

Figure S1. Data concerning obesity research since 2011. Data statistics were based on online publications and output by GoPubmed (<u>http://www.gopubmed.com/web/gopubmed/</u>).

Figure S2. The mRNA levels of Zfp217 was measured by reverse transcriptase-quantitative polymerase chain reaction (qRT-PCR) at 48 h after transfection for different treated groups as indicated in C3H10T1/2 and 3T3-L1. Data represents means \pm SEM. * *p* < 0.05, ** *p* < 0.01 versus control.

Figure S3. The effect of Zfp217 overexpression on the cell cycle phase of C3H10T1/2 cells. After 48 h transfection, C3H10T1/2 cells were detected by flow cytometry and the cell cycle phase was analyzed. Data represents means \pm SEM. * p < 0.05, ** p < 0.01 versus control.

Zfp217-3' UTR-wt	UUUGCAUACUUGAG <mark>CGCUGCU</mark> GAAAAGAAAU	Zfp217-3' UTR-wt CCCGUCCACAAGCUGAGCCAUAUGUACAUA
miR-503-5p 3'-	GACGUCAUGACAAGG <mark>GCGACGA</mark> U-5'	miR-135a-5p 3'-AGUGUAUCCUUAUUUU <mark>UCGGUA</mark> U-5'
Zfp217-3' UTR-mut	UUUGCAUACUUGAG <mark>CUAGUAU</mark> GAAAAGAAAU	Zfp217-3' UTR-mut CCCGUCCACAAGCUGATAACGAUGUACAUA
Zfp217-3' UTR-wt		Zfp217-3' UTR-wt UUUUUUUUGCAUACUUGAGCGCUGCUG
miR-19a-3p	3'-AGUCAAAACGUAUCUAAACGUGU-5'	miR-26a-5p 3'-UCGGAUAGGACCUAAUGAACUU-5'
Zfp217-3' UTR-mut	 CUGUUUCAAAGAUAAA <mark>UGGTACC</mark> UGCUCCUUU	 Zfp217-3' UTR-mut UUUUUUUUGCAUCAGGUAGCGCUGCUG

Figure S4. The microRNA (miRNA) binding region sequences of Zfp217-3' untranslated region (UTR) of wild type (wt) and mutant type (mut). The miRNA seed match region is highlighted in red.

 Table S1. The information of Gene Expression Omnibus (GEO) datasets used in this study.

GEO Accession	Platform	Overall design	Samples	Organism	References
GSE87113	GPL17021	Expression profiling by RNA-	GSM2322558 (RNA_3T3-L1_0 h), GSM2322559 (RNA_3T3-L1_1 h),	Mus	<mark>[1]</mark>
		seq during adipogenesis (0 h, 1	GSM2322560 (RNA_3T3-L1_2 h), GSM2322561 (RNA_3T3-L1_4 h),	musculus	
		h, 2 h, 4 h, 2 d, 7 d) in 3T3-L1	GSM2322562 (RNA_3T3-L1_2 d), GSM2322563 (RNA_3T3-L1_7 d),		
		and brown preadipocytes in	GSM2322564 (RNA_brown preadipocytes_0 h), GSM2322565 (RNA_brown		
		culture. Expression profiling by	preadipocytes_1 h), GSM2322566 (RNA_brown preadipocytes_2 h),		
		RNA-seq in brown adipose	GSM2322567 (RNA_brown preadipocytes_4 h), GSM2322568 (RNA_brown		
		tissues of adult mice or	preadipocytes_2 d), GSM2322569 (RNA_brown preadipocytes_7 d),		
		embryos	GSM2322570 (RNA_adult_BAT), GSM2322571 (RNA_embryo_BAT)		
GSE76131	GPL10558	The adipogenesis process of	GSM1974849 (0 h sample, replicate 1), GSM1974850 (0 h sample, replicate 2),	Ното	[2]
		human SBGS pre-adipocyte	GSM1974851 (0 h sample, replicate 3), GSM1974852 (6 h sample, replicate 1),	sapiens	
		cells in vitro was monitored by	GSM1974853 (6 h sample, replicate 2), GSM1974854 (6 h sample, replicate 3),		
		obtaining gene expression	GSM1974855 (6 h sample, replicate 4), GSM1974856 (6 h sample, replicate 5),		
		profiles at beginning of	GSM1974857 (6 h sample, replicate 6), GSM1974858 (6 h sample, replicate 7),		
		experiment and at different	GSM1974859 (6 h sample, replicate 8), GSM1974860 (6 h sample, replicate 9),		
		time points after induction of	GSM1974861 (48 h sample, replicate 1), GSM1974862 (48 h sample, replicate		
		differentiation. The resulting	2), GSM1974863 (48 h sample, replicate 3), GSM1974864 (96 h sample,		
		transcriptomic data set includes	replicate 1), GSM1974865 (96 h sample, replicate 2), GSM1974866 (96 h		
		six time points (0, 6, 48, 96,	sample, replicate 3), GSM1974867 (96 h sample, replicate 4), GSM1974868 (192		
		192, 384 hours), with three to	h sample, replicate 1), GSM1974869 (192 h sample, replicate 2), GSM1974870		
		nine replicates per time point,	(192 h sample, replicate 3), GSM1974871 (384 h sample, replicate 1),		
		for a total of 26 profiles	GSM1974872 (384 h sample, replicate 2), GSM1974873 (384 h sample, replicate		
			3), GSM1974874 (384 h sample, replicate 4)		

GSE27951	GPL570	Expression profiling by	GSM691122 (adipose_tissue (15495), clinical status: NGT, BMI: 38.1, age: 22),	Homo [
		Affymetrix microarray for Homo	GSM691123 (adipose_tissue (15497), clinical status: NGT, BMI: 35.3, age: 48),	sapiens
		sapiens subcutaneous adipose	GSM691124 (adipose_tissue (15501), clinical status: NGT, BMI: 32.9, age: 39),	
		tissue.	GSM691125 (adipose_tissue (15516), clinical status: DM, BMI: 42.2, age: 56),	
		Adipose tissue biopsies were	GSM691126(adipose_tissue (15537), clinical status: IGT, BMI: 39.7, age: 41),	
		obtained from the	GSM691127 (adipose_tissue (15552), clinical status: IGT, BMI: 36.7, age: 47),	
		subcutaneous abdominal	GSM691128 (adipose_tissue (15558), clinical status: IGT, BMI: 41.5, age: 58),	
		region (from the area below the	GSM691129 (adipose_tissue (15570), clinical status: DM, BMI: 50.2, age: 49),	
		umbilicus in a 4-cm range on	GSM691130 (adipose_tissue (15594), clinical status: NGT, BMI: 37.4, age: 46),	
		either side) using the	GSM691131 (adipose_tissue (15625), clinical status: NGT, BMI: 36.7, age: 45),	
		percutaneous needle biopsy	GSM691132 (adipose_tissue (15637), clinical status: IGT, BMI: 39.5, age: 57),	
		technique with suction.	GSM691133 (adipose_tissue (15640), clinical status: DM, BMI: 27.2, age: 50),	
		Biopsies were quickly	GSM691134 (adipose_tissue (15655), clinical status: NGT, BMI: 33.2, age: 60),	
		dissected free from visible	GSM691135 (adipose_tissue (15661), clinical status: DM, BMI: 25.1, age: 60),	
		blood and connective tissue	GSM691136 (adipose_tissue (15667), clinical status: DM, BMI: 23.2, age: 55),	
		and frozen in liquid nitrogen. To	GSM691137 (adipose_tissue (16107), clinical status: DM, BMI: 27.8, age: 59),	
		avoid interference of circadian	GSM691138 (adipose_tissue (16122), clinical status: DM, BMI: 31.8, age: 51),	
		rhythms and post-prandial	GSM691139 (adipose_tissue (16140), clinical status: IGT, BMI: 26.9, age: 77),	
		responses, biopsies were	GSM691140 (adipose_tissue (16155), clinical status: DM, BMI: 27.4, age: 67),	
		obtained between 8 am and 10	GSM691141 (adipose_tissue (16167), clinical status: DM, BMI: 28.8, age: 64),	
		am following an overnight fast	GSM691142 (adipose_tissue (16173), clinical status: DM, BMI: 32.2, age: 58),	
			GSM691143 (adipose_tissue (16191), clinical status: NGT, BMI: 23.6, age: 37),	
			GSM691144 (adipose_tissue (16431), clinical status: DM, BMI: 39.1, age: 44),	
			GSM691145 (adipose_tissue (16437), clinical status: IGT, BMI: 34.2, age: 44),	
			GSM691146 (adipose_tissue (16443), clinical status: IGT, BMI: 33.1, age: 59),	
			GSM691147 (adipose_tissue (16467), clinical status: NGT, BMI: 26.4, age: 27),	

<mark>[3]</mark>

			GSM691148 (adipose_tissue (16470), clinical status: DM, BMI: 25.1, age: 62),		
			GSM691149 (adipose_tissue (16616), clinical status: IGT, BMI: 27.3, age: 59),		
			GSM691150 (adipose_tissue (16707), clinical status: NGT, BMI: 26.2, age: 57),		
			GSM691151 (adipose_tissue (16722), clinical status: IGT, BMI: 16.7, age: 59),		
			GSM691152 (adipose_tissue (16728), clinical status: IGT, BMI: 23.0, age: 69),		
			GSM691153 (adipose_tissue (16762), clinical status: NGT, BMI: 23.1, age: 42),		
			GSM691154 (adipose_tissue (17197), clinical status: NGT, BMI: 23.2, age: 64)		
GSE20054	GPL1261	Affymetrix microarray analysis	GSM501363 (Ezh2-Cre1), GSM501364 (Ezh2-Cre2), GSM501365 (Ezh2-Vec1),	Mus	<mark>[4]</mark>
		in Ezh2flox/flox preadipocytes	GSM501366 (Ezh2-Vec2)	musculus	
		infected with retroviruses			
		expressing Cre or vector alone			

BAT: Brown adipose tissue. DM: Diabetes mellitus, IGT: Impaired glucose tolerance, NGT: Normal glucose tolerance. The diagnostic criteria of DM, IGT and NGT are according to Alberti et al. [5].

qRT-PCR primers					
Gene name	Primer sequence (5'-3')				
	F: CTCTCTAGGCTCCCAGATGGA				
mmu-zipzi <i>r</i>	R: AGAACATGCAATCCAGGGGC				
	F: TTCCATGCTGTCATGGGTGA				
mmu-PPARy2	R: AAAGTTGGTGGGCCAAAACG				
mmu Cohna	F: CTCCCAGAGGACCAATGAAA				
ΠΠα-Себра	R: AAGTCTTAGCCGGAGGAAGC				
mmu Cohng	F: CCAAGAAGACGGTGGACAAGC				
mmu-Ceopp	R: CTTGAACAAGTTCCGCAGGGT				
mmu Mate	F: GCGGAGACGATGTGGACTTC				
mmu-wmb	R: ATGCACGGATATCTCCACGG				
mmu Wat10b	F: GCTGACTGACTCGCCCACCG				
minu-wiit iob	R: AAGCACACGGTGTTGGCCGT				
	F: TACCCCTACACTGAGTCCCG				
	R: GGAAAGGAGGGTAGTTGGGC				
mmu Ehf1	F: ATCCAACGGAGTGGAAGCAG				
mmu-Ebh	R: GCCAGGACGAAGTGGAAGAA				
	F: CGGTGGAGATGGACGAGATG				
11111u-ZNF 395	R: GCTCTCCTTCCACAGGTCAC				
mmu 6 actin	F: TGTCCACCTTCCAGCAGATGT				
mmu-p-actin	R: AGCTCAGTAACAGTCCGCCTAGA				
Zfp217 siRNA or miRNA					
name	sense sequence (5'-3')				
Zfp217-Mus-3563	GCUGCAGAAGAGAAGCUAU				
miR-1a-3p	UGGAAUGUAAAGAAGUAUGUAU				
miR-503-5p	UAGCAGCGGGAACAGUACUGCAG				
miR-135a-5p	UAUGGCUUUUUAUUCCUAUGUGA				
miR-19a-3p	UGUGCAAAUCUAUGCAAAACUGA				
miR-19b-3p	UGUGCAAAUCCAUGCAAAACUGA				
miR-26a-5p	UUCAAGUAAUCCAGGAUAGGCU				

Table S2. The sequences of reverse transcriptase-quantitative polymerase chain reaction (qRT-PCR) primers, microRNAs (miRNAs) and small interfering RNAs (siRNAs) used in this study.

name	Primer sequence (5'-3')		
Zfp217-3' UTR (miR-1a-3p)	F: AGCTTT <i>GTTTAAAC</i> GGCGCGCGCGGAGCCCTTGTGCTTCAGTATG		
	R: CCG <i>CTCGAG</i> CGGAAAGCATGTCTACTGACAACT		
Zfp217-3' UTR (miR-503-5p)	F: AGCTTT <i>GTTTAAAC</i> GGCGCGCGGAAAGGTCCCTGGATGCAAGT		
	R: CCGCTCGAGCGGCCAAGCACGCAATTCACACA		
	Mutant-F: TGCATACTTGAGCTAGTATGAAAAG		
	Mutant-R: TGATTTCTTTTCA TACTA GCTCAAG		
Zfp217-3' UTR (miR-135a-5p)	F: AGCTTT <i>GTTTAAAC</i> GGCGCGCGGGGGCGCCCGTTCTTTCTTGCCCCA		
	R: CCG <i>CTCGAG</i> CGGTATGTGACCCCCTCCGGATT		
	Mutant-F: CCACAAGCTGA TAACG ATGTAC		
	Mutant-R: CTTATGTACATCGTTATCAGCT		
Zfp217-3' UTR (miR-19a/b-3p)	F: AGCTTT <i>GTTTAAAC</i> GGCGCGCCGGTTGAGTCTGGGTGAGTTGCT		
	R: CCG <i>CTCGAG</i> CGGACATCTCAACCCAGGTCTCC		
	Mutant-F: CAAAGATAAATGGTACCTGCTCC		
	Mutant-R: AGGAGCAGGTACCATTTATC		
Zfp217-3' UTR (miR-26a-5p)	Wild type primers are as same as miR-503-5p		
	Mutant-F: TTTGCATCAGGTAGCGCTGC		
	Mutant-R: GCAGCGCTACCTGATGCAAA		

Table S3. The sequences of dual-luciferase assay primers used in this study.

Italics represent enzyme loci and bold represents mutation sites.

Table S4. Putative sites predicted in the 5' UTR Zfp217 sequence.

Model name	Score	Relative score	Start	End	Strand	predicted site sequence
Pparg::Rxra	9.369	0.82329080866099	460	474	1	TTAAGGGAAATGTCA
Pparg::Rxra	8.552	0.809986605370543	706	720	1	CCTGGTCAGAGGGTT
Pparg::Rxra	10.370	0.839591307429334	942	956	-1	GTGAGGCAGGGATCA

References

 Park, Y.K.; Wang, L.; Giampietro, A.; Lai, B.; Lee, J.E.; Ge, K. Distinct roles of transcription factors KLF4, Krox20, and peroxisome proliferator-activated receptor γ in adipogenesis. *Mol. Cell. Biol.* 2017, 37, doi:10.1128/MCB.00554-16.

 Nassiri, I.; Lombardo, R.; Lauria, M.; Morine, M.J.; Moyseos, P.; Varma, V.; Nolen, G.T.; Knox, B.; Sloper, D.; Kaput, J.; et al. Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules. *Sci. Rep.* 2016, *6*, 28851.

3. Keller, P.; Gburcik, V.; Petrovic, N.; Gallagher, I.J.; Nedergaard, J.; Cannon, B.; Timmons, J.A. Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity. *BMC Endocr. Disord.* **2011**, *11*, *7*.

4. Wang, L.; Jin, Q.; Lee, J.E.; Su, I.H.; Ge, K. Histone H3K27 methyltransferase Ezh2 represses *Wnt* genes to facilitate adipogenesis. *Proc. Natl. Acad. Sci. USA* **2010**, *107*, 7317–7322.

5. Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a who consultation. *Diabet. Med.* **1998**, *15*, 539–553.