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Abstract: Rhabdoid tumors (RT) are malignant neoplasms of early childhood. Despite intensive
therapy, survival is poor and new treatment approaches are required. The only recurrent mutations
in these tumors affect SMARCB1 and less commonly SMARCA4, both subunits of the chromatin
remodeling complex SWItch/Sucrose Non-Fermentable (SWI/SNF). Loss of these two core subunits
alters the function of the SWI/SNF complex, resulting in tumor development. We hypothesized that
inhibition of aberrant SWI/SNF function by selective blockade of the BRD9 subunit of the SWI/SNF
complex would reduce tumor cell proliferation. The cytotoxic and anti-proliferative effects of two
specific chemical probes (I-BRD9 and BI-9564) which target the bromodomain of SWI/SNF protein
BRD9 were evaluated in 5 RT cell lines. Combinatorial effects of I-BRD9 and cytotoxic drugs on cell
proliferation were evaluated by cytotoxicity assays. Single compound treatment of RT cells with
I-BRD9 and BI-9564 resulted in decreased cell proliferation, G1-arrest and apoptosis. Combined
treatment of doxorubicin or carboplatin with I-BRD9 resulted in additive to synergistic inhibitory
effects on cell proliferation. In contrast, the combination of I-BRD9 with vincristine demonstrated
the antagonistic effects of these two compounds. We conclude that the BRD9 bromodomain is an
attractive target for novel therapies in this cancer.
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1. Introduction

Rhabdoid tumors (RT) are highly aggressive malignancies with an age peak in children younger
than three years [1]. They are commonly localized in the brain (atypical teratoid/rhabdoid tumor,
AT/RT), the kidney (rhabdoid tumor of the kidney, RTK) and in soft tissues (malignant rhabdoid
tumor, MRT). Intensive, multimodal treatment approaches have improved the clinical outcome of
these young patients in a stepwise manner. However, their prognosis remains dismal and the median
duration of survival in clinical studies still does not exceed 9 to 17 months (AT/RT) [2]. Unfortunately,
intensification of treatment has resulted in increased therapy-associated mortality but not further
improved prognosis [3]. Thus, new therapeutic strategies are urgently needed.

RT are genetically characterized by bi-allelic loss of SMARCB1 (SWI/SNF Related, Matrix
Associated, Actin Dependent Regulator Of Chromatin, Subfamily B, Member 1) (98% of RT)
or SMARCA4 (2% of RT), which are subunits of the chromatin remodeling complex SWI/SNF
(SWItch/Sucrose Non-Fermentable) [4–7]. The SWI/SNF complex consists of one ATPase subunit,
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which is either BRM or BRG1, and different variable subunits. Three essential core subunits have
been identified: BAF155, BAF170 and BAF47 (SMARCB1) [8]. Depending on cell differentiation
and environmental factors, the SWI/SNF complex can include 7 to 15 additional subunits [9]. This
complex uses energy from ATP hydrolysis to interact with chromatin and influences the bond of
DNA to histones [10]. By its chromatin remodeling function the SWI/SNF complex controls the
expression of multiple genes and is involved in cellular processes such as stem cell differentiation and
development [11]. Loss of SWI/SNF subunits leads to deregulation of tumor-associated pathways
such as Wnt/β-catenin or Hedgehog/GLI [12,13] and deregulation of epigenetic modulators such as
histone deacetylases (HDAC) and Enhancer of Zeste Homolog 2 (EZH2) [7,14].

A largely unstudied subunit of the SWI/SNF complex is the bromodomain containing protein 9
(BRD9) [15]. Bromodomain containing proteins recognize acetylated lysine residues on histones and
are involved in epigenetic mechanisms such as regulation of transcription, chromatin remodeling and
histone modification [16,17]. BRD9 is also discussed as a reader of butyryl lysines, but its specific
function remains unknown [18]. Histone acetylases (HAC) and HDACs catalyze acetylation and
deacetylation of lysine residues of histones and other proteins [19]. Acetylation mainly results in
a loose chromatin structure and enhanced accessibility of the DNA facilitating transcription [20].
By reading these epigenetic codes, BRD9 might be involved in SWI/SNF-associated gene transcription,
DNA repair and cell differentiation. In acute myeloid leukemia (AML) cells, BRD9 depletion resulted
in G1 arrest [21]. Mutations of BRD9 and five other SWI/SNF complex related proteins are associated
with a higher number of overall genetic alterations and genomic instability in lung cancer [22].

Based on the hypothesis that tumorigenesis by RTs may not be driven by complete loss of
SWI/SNF function, but rather an aberrant activity of the remaining complex [23], we investigated
the effects of selective inhibition of BRD9 on RT growth in vitro. Here we demonstrate for the first
time that inhibition of BRD9 by small chemical compounds, alone or in combination with cytotoxic
compounds, affects cell proliferation, cell viability and cell cycle progression of RT cells. As subunits
of the SWI/SNF complex are altered in approximately 20% of all neoplasms, this data might be the
basis for targeted approaches not only in RT but also in other tumor entities [15,24].

2. Results

2.1. Small-Molecule BRD9 Inhibitors Decrease Rhabdoid Tumor Cell Proliferation In Vitro

To evaluate whether inhibition of the SWI/SNF subunit BRD9 blocks proliferation of RT cells,
five RT cell lines derived from tumors of different anatomic localization (BT12, BT16, Chla266 are of
intracranial and G401, KD are of extracranial RT origin) were incubated in the presence of two available
small-molecule BRD9 inhibitors (BRD9i), BI-9564 and I-BRD9. These molecules were originally
developed to target the acetyl-lysine binding domain (bromodomain) of BRD9. Both inhibitors have a
high potency and selectivity against BRD9 [25,26]. They target BRD7 to a lesser extent, but present a
very low or no affinity for Bromodomain and extra-terminal (BET) family members.

Effects of the two inhibitors on cell proliferation were evaluated after 72 or 144 h of incubation at
increasing concentrations in MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide)
proliferation assays. Both BRD9i had negative effects on the proliferation of all RT cell lines (Figure 1).
Half-maximal inhibitory concentrations (IC50) at 72 h ranged from 8.1 µM to 22.3 µM for both BRD9i.
In general, IC50 values were lower for both inhibitors after six days (144 h) than after three days (72 h)
(Table 1). In BT12 and Chla266 cell lines, an anti-proliferative effect could be observed only after longer
incubation time (144 h).
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Figure 1. Proliferation curves of rhabdoid tumor (RT) cell lines BT16 (A), G401 (B) and KD (C) 
incubated for 72 h at different BRD9 inhibitors tested, BI-9564 (red) or I-BRD9 (black) concentrations 
based on MTT proliferation assays. Dotted line indicates 50% cell survival compared to the control. 
(n ≥ 3; data are presented in means ± SD). 

Table 1. Half maximal inhibitory concentrations (IC50) of BI-9564 and I-BRD9 in RT cell lines incubated 
for 72 or 144 h. Cell proliferation was evaluated by MTT cytotoxicity assays. (n ≥ 3). 

IC50 (µM) BI-9564 I-BRD9
Cell Line 72 h 144 h 72 h 144 h 

BT12 >100 17.2 21.2 8.2 
BT16 15.9 - 11.2 - 

Chla266 >100 33.7 13.3 24.7 
G401 12.5 10.8 13.4 6.1 
KD 22.3 10.8 8.1 7.1 

2.2. BRD9 Inhibitors Induce G1 Cell Cycle Arrest in RT Cell Lines 

To determine the effects of BI-9564 and I-BRD9 on cell cycle progression, cells were treated with 
increasing concentrations of the inhibitors and then analyzed by flow cytometry. The G1 phase 
population significantly increased in a dose-dependent manner in RT cell lines treated with the 
substances (p < 0.05, one-way ANOVA (analysis of variance)). The strongest impact was observed for 
I-BRD9 (20 µM) on G401, but also the AT/RT cell lines BT12 and Chla266 were arrested in cell cycle 
phase G1 (Figure 2). These data were confirmed by the second BRD9i: G401, BT12 and Chla266 cells 
lines showed G1 arrest following BI-9564 treatment (Figure 2 and Table 2). 

Table 2. Percentage of cells in G1 cell cycle phase after incubating with BI-9564 and I-BRD9 at the 
indicated concentrations for 72 h. (n ≥ 3; mean ± SD; * treatment vs. control with p < 0.05, one-way 
ANOVA). 

Treatment 
Cell Line

BT12 Chla266 G401

BI-9564 

C 65.0 ± 3.9 74.1 ± 3.2 51.7 ± 2.0 
5 µM 73.1 ± 4.6 80.0 ± 1.8 57.6 ± 2.6 

10 µM 74.0 ± 3.4 81.2 ± 1.8 * 59.5 ± 3.6 * 
20 µM 78.9 ± 6.3 * 83.6 ± 0.9 * 65.5 ± 3.3 * 

I-BRD9 

C 69.0 ± 1.9 74.2 ± 3.6 46.7 ± 1.9 
5 µM 75.0 ± 5.3 79.5 ± 3.2 53.0 ± 1.6 

10 µM 80.1 ± 5.8 82.7 ± 2.9 * 67.1 ± 9.1 * 
20 µM 85.6 ± 4.3 * 89.3 ± 2.5 * 78.1 ± 2.7 * 

Figure 1. Proliferation curves of rhabdoid tumor (RT) cell lines BT16 (A), G401 (B) and KD (C) incubated
for 72 h at different BRD9 inhibitors tested, BI-9564 (red) or I-BRD9 (black) concentrations based on
MTT proliferation assays. Dotted line indicates 50% cell survival compared to the control. (n ≥ 3; data
are presented in means ± SD).

Table 1. Half maximal inhibitory concentrations (IC50) of BI-9564 and I-BRD9 in RT cell lines incubated
for 72 or 144 h. Cell proliferation was evaluated by MTT cytotoxicity assays. (n ≥ 3).

IC50 (µM) BI-9564 I-BRD9

Cell Line 72 h 144 h 72 h 144 h

BT12 >100 17.2 21.2 8.2
BT16 15.9 - 11.2 -

Chla266 >100 33.7 13.3 24.7
G401 12.5 10.8 13.4 6.1
KD 22.3 10.8 8.1 7.1

2.2. BRD9 Inhibitors Induce G1 Cell Cycle Arrest in RT Cell Lines

To determine the effects of BI-9564 and I-BRD9 on cell cycle progression, cells were treated
with increasing concentrations of the inhibitors and then analyzed by flow cytometry. The G1 phase
population significantly increased in a dose-dependent manner in RT cell lines treated with the
substances (p < 0.05, one-way ANOVA (analysis of variance)). The strongest impact was observed for
I-BRD9 (20 µM) on G401, but also the AT/RT cell lines BT12 and Chla266 were arrested in cell cycle
phase G1 (Figure 2). These data were confirmed by the second BRD9i: G401, BT12 and Chla266 cells
lines showed G1 arrest following BI-9564 treatment (Figure 2 and Table 2).

Table 2. Percentage of cells in G1 cell cycle phase after incubating with BI-9564 and I-BRD9 at
the indicated concentrations for 72 h. (n ≥ 3; mean ± SD; * treatment vs. control with p < 0.05,
one-way ANOVA).

Treatment
Cell Line

BT12 Chla266 G401

BI-9564

C 65.0 ± 3.9 74.1 ± 3.2 51.7 ± 2.0
5 µM 73.1 ± 4.6 80.0 ± 1.8 57.6 ± 2.6
10 µM 74.0 ± 3.4 81.2 ± 1.8 * 59.5 ± 3.6 *
20 µM 78.9 ± 6.3 * 83.6 ± 0.9 * 65.5 ± 3.3 *

I-BRD9

C 69.0 ± 1.9 74.2 ± 3.6 46.7 ± 1.9
5 µM 75.0 ± 5.3 79.5 ± 3.2 53.0 ± 1.6
10 µM 80.1 ± 5.8 82.7 ± 2.9 * 67.1 ± 9.1 *
20 µM 85.6 ± 4.3 * 89.3 ± 2.5 * 78.1 ± 2.7 *



Int. J. Mol. Sci. 2017, 18, 1537 4 of 12Int. J. Mol. Sci. 2017, 18, 1537 4 of 12 

 

 

Figure 2. Impact of BRD9 inhibitors on cell cycle in RT. Different RT cell lines were treated with BI-
9564 (A–C) or I-BRD9 (D–F) inhibitors in a range of 5 to 20 µM and incubated for 72 h. Cell cycle 
profiles, defined by G1, S and G2 phases, of BT12 (A,D), Chla266 (B,E) and G401 (C,F) cell lines are 
shown. (c = control; n ≥ 3; error bars indicate SD). 

2.3. Treatment with BRD9 Inhibitors Reduces the Viability of RT Cells In Vitro 

In order to examine whether the observed anti-proliferative effect was accompanied by cell 
death, apoptosis assay was performed. BRD9i decreased the viability of the cells in a dose-dependent 
manner (Figure 3). I-BRD9 treatment showed a significant impact on cell viability of BT12, Chla266, 
and G401 cells at 20 µM (Table 3). In G401, the percentage of dead cells increased by 65.1% ± 24.1% 
compared to the control (20 µM) (Table3). The fraction of dead AT/RT cells grew in a dose-dependent 
way from 9.1% (control) to 35% (20 µM) in BT12 cells and from 5% (control) to 12% (10 µM) to 25% 
(20 µM) in Chla266 cells (Figure 3D–F; Table 3). 

BI-9564 significantly changed cell viability in Chla266 treated cells with 5, 10, or 20 µM. In BT12 
and G401 cell lines minor changes were observed (Figure 3A–C; Table 3). 
  

Figure 2. Impact of BRD9 inhibitors on cell cycle in RT. Different RT cell lines were treated with BI-9564
(A–C) or I-BRD9 (D–F) inhibitors in a range of 5 to 20 µM and incubated for 72 h. Cell cycle profiles,
defined by G1, S and G2 phases, of BT12 (A,D), Chla266 (B,E) and G401 (C,F) cell lines are shown.
(c = control; n ≥ 3; error bars indicate SD).

2.3. Treatment with BRD9 Inhibitors Reduces the Viability of RT Cells In Vitro

In order to examine whether the observed anti-proliferative effect was accompanied by cell death,
apoptosis assay was performed. BRD9i decreased the viability of the cells in a dose-dependent manner
(Figure 3). I-BRD9 treatment showed a significant impact on cell viability of BT12, Chla266, and G401
cells at 20 µM (Table 3). In G401, the percentage of dead cells increased by 65.1 ± 24.1% compared to
the control (20 µM) (Table 3). The fraction of dead AT/RT cells grew in a dose-dependent way from
9.1% (control) to 35% (20 µM) in BT12 cells and from 5% (control) to 12% (10 µM) to 25% (20 µM) in
Chla266 cells (Figure 3D–F; Table 3).

BI-9564 significantly changed cell viability in Chla266 treated cells with 5, 10, or 20 µM. In BT12
and G401 cell lines minor changes were observed (Figure 3A–C; Table 3).
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Table 3. Percentage of dead RT cells after incubation with different BI-9564 and I-BRD9 concentrations
for 72 h. (n ≥ 3; mean ± SD, * treatment vs. control with p < 0.05, one-way ANOVA).

Treatment
Cell Line

BT12 Chla266 G401

BI-9564

C 10.1 ± 2.2 5.4 ± 1.0 6.2 ± 0.8
5 µM 14.2 ±3.0 10.0 ± 1.7 * 6.8 ± 0.8
10 µM 15.9 ± 4.9 11.0 ± 2.3 * 7.3 ± 2.0
20 µM 17.3 ± 4.7 12.9 ± 2.4 * 7.6 ± 2.1

I-BRD9

C 9.1 ± 2.8 5.0 ± 0.3 5.7 ± 1.9
5 µM 19.9 ± 6.6 7.7 ± 0.5 7.7 ± 1.5
10 µM 17.6 ± 2.8 11.7 ± 1.0 * 18.8 ± 8.1
20 µM 34.6 ± 9.4 * 25.0 ± 2.9 * 70.8 ± 26.0 *
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Figure 3. Dose-dependent effects of BI-9564 (A–C) and I-BRD9 (D–F) on cell viability of BT12 (A,D),
Chla266 (B,E) and G401 (D,F) after 72 h. (c = control; n ≥ 3; error bars indicate SD).

2.4. I-BRD9 Synergistically Inhibits RT Cell Growth in Combination with Carboplatin and Doxorubicin

Chemotherapy is an important element in the therapy of RT patients. Vincristine, doxorubicin
and carboplatin are commonly used cytotoxic drugs in these kind of neoplasms [27]. To quantify the
effects of BRD9i treatment in combination with chemotherapy, viability assays were performed and
data were analyzed by the median effect method by Chou and Talalay [28]. Our results show that
cells simultaneously treated with I-BRD9 and with carboplatin or doxorubicin proliferated less than
cells receiving monotherapy at equivalent doses. The combination indices calculated after analysis of
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the obtained data for I-BRD9 and carboplatin showed synergistic or additive effects on cell growth
inhibition in BT12 and in G401 cell lines, respectively. I-BRD9 combined with doxorubicin decreased
BT12 proliferation in a synergistic way, but did not show a cooperative effect on G401 growth inhibition.
Similarly, contemporaneous treatment with vincristine and I-BRD9 exerted antagonistic effects on
tumor cell proliferation (CI > 1) (Figure 4 and Table 4).
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BRD9, which were developed independently following a structure based design [25,26]. Both 
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Figure 4. Combination indices (CI) of I-BRD9 combined with carboplatin, doxorubicin or vincristine.
Data from cytotoxicity assays were analyzed by median effect method of Chou and Talalay. Dotted line
marks CI = 1. CI < 1 indicates synergism, CI > 1 antagonism of combined drugs. (n ≥ 3).

Table 4. IC50 and combination indices (CI) of combined treatments. Treatment of BT12 and G401 with
combinations of I-BRD9 and three cytotoxic drugs for 72 h. CI < 1 indicates synergistic effects and
CI > 1 antagonistic effects of combined drugs. R2 represents the determination coefficient of linear
regression in median effect plot. (n ≥ 3).

Treatment
BT12 G401

IC50 (µM) CI R2 IC50 (µM) CI R2

Carboplatin + I-BRD9 40.9 1.01 0.83 9.1 0.37 0.94
Doxorubicin + I-BRD9 0.94 0.42 0.94 0.096 1.2 0.84
Vincristine + I-BRD9 16.7 96.1 0.59 0.008 9.0 0.88

3. Discussion

Research approaches over the past years have focused on targeting deregulated pathways
in RT [29]. Different signaling pathways (WNT, SHH, FGFR and many more) as well as
epigenetic modifiers (HDAC, EZH2) have been described as being deregulated in these kind of
tumors [12–14,30,31]. Several targeted compounds show promising preclinical results and some
of them are tested in early clinical studies such as CDK4/6 inhibitors, EZH2 inhibitors and
Aurora kinase inhibitors, with disappointing to discordant responses [29,32–34]. In this project,
we hypothesized a hierarchical model of events resulting in RT-genesis: One genetic alteration
(SMARCB1/SMARCA4 mutation) leads to the deregulation of diverse epigenetic modulators (HDACs,
EZH2 or DNA-methyltransferases) which in turn deregulate distinct signaling pathways. Following
this model and also being aware that RT are divided into several subgroups by the deregulation
of distinct signaling pathways [6], we hypothesized that inhibition of BRD9 might be a promising
targeted approach for all RT, independent of their molecular subgroups.

Two BRD9 inhibitors were used to provide first evidence for this hypothesis: BI-9564 and I-BRD9,
which were developed independently following a structure based design [25,26]. Both compounds
are highly selective for BRD9. For instance, BI-9564 shows no relevant activity against BET members



Int. J. Mol. Sci. 2017, 18, 1537 7 of 12

below 100 µM (α-assay) [25] and I-BRD9 has 700 fold higher selectivity for BRD9 than for other BET
family members [26].

Bromodomain containing proteins are divided into two subfamilies by their structural domains:
BET and non-BET [16]. BET proteins directly influence transcription and cell cycle progression [16,35].
In the last years, several inhibitors, mainly against BET proteins, were developed and showed
anticancer effects in vitro and in vivo [36]. Currently, some of them are being tested for solid and
hematopoietic malignancies in clinical trials [37].

BRD9 inhibition is not yet well described in the literature. Recently, it was shown that the
knockout of BRD9 as well as inhibition by BRD9 inhibitors results in G1 arrest in AML cell lines,
but does not induce apoptosis [21]. Inhibition by BI-9564 blocked proliferation of AML cells [25].
In a mouse model of AML, BI-9564 significantly reduced tumor growth and improved survival in
treated mice [25]. BRD9 inhibition by I-BRD9 in Kasumi-1 cells resulted in lower expression of
various cancer- associated genes (CLEC1, DUSP6, FES and SAMSN1). DUSP6 deletion sensitizes
to various cytotoxic agents and is involved in the DNA damage repair [38]. It influences MAP
kinases by dephosphorylation [39]. In breast cancer the suppression of DUSP6 leads to reduced cell
proliferation and results in G0/G1 arrest [40]. FES is discussed as a proto-oncogene as well as a
tumor suppressor [41]. This tyrosine kinase plays a crucial role in tumor microenvironment, cell-cell
interaction, organization of the cytoskeleton and signal transduction [42,43]. SAMSN1 regulates
HDAC1 activity and is known as a tumor suppressor in multiple myeloma [44,45]. Its downregulation
is related to a poor prognosis in gastric cancer and hepatocellular carcinoma patients [46,47].

Treatment of RT cell lines with BI-9564 and I-BRD9 results in G1-arrest and apoptosis. In line
with these results, recent publications support these data by showing that the tumor proliferation of
SMARCB1 negative tumors is dependent on the residual activity of the SWI/SNF complex [23].

The mechanism how BRD9i might induce G1 arrest in RT is not clear. In AML cells knockout of
BRD9 as well as inhibition by I-BRD9 leads to downregulation of Myc and downstream elements [21].
SMARCB1 negatively regulates Myc resulting in an overexpression of Myc in SMARCB1 deficient
cells [48]. Further investigation is required to prove whether Myc expression is the link between BRD9
inhibition and G1 arrest in RT.

As single targeted treatment approaches often cause secondary resistances, we investigated
combinatorial effects of chemotherapy plus I-BRD9. For these approaches, chemotherapeutic
compounds commonly applied to children with RT, were used: vincristine, doxorubicin
and carboplatin.

Vincristine is a highly cytotoxic vinca alkaloid. Aside from other mechanisms leading to apoptosis,
vincristine binds to tubulin and inhibits mitosis [49] leading to G2/M cell cycle arrest. In our
experiments, vincristine and BRD9i showed antagonistic effects on RT proliferation. This antagonism
might be explained by the arrest of RT cells treated with BRD9i in G1 phase, preventing them from
entering G2/M phase, in which vincristine exerts its function.

Doxorubicin is a potent anthracycline compound and an important part of RT treatment [27].
It intercalates with the DNA and inhibits topoisomerase II. The use of this highly effective drug is
mainly limited by cardiotoxicity resulting in dilative cardiomyopathy [50]. Mutations in various
subunits of the SWI/SNF complex sensitize for chemotherapy with doxorubicin and cisplatin in
yeast [51]. In contrast, mutations in SNF5, the yeast homolog of SMARCB1, resulted in reduced
sensitivity to doxorubicin [52]. According to our results, BRD9i treatment sensitizes RT cell lines
to doxorubicin.

Carboplatin is a platinum based drug which crosslinks the DNA double strands [53]. It is
widely used in high dose chemotherapy protocols but the applicable dose is limited by severe
myelosuppression [53]. In our combined treatment approach, I-BRD9 and carboplatin cooperatively
inhibited cell proliferation.

This would be in accordance to published data where downregulation of BRG1 in lung cancer
leads to higher sensitivity to cisplatin by disturbing the repair of induced DNA lesions [54].
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In summary, we provide preclinical data which show a promising targeted directed approach
of BRD9i in combination with chemotherapy for RT treatment. Furthermore, the effects of each
chemotherapeutic compound in combination with BRD9i should urgently be re-evaluated, since drugs
like vincristine, have antagonistic effects. BRD9 inhibitors could be utilized in specific therapy cycles
in addition to the established drugs.

In the future, preclinical experiments have to clarify the mechanism of action of BRD9-inhibitors
and will extend these observations to in vivo testing. Inhibiting further subunits of the SWI/SNF
complex might additionally enhance the vulnerability of RT cells to chemotherapy. Combined
approaches including BRD9i might allow reducing severe adverse effect by decreasing chemotherapy
dosage in RT patients. And as the SWI/SNF complex is mutated in 20% of all cancers, our results
might be extended to other SWI/SNF related tumor entities.

4. Materials and Methods

4.1. Cell Culture

G401 (RT of the kidney) and KD (RT of the soft tissue) were maintained in Dulbeccos Modified
Eagles Medium-high glucose (DMEM) (Sigma Aldrich, St. Louis, MI, USA) supplemented with 10%
fetal bovine serum (FBS) (Biochrom, Merck, Darmstadt, Germany), BT16 (AT/RT) in DMEM with
17% FBS. For BT12 (AT/RT) and Chla266 (AT/RT) we used Iscove’s Modified Dulbecco’s Medium
(IMDM, Gibco, Gaithersburg, MD, USA) supplemented with 20% FBS (South America origin, Gibco,
Gaithersburg, MD, USA). All media contained 1% Penicillin/Streptomycin (Gibco, Gaithersburg, MD,
USA). Cells were incubated at 37 ◦C at 5% CO2.

4.2. BRD9 Inhibitors and Cytostatics

I-BRD9 (Tocris Bioscience, Bristol, UK) and BI-9564 (Tocris Bioscience, Bristol, UK) were dissolved
in Dimethyl Sulfoxide (DMSO) (AppliChem, Hannover, Germany) as stock solutions of 10 mM and
aliquoted to only freeze thaw once.

The cytostatic compounds carboplatin, doxorubicin and vincristine were provided by the
pharmacy of the Department of pediatric hematology and oncology, University Children’s
Hospital Muenster.

4.3. Cytotoxicity Assay

Cells were seeded as suspensions as follows: BT16, G402, KD: 3000 cells/50 µL, BT12, Chla266:
5000 cells/50 µL, into 96-well-plates. 50 µL of medium containing the drugs at different concentrations
were added on top after 24 h. I-BRD9 and BI-9564 were tested in final concentrations ranging from
0.001 to 100 µM and cytostatic drugs from 0.0001 µM to 10 µM. For the combined therapy approaches,
we used I-BRD9 and cytostatic substances in a ratio of 10:1 respectively. After 72 h or 144 h, 10 µL of
MTT reagent (Merck, Darmstadt, Germany) were added per well. Metabolic active cells reduce yellow
tetrazolium salt to purple formazan crystals. Those were dissolved with isopropanol- /HCl 0.04 N
after 3 h and a color change from yellow to purple was observed. Samples were spectrophotometrically
evaluated on a Multiskan Ascent multiplate reader (Labsystems, Helsinki, Finland) at 570 nm and
630 nm and a baseline was calculated. Assays running for six days were provided with fresh
medium and drugs on day three. All assays were performed in technical triplicates and at least
three independent times. Data was analyzed using GraphPad Prism software version 6.0.

Combined drug effects on cell proliferation were evaluated by the median effect method by
Chou and Talalay [28] adapted to the MTT assay data (Microsoft Excel 2010). CI values > 1 indicate
antagonism, CI values < 1 synergism of the combined drugs.
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4.4. Apoptosis Assay and Cell Cycle Analysis

One milliliter cell suspension of G401 (10,000 cell/mL), BT12 (30,000 cell/mL) and Chla266
(30,000 cell/mL) was seeded per well into 12-well plates. On the next day, medium was replaced by
medium containing I-BRD9 or BI-9564 at a final concentration of 0 µM, 5 µM, 10µM or 20 µM and
cells were incubated for 72 h. After this time, cells were collected and washed with PBS. Induction of
apoptosis following the treatments was detected by staining the cells with FITC-Annexin V Apoptosis
Detection Kit (BD Bioscience, San Jose, CA, USA) as follows: cells were stained with FITC Annexin
V and propidium iodide. After incubating in the dark for 15 min at room temperature, cells were
analyzed by Flow Cytometry (FACS CantoII). Data were analyzed using FlowJo (Tree Star Inc., Ashland,
OR, USA).

For cell cycle, 100 µL of cell suspension were incubated with 4′,6-diamidino-2-phenylindole
(DAPI, DAPI powder, Applichem, Hannover, Germany) and measured using FACS CantoII flow
cytometry system. Data from cell cycle analysis were analyzed using FlowJo (Tree Star Inc., Ashland,
OR, USA). The calculation of the area under the curve during cell cycle analysis was achieved using
the Watson- or Dean-Jett-Fox-models on all samples of a particular cell line.

4.5. Statistical Analyses

All Data are represented as mean values ± SD. For comparison of more than 2 values ANOVA
One-way test was used. All statistical analyses were performed using Graph Pad Prism 6.0 software.
Significance was assumed when p < 0.05.
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