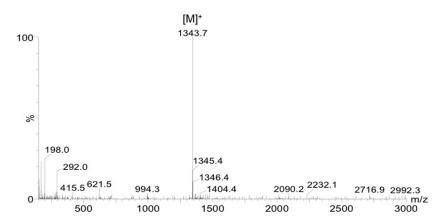
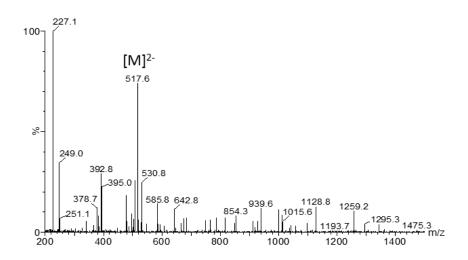
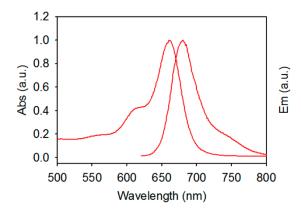
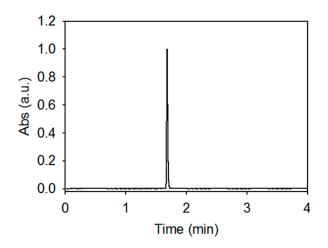

A conjugate of pentamethine cyanine and ¹⁸F as a positron emission tomography/near-infrared fluorescence probe for multimodality tumor imaging


Fei-Fei An, Harikrishna Kommidi, Nandi Chen and Richard Ting


Figure S1. The mass spectrum of Cy5. Calculated for $[M]^+ = (C_{37}H_{47}N_2O_{10}S_2)^+ = 743.3 m/z$, Observed $[M]^+ = 743.3 m/z$.


Figure S2. The mass spectrum of boronate. Calculated for $[M+H]^+$ (C₃₇H₃₁BF₃N₂O₃)⁺= 619.2, Observed $[M]^+$ = 619.3 *m*/*z*.


Figure S3. The mass spectrum of Cy5-B. Calculated for $[M]^+=(C_{74}H_{75}BF_3N_4O_{12}S_2)^+ = 1343.5 m/z$. Observed $[M]^+ = 1343.7 m/z$.

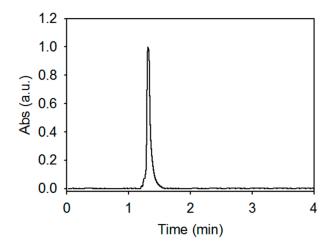

Figure S4. The mass spectrum of Cy5-BF₃. Calculated for [M]⁻= (C₄₈H₅₅BF₆N₄O₁₀S₂)⁻ = 1034.3 *m*/*z*, [M]²⁻ = 517.2 *m*/*z*, Observed [M]²⁻ = 517.6 *m*/*z*.

Figure S5. The absorption spectrum and emission spectrum of Cy5 in DMSO (Ex = 600 nm, Em = 680 nm).

Figure S6. The HPLC profile of Cy5-B monitored at 650 nm wavelength (Reverse phase HPLC were performed on a Waters Acquity H class HPLC/ SQD2 mass spectrometer and a Phenomenex Kinetex $1.7 \mu m C18 100$ Å, 50 cm × 2.1 mm I.D. column (00B-4475-AN), with a 1.5 min, a10-90% H₂O:acetonitrile (ACN) (0.05% TFA) gradient and a flow rate of 0.6 mL/min.

Figure S7. The HPLC profile of 19F-Cy5-BF₃ monitored at 650 nm wavelength (Reverse phase HPLC were performed on a Waters Acquity H class HPLC/ SQD2 mass spectrometer and a Phenomenex Kinetex 1.7µm C18 100Å, 50 cm x 2.1 mm I.D. column (00B-4475-AN), with a 1.5 min, a10-90% H₂O:acetonitrile (ACN) (0.05% TFA) gradient and a flow rate of 0.6 mL/min.

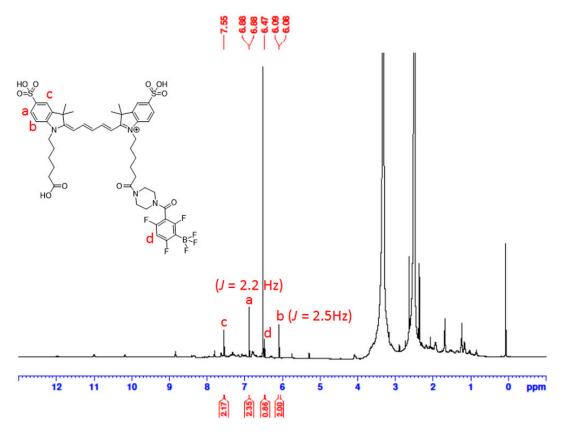


Figure S8. ¹H NMR (500 MHz, d6-DMSO, 21 °C, TMS) for Cy5-BF₃ (F-19).

Procedure for preparing of ¹⁸F-ion water

One will need a glass v-vail (A Thermo Scientific Reacti-Vial #13223 is recommended), 40 psi nitrogen (from a low-pressure nitrogen cylinder), and a 1.2 M HF solution. We recommend working with low volumes of HF (< 200μ L).

In a typical labeling, a 700 μ L volume of [¹⁸F]-fluoride-ion-containing water produced from a 19.2 MeV bombardment of [¹⁸O]-water is flushed from a cyclotron target into a Teflon septa-sealed 5.0mL glass v-vial (Thermo Scientific Reacti-Vial #13223). The vial is transferred to a 100 °C heat block and is flushed with 40 psi N₂ gas through an 18 G inlet. N₂ flow is vented through 16 G tubing and bubbled through a 1 M solution of NaOH to prevent radioactive volatilization. In 15 to 22 min, the solution of [¹⁸F]-fluoride is concentrated to a ~20–30 μ L volume. It is important not to dry the [¹⁸F]-fluoride completely to obtain maximum [¹⁸F]-fluoride recovery.

A 10 μ L volume containing ~ 100 mCi of ¹⁸F-ion is added to 10 μ L of a 1.2 M HF solution to give a 20 μ L HF solution (0.6 M in water) containing 100 mCi of ¹⁸F-ion.

¹⁸F-ion water Reaction with Cy5-B

The prepared ¹⁸F-ion water solution is incubated with equivolume quantities of Cy5-B to generate the ¹⁸F-labeled fluorescent dye. A 1 h incubation at 50 °C is more than sufficient for complete Cy5-B conversion. This time is unoptimized. In the future, this synthesis can be made to proceed more rapidly using higher temperatures and/or a microwave reactor.