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Abstract: Phenylketonuria (PKU) is the most common genetic metabolic disease with a 
well-documented association with autism spectrum disorders. It is characterized by the deficiency 
of the phenylalanine hydroxylase activity, causing plasmatic hyperphenylalaninemia and variable 
neurological and cognitive impairments. Among the potential pathophysiological mechanisms 
implicated in autism spectrum disorders is the excitation/inhibition (E/I) imbalance which might 
result from alterations in excitatory/inhibitory synapse development, synaptic transmission and 
plasticity, downstream signalling pathways, and intrinsic neuronal excitability. Here, we 
investigated functional and molecular alterations in the prefrontal cortex (pFC) of BTBR-Pahenu2 
(ENU2) mice, the animal model of PKU. Our data show higher frequency of inhibitory 
transmissions and significant reduced frequency of excitatory transmissions in the PKU-affected 
mice in comparison to wild type. Moreover, in the pFC of ENU2 mice, we reported higher levels of 
the post-synaptic cell-adhesion proteins neuroligin1 and 2. Altogether, our data point toward an 
imbalance in the E/I neurotransmission favouring inhibition in the pFC of ENU2 mice, along with 
alterations of the molecular components involved in the organization of cortical synapse. In 
addition to being the first evidence of E/I imbalance within cortical areas of a mouse model of PKU, 
our study provides further evidence of E/I imbalance in animal models of pathology associated 
with autism spectrum disorders. 

Keywords: neurotransmission; excitation and inhibition balance; cognitive delay; prefrontal cortex; 
neuroligins 

 

1. Introduction 

Several reports suggest an association between autism and inherited metabolic diseases among 
which phenylketonuria (PKU), suggesting that autism spectrum disorders might represent the end 
result of a dysfunction caused by a metabolic block in the brain [1]. PKU is the prototypical human 
Mendelian disease (OMIM 261600; overall incidence of 1 in 10,000) resulting from impaired activity 
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of phenylalanine hydroxylase (PAH), the enzyme necessary to convert phenylalanine (PHE) to 
tyrosine. This deficiency causes hyperphenylalaninemia (HPA), which is especially harmful for the 
brain during the first years of life, resulting in variable neurological and mental impairments [2–4]. 
Previous evidence from our group demonstrated that the accumulation of PHE in the brain of 
BTBR-Pahenu2 (ENU2) mice impairs protein levels and enzymatic activity of the tryptophan 
hydroxylase, the rate-limiting enzyme responsible for serotonin biosynthesis [5], and that the 
serotonin reduction in the brain causes cortical morphological alterations such as a reduction in the 
dendritic spine density and maturation [6]. Restoring normal levels of brain serotonin in the ENU2 
mice, during the third post-natal week, allowed the recovery of some cognitive functions as well as 
the morphological maturation of pyramidal neuron dendritic spines in the prefrontal cortex (pFC) 
[6]. 

We have investigated functional alterations and molecular rearrangements typically associated 
with neurodevelopmental disorders in an animal model of PKU in order to explore possible 
common molecular mechanisms in comorbidity with autism. Alterations in excitatory/inhibitory 
(E/I) ratio in cortical circuitry have been reported in several animal models for neurodevelopmental 
disorders in association with cognitive delay [7], providing experimental models to define abnormal 
molecular mechanisms and to identify new therapeutic targets. Since synaptic transmission is 
regulated by a plethora of molecules where cell-adhesion molecules are emerging as crucial players 
[8], we have studied the neuroligin/neurexin (NLGN/NRXN) pathway involved in the maturation of 
the inhibitory and excitatory synapses [9]. Moreover, genes directly involved in the regulation of the 
ratio between excitation and inhibition represent risk candidate genes [10]. Copy number variations 
and/or several single point mutations in the NLGN/NRXN synaptic pathway have been detected in 
association to neurodevelopmental disorders [11] including autism spectrum disorders [12–17]. 

Here we investigate, for the first time, the functional and molecular features underlying the 
morphological and biochemical phenotype reported in the pFC of ENU2 mice, the genetic murine 
model of the most common metabolic inborn error. Our data support the hypothesis that in PKU, 
unknown mechanisms linked to PHE accumulation lead to a E/I imbalance shifting toward 
inhibition, accompanied by altered expression levels of specific members of the synaptic family of 
the Neuroligin proteins, classically linked to autism. 

2. Results 

2.1. Analysis of Inhibitory and Excitatory Transmission in Layer II/III of ENU2 pFC 

ENU2-mutant mice exhibit abnormal behaviors that mimic the intellectual disability symptoms 
observed in human PKU untreated patients. In order to assess whether immature spine morphology 
and cognitive impairments described for PKU in the ENU2 mice [6] reflect functionally a different 
cortical activity in comparison to parental controls, we have measured the spontaneous inhibitory 
postsynaptic currents (sIPSC) and spontaneous excitatory postsynaptic currents (sEPSC) from layer 
II/III of brain pFC by using whole-cell patch clamp recordings. We have analyzed synaptic 
transmission by assessing amplitude and frequency of action potential dependent inhibitory and 
excitatory spontaneous events from slices obtained by ENU2 and relative control mice at postnatal 
day 60 (PND 60). We have measured cumulative probability of amplitude and inter-event interval of 
frequency for sIPSC and sEPSC. As shown in Figure 1a, we have found higher frequency of sIPSC in 
ENU2 mice compared to wild-type (WT) (K–S test p < 0.001, t-test p = 0.0412 ENU2 n = 8 vs. WT n = 7, 
Figure 1A) and significant reduced frequency of sEPSC in ENU2 mice compared to WT (K–S test p = 
0.0091, t-test p = 0.0433 ENU2 n = 7 vs. WT n = 6, Figure 1B). Consistently, the E/I ratio was also 
significantly reduced in ENU2 mice compared to WT (t-test p = 0.0306, ENU2 n = 6 vs. WT n = 6 
Figure 1C). 
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Figure 1. BTBR-Pahenu2 (ENU2) mice show altered excitatory/inhibitory (E/I) balance. (A) Pooled 
cumulative distributions of spontaneous inhibitory post synaptic currents (sIPSCs) amplitude (left; 
bin size 10 pA) and inter-event interval (right; bin size 50 ms) recorded from neurons of wild type 
(WT, n = 8) and ENU2 (n = 7) mice. Representative traces are shown on top. (B) Pooled cumulative 
distributions of spontaneous excitatory post synaptic currents (sEPSCs) amplitude (left) and 
inter-event interval (right) recorded from neurons of WT (n = 7) and ENU2 (n = 6) mice. Histograms 
are averages (mean ± S.E.M) of the corresponding median values of sEPSCs frequency for the same 
neurons. Representative traces are shown on top. (C) Histograms are averages (mean ± S.E.M) of E/I 
ratio recorded from WT (n = 6) and ENU2 (n = 6). Representative traces are shown on the left. (* p < 
0.05). 

The reported electrophysiological alterations resemble those typically associated with other 
neurodevelopmental disorders [7], such as autism, where the excitatory and inhibitory balance is 
functionally impaired and might account for the cognitive phenotype. 
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2.2. Protein Levels of Synaptic Cell Adhesion Molecules in the pFC of ENU2 Mice 

Synaptic cell adhesion molecules operate in concert with neurotransmitter receptors to ensure 
proper function of synaptic circuits [18]. The NLGN/NRXN pathway is currently one of the most 
studied trans-synaptic codes acting in the organization of the excitatory and inhibitory synapses. 
The NLGN family is made of four members (1, 2, 3, 4), encoded by different genes, with NLGN1 
being specifically localized to excitatory postsynaptic densities while NLGN2 is found in inhibitory 
postsynaptic specializations and NLGN3 is present at both [19]. NLGNs play a crucial role in the 
recruitment of neurotransmitter receptors at the synapse and in the control of the E/I balance in the 
brain [20]. 

We have initially quantified the levels of all the NLGNs by western blot using a PAN-antibody. 
Analysis of NLGNs levels revealed an increasing trend in the ENU2 mice that however did not 
present significant results in comparison to WT mice (t-test p = 0.2162, ENU2 n = 8 vs. WT n = 7 
Figure 2A). We have then investigated the levels of each family member by using antibodies specific 
for each of the NLGNs forms. We found that NLGN1 (t-test p = 0.0142, ENU2 n = 14 vs. WT n = 18 
Figure 2B) and NLGN2 (t-test p = 0.0266, ENU2 n = 14 vs. WT n = 13, Figure 2C) resulted in increased 
ENU2 in comparison to WT mice. Non-significant differences were observed for NLGN3 between 
ENU2 and WT mice (t-test p = 0.543, ENU2 n = 14 vs. WT n = 17 Figure 2D). These observations 
suggest that the functional differences in the ENU2 pFC reflect a different regulation of molecular 
synaptic components. 

 

Figure 2. Neuroligins (NLGNs) levels in the pFC of ENU2 mice. Protein levels were quantified by 
densitometry after western blot analysis for total NLGNs and for NLGN1, 2, and 3 family members. 
Values were normalized to GAPDH loading control and are represented as a box plot of their 
distribution (min/max e median). (A) NLGNs (WT n = 7, ENU2 n = 8, p = 0.2162); (B) NLGN1 (WT n = 
18, ENU2 n = 13, p = 0.0142); (C) NLGN2 (WT n = 13, ENU2 n = 14, p = 0.0266); and (D) NLGN3 (WT n 
= 17, ENU2 n = 14, p = 0.5430). Statistical analysis compared ENU2 values versus WT (* p < 0.05). 
Representative images of western blot analysis are shown. Molecular masses are indicated on the 
blots in kDa. 
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3. Discussion 

Dysregulation of the excitation/inhibition equilibrium has been postulated to represent a 
hallmark of neuropsychiatric disorders, including autism and some forms of mental retardation. 
Several mouse models reproducing behavioral phenotypes common to neurodevelopmental 
syndromes show alterations of the E/I balance. In particular, a mouse model of Rett syndrome 
showed a shift favoring inhibition in the pFC [21]. Increased inhibition was observed in the 
somatosensory cortex of mice expressing the R451C autism-related mutation in NLGN3, and this 
was associated with impairments in social interaction [22]. In general, while a decrease in inhibition 
is currently associated with autism spectrum disorders, an excess of inhibition has been described 
to occur in mental retardation syndromes such as Down [23–25] and Rett syndromes [21]. 
Interestingly, by using an optogenetic approach to study real-time effects of elevation of cellular E/I 
balance in vivo, it was shown that elevated E/I balance resulted in impairments on social behavior 
that are specific for pFC [26]. 

Although compelling evidence points toward a link between dysregulation of E/I ratio and 
behavioral phenotypes resembling those observed in neuropsychiatric disorders, the molecular 
machinery involved in the regulation of this balance remains unclear. 

PKU mice, created by chemically induced genetic mutation, display a phenotype that closely 
resembles untreated human PKU, characterized by reduced PAH activity, PHE plasma levels 10–20 
times greater than those of healthy littermates, impaired cerebral protein synthesis, neurochemical 
reductions in different brain regions, particularly in serotonergic metabolism in prefrontal cortical 
areas, reduced functional and morphological synaptic plasticity, and cognitive and other behavioral 
abnormalities [27]. 

We have postulated that cognitive impairments might be linked to E/I imbalance and found 
that there was a resultantly higher inhibition and reduced excitation in the layer II/III of ENU2 pFC, 
suggesting an overall reduced activity in cortical circuits as observed in other animal models of 
neurodevelopmental disorders where a shift in the balance between excitation and 
inhibition—favoring inhibition—has been reported [7]. 

In recent years, several lines of evidence suggest a possible link between the levels of 
neuroligins and neurotransmission dysfunctions in association to autism spectrum disorders [28]. 
Gain and loss of function studies in vitro and in vivo have provided experimental support to the 
hypothesis that the regulation of the levels of the neuroligin proteins might correlate with alteration 
of the E/I balance. Transgenic mice where NLGN2 expression has been enhanced showed higher 
frequency of mIPSC in the pFC and an overall reduction in the E/I ratio [29]. NLGN2 function in 
modulating inhibitory synaptic currents was further highlighted by the selective deletion of NLGN2 
in the medial pFC in a conditional knock-out mouse strain. This resulted in chronic changes in E/I 
balance characterized by a reduction in frequency and amplitude of inhibitory sIPSCs and by 
cognitive behavioral changes [30]. This has led us to investigate whether the E/I unbalance in the 
pFC of ENU2 mice might correlate with altered levels of the NLGNs family members. Indeed, in 
ENU2 mice we have found different levels of neuroligin proteins in comparison to the parental 
healthy mice. In particular, our data show unchanged levels for NLGN3 along with higher protein 
levels for NLGN2 and NLGN1. Enhanced NLGN2 protein levels in the pFC of ENU2 mice correlate 
with the increased inhibitory transmission observed in the layer II/III and strengthen the hypothesis 
of a shift in the E/I balance favoring inhibition in the ENU2 mice. In fact, NLGN2 is found in 
inhibitory postsynaptic specializations [31] where it plays a specific role in the regulation of 
inhibitory synaptic terminals and in the maintenance of E/I balance in the brain [32]. NLGN2 
interacts with collybistin and gephyrin in order to recruit and anchoring GABAA receptors to the 
post-synaptic membrane [33], favoring the maturation of the inhibitory synapses [34]. At this stage, 
we have not investigated whether the enhancement of sIPSC is due to an increase of the number of 
inhibitory synapses. However, the increased levels of NLGN2 cannot explain the decrease in the 
excitatory neurotransmission in ENU2 mice. Recently, it has been shown that selectively deleting 
NLGN2 from the II/III layer of pFC leads to a decrease in spontaneous mIPSC without affecting 
mEPSC [30].  
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The prominent deficit of serotonin in pFC of PKU mice is well documented [5,35] and also a 
crucial role is played by serotonin in regulating maturational events such as spine morphology 
through the activation of the serotonin 2A receptor (5HT2A) receptor, expressed in excitatory 
synapses [36]. Our previous work showed that cortical spine maturation, and consequently 
cognitive deficits, are affected in ENU2 mice through a serotonin-dependent pathway [6]. Thus, the 
reduced serotonin release in ENU2 [5] might result in a lower excitatory activity 5HT2A-dependent. 
This would agree with the data we show in regard to the lower rates of spontaneous EPSCs in the 
II/III layers of pFC. Our data show a statistically significant increase for NLGN1 in ENU2 mice, 
classically localized to excitatory synapses [34]. This increase does not agree with the reduced 
excitatory transmissions found in the layer II/III of the pFC in ENU2 mice. This might be due to the 
western blot analysis being performed from punchings of the pFC, comprising all of the cortical 
layers, in contrast to the electrophysiological recordings restricted to layer II/III. 

The shift in the ratio from excitation to inhibition is however differentially regulated by the 
association of the NLGNs with elements critical for synapse formation such as postsynaptic 
scaffolding proteins, PSD-95 (at the excitatory synapses), and gephryn (at the inhibitory synapses) 
and to the presynaptic proteins NRXNs [37–39]. Therefore, a further analysis of these components 
will help clarify the mechanism. 

The data presented shows the first evidence of E/I cortical imbalance in a genetic murine model 
of inherited metabolic disease, PKU. The unbalance toward inhibitory transmission in the pFC of 
ENU2 mice might impact on the proper development of brain circuits involved in cognitive 
function. The cascade of events that lead from high blood PHE levels to the E/I cortical imbalance in 
PKU however is still not understood. 

Finally, investigating the molecular and physiological mechanisms underlying cognitive 
disability in PKU mice can provide insights for autism spectrum disorders, as well as for all 
syndromes characterized by similar pathogenic mechanisms. 

4. Materials and Methods 

4.1. Animal Protocols and Housing 

All experiments were approved by the ethics committee of the Italian Ministry of Health and 
conducted under license/approval ID #: 10/2011-B, according with Italian regulations on the use of 
animals for research (legislation DL 116/92) and the Council Directive 2010/63EU of the European 
Parliament and the Council of 22 September 2010 on the protection of animals used for scientific 
purposes. Homozygote (−/−) PahEnu2 (ENU2) and Homozygote (+/+) PahEnu2 (WT) BTBR mice were 
issued from heterozygous mating. Genetic characterization was performed on DNA prepared from 
tail tissue using the Easy DNA Kit (Invitrogen, Carlsbad, CA, USA). The ethylnitrosourea (ENU2) 
mutation was detected after PCR amplification of exon 7 of the Pah gene and digestion with BsmAI 
restriction enzyme (NEB, USA) as previously described [40]. At PND28, animals (sex matched) 
were housed 2–4 per standard breeding cage with food and water ad libitum on a 12:12 h dark: 
light cycle (light on 07.00 a.m.–07.00 p.m. h). 

Brain tissue was collected at PND80 from male ENU2 and WT mice. All animals were killed 
and the brain was removed and stored depending on the experimental procedures. Every effort 
was made to alleviate animal discomfort and cervical dislocation was applied as the appropriate 
method of sacrifice. 

4.2. Slice Preparation for Electrophysiological Recordings 

The brain was rapidly removed from the skull and coronal slices (250 μm thick) were cut with a 
vibratome (VT 1200S, Leica) in cold (0 °C) artificial cerebrospinal fluid (aCSF) containing (in mM): 
NaCl 124; KCl 3; MgSO4 1; CaCl2 2; NaH2PO4 1.25; NaHCO3 26; glucose 10; saturated with 95% O2, 
5% CO2 (pH 7.4), and left to recover for 1 h in aCSF at room temperature. 
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4.3. Whole-Cell Patch Clamp Recordings 

Individual slices were placed in a recording chamber, on the stage of an upright microscope 
(Zeiss, Munich, Germany) and submerged in a continuously flowing (3 mL/min) solution at 30°C (±2 
°C). Individual neurons were visualized through a 40× water-immersion objective (Olympus, Tokyo, 
Japan) connected to infrared video microscopy (Hamamatsu, Hamamatsu City, Japan). Borosilicate 
glass electrodes (5–7 MΩ), pulled with a PP 83 Narishige puller, were filled with a solution 
containing the following (in mM): CsCH3SO3 115; CsCl 10; KCl 10; CaCl2 0.45; EGTA 1; Hepes 10; 
QX-314 5; Na3-GTP 0.3; Mg-ATP 4.0; pH adjusted to 7.3 with CsOH. 

Whole cell patch-clamp recordings have been performed from layer II/III pyramidal neurons of 
pFC brain slice of WT and ENU2 mice. To isolate sEPSCs and sIPSCs from the same neurons we 
recorded in voltage clamp mode while maintaining the membrane potential either at the reversal 
potential for GABA receptor for EPSCs (−70 mV) or at the reversal potential for ionotropic glutamate 
receptors for IPSCs (+10 mV). To record evoked responses elicited by monopolar stimulating 
electrodes placed in layer I of pFC, EPSCs and IPSCs were monitored sequentially in the presence of 
50 μm APV at postsynaptic holding voltages of −60 and 0 mV, respectively. The E/I ratio is 
computed as the ratio of excitatory to inhibitory charges, obtained by the integration of the 
measured currents from the network response triggered by extracellular stimulations [41]. 
Kolmogorov–Smirnov test (K–S test) and unpaired Student’s t-test (t-test) have been applied as 
statistical test with α value set at 0.05, n reflected the number of neurons recorded. 

4.4. SDS PAGE and Western Blot 

For protein analysis, frozen brains were removed and dissected to obtain punches of the pFC 
from brain slices (coronal sections) not thicker than 300 μm. Stainless steel tubes of 1.0 mm inside 
diameter were used and the coordinates were measured as previously reported [42].  

Samples derived from pFC punching were homogenized by sonication using RIPA buffer (Life 
Technologies, Monza, Italy) to extract total proteins and total protein concentration was determined 
by Bradford assay (Biorad, Rome, Italy). Around 70 micrograms of total proteins were loaded for 
each sample. Immunoblotting used previously optimized standard techniques [43] including 10% 
w/v SDS-PAGE (Biorad, Rome, Italy) and immobilon transfer membranes (Millipore, Bedford, MA, 
USA).  

Detection of NLGN proteins employed commercial primary antibodies from Synaptic Systems, 
used at the 1:1000 dilution: anti-NLGN pan mouse monoclonal antibody (clone 4F9, Cat. No. 
129-011); anti-NLGN1 mouse monoclonal (Cat. No. 129-111); anti-NLGN2 polyclonal rabbit (Cat. 
No. 129-203); anti-NLGN3 polyclonal rabbit (Cat. No. 129-113). The anti-GAPDH polyclonal rabbit 
antibody (abcam ab37168) was used as a loading control. The anti-mouse-HRP and anti-rabbit-HRP 
(Sigma-Aldrich, Milan, Italy) secondary antibodies were diluted 1:10,000. The HRP signal was 
developed using the LiteAblot PLUS and TURBO extra sensitive chemiluminescent substrates 
(Euroclone, Milan, Italy) and exposed to autoradiographic films (Santa Cruz Biotechnology, through 
Aurogene, Rome, Italy) or revealed by using the ChemiDoc™ MP System (Biorad, Rome, Italy). 
Densitometry was performed using the Image-J software (version 1.43, NIH, Bethesda, MD, USA). 
Punching samples were derived from 7 to 18 animals per group and unpaired Student’s t-test (t-test) 
statistical analysis was used to compare values from ENU2 and WT mice. 
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Abbreviations 

sEPSC spontaneous excitatory postsynaptic potential 
sIPSC spontaneous inhibitory postsynaptic potential 
NLGNs neuroligins 
HRP horseradish peroxidase 
SDS sodium dodecyl sulfate 
PAGE polyacrylamide gel electrophoresis 
pFC prefrontal cortex 
LTP long term potentiation 
LTD long term depression 
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