages in 10-day-old seedlings, bar = 20 µm; (m,n) A view of the LRs following
root staining. The black dotted line marks the LRP outline. P: pericycle; E: endodermis; C: cortex; Ep:
epidermis. Bar = 20 µm.
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2.4. BRS1 Localizes in the Extracellular Space around the LRP

Previous studies have suggested that BRS1 is a secretory protein that localizes in the extracellular
space [1,16]. In this study, the localization of BRS1 was further examined in the roots using
35S-BRS1-GFP. BRS1 was found to localize in the extracellular space of mature root cells, overlapping
with the cell wall (Figure 4a). Interestingly, BRS1 particularly accumulated at the interspace between
the endodermal cells and cortex cells, which would separate to allow the LRs to pass through
(Figure 4b) [26]. Further observations showed that BRS1 also strongly accumulated in the extracellular
space around the LRP dome, when the LRP were passing through the endodermis and cortex cells
(Figure 4b and the Supplementary Video), illustrating the main sites of action of BRS1.

Int. J. Mol. Sci. 2017, 18, 1549  6 of 11 

 

2.4. BRS1 Localizes in the Extracellular Space around the LRP 

Previous studies have suggested that BRS1 is a secretory protein that localizes in the extracellular 
space [1,16]. In this study, the localization of BRS1 was further examined in the roots using 35S-BRS1-
GFP. BRS1 was found to localize in the extracellular space of mature root cells, overlapping with the 
cell wall (Figure 4a). Interestingly, BRS1 particularly accumulated at the interspace between the 
endodermal cells and cortex cells, which would separate to allow the LRs to pass through (Figure 4b) 
[26]. Further observations showed that BRS1 also strongly accumulated in the extracellular space 
around the LRP dome, when the LRP were passing through the endodermis and cortex cells (Figure 
4b and the Supplementary Video), illustrating the main sites of action of BRS1. 

 
Figure 4. Subcellular localization of BRS1. (a) The subcellular distribution of BRS1-GFP was observed 
in the mature cells of the distal root region with propidium iodide stain for 5 min. The observations 
were performed on 12-day-old 35S-BRS1-GFP seedlings. Bar = 10 μm; (b) The subcellular localization 
of BRS1 in the LRP of 35S-BRS1-GFP; (i,ii) Front views of LRP; (iii,iv) The same LRP at different 
scanning layers; The arrow marked the position where BRS1 localization. (v) 48 images scanned 
continuously were compiled and this image stack was cut orthogonally (the scanning video is shown 
as a Supplementary Video). The white line marks the LRP outline. The roots were visualized using a 
confocal laser scanning microscope. Bar = 10 μm.  

2.5. Transcription of BRS1 Is Regulated by the brassinosteroid (BR) Signaling 
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Figure 4. Subcellular localization of BRS1. (a) The subcellular distribution of BRS1-GFP was observed
in the mature cells of the distal root region with propidium iodide stain for 5 min. The observations
were performed on 12-day-old 35S-BRS1-GFP seedlings. Bar = 10 µm; (b) The subcellular localization
of BRS1 in the LRP of 35S-BRS1-GFP; (i,ii) Front views of LRP; (iii,iv) The same LRP at different
scanning layers; The arrow marked the position where BRS1 localization; (v) 48 images scanned
continuously were compiled and this image stack was cut orthogonally (the scanning video is shown
as a Supplementary Video). The white line marks the LRP outline. The roots were visualized using
a confocal laser scanning microscope. Bar = 10 µm.
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2.5. Transcription of BRS1 Is Regulated by the Brassinosteroid (BR) Signaling

A quantitative PCR was conducted to verify the over-expression status in brs1-1D in Arabidopsis
root. Results showed that the transcription of BRS1 is up-regulated more than 20 times in brs1-1D
compared to wild types (Figure 5a). To clarify the connection between the transcription of BRS1 and
BR signaling, we tested the BRS1 response with brassinolide (BL) treatment in different genotypic
background. In wild-type and det2, BR can dramatically induce the transcription of BRS1, but not
remarkably in bri1-5 (Figure 5b), indicating that BR positively regulates the transcription of BRS1, and
this regulation is dependent on the BR signaling pathway. Unexpectedly, there was no significant
difference in the transcriptional status among wild-type and BR mutants without BL treatment,
indicating that the basic transcription of BRS1 may be independent of BR homeostasis. These results
demonstrated that BRS1 was induced by the BR signaling in Arabidopsis root, and suggested that BR
may facilitate the LPR emergence by inducing BRS1.
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Figure 5. Relative BRS1 transcript levels in root tissue. (a) BRS1 transcript level in mutants; (b) BRS1
transcript level in response to BL treatment. BRS1 transcript levels were measured by qRT-PCR after
24-epi-brassinolide treatment. The data is shown for two independent biological replicates and three
technical replicates ± SE. The asterisks indicate a significant difference from the corresponding control
experiment by Student’s t-test (* p < 0.05).

3. Discussion

In this study, no obvious phenotypes were observed in two knockout mutants of BRS1 (in the
WS and Col backgrounds, respectively), which was consistent with the high redundancy of BRS1 in
Arabidopsis [1,15]. However, overexpressing BRS1 resulted in an increase in LRs in different Arabidopsis
ecotypes and BR mutants, and further observations clearly showed that BRS1 facilitates LR emergence.

BRS1 contains a signal peptide and localizes in the extracellular space [1,16]. As an SCP, BRS1
shows strong hydrolytic activity with a broad peptide substrate range in Arabidopsis, and its hydrolysis
activity is necessary for its biological function [16]. Our results demonstrated a novel role of BRS1 in
facilitating LR emergence, indicating that BRS1 may function in cell wall remodeling, similar to another
extracellular localized SCP (NtSCP1) in tobacco, which operates via cell elongation [17]. LR emergence
required multiple signallings for cell wall remodeling to separate cell contacts coordinately within the
endodermis, cortex, and epidermis, and make way for LR emergence [28,30,34,36,38]. In this study, our
results indicated BRS1 positively regulates the signaling of LR emergence. Previous observation also
suggested BRS1 participates in BR signaling [1], and interferes with the signaling in Arabidopsis carpel
development [15], indicating that BRS1 participates and/or disturbs plant signaling. Recent study
suggested that SCP can trigger a peptide signal by acting on its peptide substrate [10], and regulated
rice seed filling and germination process, suggesting a new signaling pathway that BRS1 may be
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involved in. Current study has demonstrated that peptides—the potential substrate of BRS1—in the
root play a critical role in regulating root development as signaling molecules [39]. These findings
indicated that BRS1 could be a promising regulator in peptide signaling to adjust plant growth and
development. However, we could not rule out the other role of BRS1 via interaction with other
components/pathways to regulate LR emergence. Therefore, the identification of BRS1 substrates
or BRS1-interacting proteins would be critical for investigating the specific mechanism underlying
BRS1 function.

The endodermis is located between the cortex and pericycle cells [40]. Unlike other root cells,
the endodermal cells are surrounded by the rigid Casparian strip [25] and are regarded as the largest
biomechanical obstacle to LR emergence [36]. Interestingly, BRS1 was highly expressed in root
endodermal cells, possibly indicating that a major function of BRS1 may be in facilitating the LR
breakthrough of the endodermis. The endodermis also functions as a root diffusion barrier because
of the Casparian strip surrounding this cell layer that affects the directional control of water and
solutes from both sides of the endodermis [25,40]. It is therefore critical that this region remains intact
during LR emergence. The live observations revealed that BRS1 accumulated around the dome of
the LRP (Supplementary Video), which may ensure the fine control of the gap between the LRP and
endodermis. BRS1 is expressed in the endodermis, but not in the LRP, indicating that LRP development
is also controlled by the surrounding cells [36] and highlighting the unique role of the endodermis in
LR emergence.

It should be noted that 35S-BRS1 show remarkably shorter primary roots as compensation
for the increased number of LRs compared with brs1-1D (Figures 1a and S1). The distinct root
phenotypes might be explained by the fact that the native promoter of BRS1 in the brs1-1D transgenic
line remained intact [1], and brs1-1D therefore retained a functional promoter to constrain its expression
in specific tissues and cells. Our observation revealed that native BRS1 few expressed in root meristem
and both root meristem development and root cell elongation were severely affected in 35S-BRS1
compared to brs1-1D (Figure S1), supporting that ectopic expressed BRS1 disturb normal root structure
formation and provide a potential strategy to optimize the shape of the root system by manipulating
the expression of BRS1.

In conclusion, our observations suggested that BRS1 facilitates the passage of the LRP through
the outer layer of cells, broadening the known functions of SCPs. Our findings also shed new light
on the LR emergence process. Further identification of BRS1 substrates will provide insight into the
underlying mechanisms involved.

4. Materials and Methods

4.1. Growth Conditions and Plant Materials

Wild-type (WT) Columbia (Col-0) and its mutants (brs1-2, 35S-BRS1-GFP and Col-BRS1p-GUS), WT
Wassilewskija (WS2) and its mutants (brs1-1, brs1-1D and 35S-BRS1), as well as bri1-5, bri1-5 35S-BRS1,
bri1-5 brs1-1D, det2-28 and det2-28 brs1-1D mutants in a WS2 background were grown vertically
on half-strength Murashige and Skoog (1/2 MS) plates at pH 5.6–5.8 (adjusted with 1 M KOH),
supplemented with 0.85% (w/v) agar and 1% (w/v) sucrose. All plants were grown at 22 ◦C under
long-day conditions (illumination intensity 100 µmol·m−2·s−1, 16 h light/8 h dark).

The brs1-2 (SALK_114441) mutant was a T-DNA insertion mutant from the Salk Institute collection
that had been verified by genotyping. 35S-BRS1-GFP (Col), 35S-BRS1 (WS2), and Col-BRS1p-GUS were
as previously described [16]; bri1-5 is a weak mutant defective in the extracellular domain of BRI1,
which is the receptor of brassinosteroids; det2-28 is a BR biosynthetic mutant, which shows a significant
reduction in BR biosynthesis; bri1-5 brs1-1D, an activation-tagging line with 4 × 35S enhancers inserted
before the BRS1 sequence, and bri1-5 35S-BRS1 were as described previously and were verified by
genotyping and RT-PCR [1,16]. The WS2 brs1-1D and det2-28 brs1-1D double mutants were generated
by crossing WS2 and det2-28 with bri1-5 brs1-1D respectively.
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4.2. RNA Isolation and Quantitative Real-Time RT-PCR Analyses

Total RNA was extracted from the roots of eight-day-old WS2, brs1-1 (WS2), brs1-1D, and 35S-BRS1
seedlings, using an RNeasy RNA plant extraction mini kit (Qiagen, Redwood City, CA, USA) according
to the manufacturer’s protocol. One microgram of RNA was used for cDNA synthesis and quantitative
real-time RT-PCR analysis.

Quantitative real-time RT-PCR was performed using a reagent kit (TaKaRa, Dalian, China)
and 7300 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) and involved the
use of a genomic DNA eraser, followed by reverse transcription and real-time PCR. The reaction was
performed in a 20-µL volume in 96-well plates heated for 15 s at 95 ◦C for pre-denaturation, followed
by 40 cycles of denaturation for 5 s at 95 ◦C and annealing for 31 s at 60 ◦C, and a final dissociation
stage. Actin was included in the assay as a normalization control.

4.3. Histochemical β-Glucuronidase Assays

β-glucuronidase (GUS) staining of Col BRS1p-GUS transgenic plants was performed according to
the following steps: firstly, plant tissues were fixed in 90% acetone on ice for 15 min, then the acetone
was completely removed; secondly, the samples were immersed in GUS-solution: 2 mM X-Gluc, 5%
(v/v) dimethylformamide, 10 mM EDTA-Na2 (pH 8.0), 0.1% (v/v) Triton X-100, 0.5 mM potassium
ferricyanide (K3Fe(CN)6), 0.5 mM potassium ferrocyanide (K4Fe(CN)6), 50 mM phosphate buffered
saline (pH 7.0), and vacuum dried for 15 min, followed by incubation at 37 ◦C for 11 h; finally, samples
were successively washed in 100% and 75% alcohol.

4.4. Microscopic Analysis

Confocal laser scanning microscopy (Olympus IX83, Tokyo, Japan) was used to capture images
of the GUS and green fluorescent protein (GFP) signals. For GFP signal detection, the argon laser
excitation source was at 488 nm and the detection filters ranged from 505 to 525 nm. GUS-stained
images were obtained and the LRP were rated using differential interference contrast (DIC) optics.
To visualize the LRP phenotype clearly, GUS-stained roots were compressed in a tablet with transparent
liquid consisting of 7.5% (w/v) gum arabic, 6 M chloral hydrate, and 5% (v/v) glycerine.

4.5. LRP Developmental Observations

Five-day-old seedlings grown on vertical 1/2 MS plates without sucrose [37] were turned 90◦ to
stimulate the synchronous generation of the LRP at the bending site. All of the seedlings underwent
gravitropic stimulation for 20 and 50 h (Col background), or 22 and 54 h (WS2 background), to analyze
the developmental stages of induced LRP [21].

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/7/1549/s1.
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