
 International Journal of 

Molecular Sciences

Review

Analysis of DNA Methylation Status in Bodily Fluids
for Early Detection of Cancer

Keigo Yokoi, Keishi Yamashita and Masahiko Watanabe *

Department of Surgery, Kitasato University School of Medicine, Kitasato, 1-15-1, Minami-ku, Sagamihara,
Kanagawa 252-0374, Japan; butterdog@woody.ocn.ne.jp (K.Yo.); keishi23@med.kitasato-u.ac.jp (K.Ya.)
* Correspondence: gekaw@med.kitasato-u.ac.jp; Tel.: +81-42-778-8111; Fax: +81-42-778-9556

Academic Editor: William Chi-shing Cho
Received: 22 January 2017; Accepted: 26 March 2017; Published: 30 March 2017

Abstract: Epigenetic alterations by promoter DNA hypermethylation and gene silencing in cancer
have been reported over the past few decades. DNA hypermethylation has great potential to serve
as a screening marker, a prognostic marker, and a therapeutic surveillance marker in cancer clinics.
Some bodily fluids, such as stool or urine, were obtainable without any invasion to the body. Thus,
such bodily fluids were suitable samples for high throughput cancer surveillance. Analyzing the
methylation status of bodily fluids around the cancer tissue may, additionally, lead to the early
detection of cancer, because several genes in cancer tissues are reported to be cancer-specifically
hypermethylated. Recently, several studies that analyzed the methylation status of DNA in bodily
fluids were conducted, and some of the results have potential for future development and further
clinical use. In fact, a stool DNA test was approved by the U.S. Food and Drug Administration (FDA)
for the screening of colorectal cancer. Another promising methylation marker has been identified in
various bodily fluids for several cancers. We reviewed studies that analyzed DNA methylation in
bodily fluids as a less-invasive cancer screening.
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1. Introduction

In prior decades, many studies have reported epigenetic aberrations in cancer. DNA hypermethylation
of the promoter region of specific genes are a major epigenetic change, where some of the cancer-specific
methylation genes are tumor suppressor genes. They could be used as molecular markers for the
early detection of cancer, prognostic markers, and as therapeutic surveillance markers in cancer
therapy [1–5].

Several methods for cancer screening, such as fecal occult blood test (FOBT) in colorectal cancer
(CRC), prostate specific antigens (PSA) in prostate cancer, and urine cytology in bladder cancer,
are applied clinically. However, most of these methods need improvements due to insufficient
sensitivity or specificity. For the purpose of improving these weak points, more invasive methods,
such as a colonoscopy or cystoscopy, are used; however, they are not acceptable for high throughput
screening due to their invasiveness, technical difficulties, and expensive costs. More sensitive and
specific, as well as less invasive methods, with sufficient cost–performance effectiveness, are highly
expected to detect cancer cells at an early stage.

In recent years, there has been great progress in the analysis of circulating tumor DNA (ctDNA) in
blood. Several studies have shown that the blood of patients with cancer contains cell-free DNA, which
shows cancer-related molecular changes [6–8]. The origin of ctDNA was not only from circulating
tumor cells. The amount of ctDNA was much larger than expected if its origins were lyses from
circulating tumor cell [9]. Moreover, Bettegowda et al. [10] reported that ctDNA was often present in
patients without detectable circulating tumor cells. These facts suggest another origin of ctDNA. Today,
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many studies suggest that the main origin of ctDNA is apoptotic and necrotic tumor cells [9,11–13].
Several studies have shown the usability of ctDNA, not only for cancer detection, but also for tumor
monitoring, prognosis prediction, and early detection of recurrence [8,10,14–17]. From this point of
view, ctDNA analysis demonstrates its usability in dynamic monitoring procedures because ctDNA
can be repeatedly obtained, even after the primary tumor has been resected. As the first screening
tool for cancer detection, ctDNA analysis is not fully appropriate; the method required to detect
cancer-derived DNA alterations from ctDNA in serum or plasma uses highly technique-intensive tools,
such as digital polymerase chain reaction (PCR) or next generation sequencers, in which the detection
level is up to 1/100,000, while prevalent tools, such as TaqMan PCR, can reach detection levels of
1/1000 [3,18]. Indeed, such advanced methods cannot be performed in many laboratories around the
world at present. Furthermore, as many excellent review articles describing ctDNA in blood have
already been made available [11,19,20], we will not include them in this review.

There have been several studies, using different methods, which reported cancer specific DNA
methylation in bodily fluids around the primary tumor (stool of CRC patients, urine of bladder
cancer patients, etc.). Some of the results were very promising and have been approved in standard
clinics. Detection of DNA methylation in bodily fluids using classical methods such as quantitative
methylation specific PCR, has remained a promising theme. In this article, we reviewed studies
that analyzed DNA methylation in less-invasively-obtainable bodily fluids, such as saliva, sputum,
stool, and urine; however, we did not include blood. All studies we reviewed focus on promoter
hypermethylation, but not the methylation of other genomic regions.

2. Methods Used in Methylation Analyses

2.1. Sodium Bisulfite Treatment

Most of the studies we reviewed used PCR-based techniques for methylation analyses. Methylated
or unmethylated cytosines were not distinguished by DNA polymerase, thus, the information on
epigenetic changes in DNA is lost through the PCR process. Therefore, some modification should be
done to distinguish methylated or unmethylated cytosines. By using the bisulfite treatment technique,
unmethylated cytosines were converted to uracil, while the methylated cytosines remained unchanged
(Figure 1a). If this technique is performed under appropriate conditions, about 99% of unmethylated
cytosines are expected to be converted to uracil [21,22]. During subsequent PCR, uracil residues are
replaced to thymine residues. Whether the original cytosines were methylated or unmethylated could
be analyzed after bisulfite treatment using each of the PCR-based techniques.

2.2. Bisulfite Sequence Analyses

Sequence analyses of bisulfite-treated DNA are the simplest method to analyze the methylation
status of individual CpG sites. This method was first performed by Frommer et al. [23]. Bisulfite-treated
DNA samples are amplified with PCR, and the PCR products are sequenced directly, or sequenced
after cloning procedures. Direct sequence analyses of PCR products can determine the average figures
of individual CpG sites, while cloned sequence analyses can obtain information from each specific
molecule, regarding whether a CpG site is methylated or unmethylated (Figure 1b). For these reasons,
direct sequence analyses are performed to screen the major propensity of the DNA methylation status,
and cloned sequence analyses are performed for the sake an accurate confirmation of methylation
status, even down to single molecules. Quantitative analyses cannot be done via direct sequence
analyses, however, and cloned sequence analyses require too much time and money. Thus, for cancer
screening, bisulfite sequence analysis is not an appropriate method.

2.3. Pyrosequencing

Pyrosequencing analysis is a broadly-used method for quantitative methylation analysis.
Bisulfite-treated DNA was amplified by PCR and analyzed using a pyrosequencer. Using this method,
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each CpG site was quantitatively analyzed for its methylation status (Figure 1c). This method, however,
can only analyze a small range of CpG sites, and also requires a cloning procedure. Furthermore,
its throughput is lower than the methylation-specific PCR method, and, thus, is not fully appropriate
for cancer screening.
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Figure 1. (a) A schema of bisulfite treatment of the sample DNA. Unmethylated cytosines were
converted to uracil; (b) The difference between direct sequence and cloned sequence analyses. Average
information of methylation status of each CpG site could be obtained by direct sequence and exact
information of each single molecule about each CpG site could be obtained by cloned sequence analysis;
(c) A schema of pyrosequence analysis. The ratio of methylated molecules could be analyzed using
pyrosequence analysis.

2.4. Methylation-Specific Polymerase Chain Reaction (PCR)

Methylation-specific PCR (MSP) is the most common method in early studies of methylation
analyses. MSP was first reported in 1996 by Herman et al. [24]. This method requires U-primer
(primes designed to recognize unmethylated CpGs) and M-primer (primers designed to recognize
methylated CpGs) (Figure 2a). M-primers contain several CpG sites (usually one to three in each primer
sequence) and, thus, a high specificity for methylation is achieved. Although these are not quantitative
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methods, high throughput qualitative analyses can be done with a higher sensitivity. Herman et al. [24]
developed this method and they reported that MSP could detect methylated templates with a sensitivity
of 0.1% in a background of unmethylated templates. However, this conventional MSP has the problem
of relatively-frequent, false positive results, especially when performed using a large numbers of PCR
cycles [21].
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Figure 2. (a) A schema of methylation specific PCR. U-primer and M-primer was desigend for each
sequence. U, Unmethylated; M, Methylated; (b) A schema of quantitative methylation specific PCR.
A fluorescent dye and a quencher labelled hybridization probe was desigend between the 2 primers.
Fluorescent dye emits its fluorescence when the DNA polymerase cleaved the fluorescent dye from the
probe. F, Fluorescent dye; Q, Quencher; Poly, DNA Polymerase.

2.5. Quantitative Methylation Specific PCR (qMSP)

In the recent studies we reviewed, most of the studies used qMSP as a method of methylation
analysis; thus, this method could be called the “gold standard”. Among the quantitative methods,
MethyLight, which uses a TaqMan hybridization probe in addition to conventional MSP, is the most
common qMSP technique [25]. With the MethyLight technology, sequence discrimination can be done
by designing the primers and probe (which can be referred to as Southern hybridization-containing
PCR, to further increase its specificity compared to conventional PCR) to contain CpG sites of interest
(Figure 2b). The M-primer and U-primer are used as forward and reverse primers, respectively;
M-probes (probes designed to recognize methylated CpGs) and U-probes (probes designed to recognize
unmethylated CpGs) are then designed. Theoretically, the combination of these primers and probes
will design eight sequence variants (2 × 2 × 2) within one sequence. Significant methylation
information can be obtained by analyzing, both, fully methylated and fully unmethylated sequences.
Quantification of methylation status is calculated from the ratio between the values of these two
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sequences (fully methylated and unmethylated). Most of the studies reviewed that performed qMSP
used a combination of fully methylated sequences (M-primer and M-probe). Quantification can also
be done by calculating the ratio between methylated sequences and reference genes (β-actin etc.).
With this technique, MSP becomes more specific and no more electrophoresis is required. Furthermore,
with the quantitative analysis of methylation status using qMSP, we can select any sensitivity desired
in cancer screening.

2.6. Methyl BEAMing

Diel et al. [8] reported on a sensitive assay, called BEAMing, for the detection of mutated ctDNA.
The name “BEAMing” was derived from its principal components: Beads, emulsion, amplification,
and magnetics (Figure 3). Methyl BEAMing is a modified technique of BEAMing, used for methylation
analyses. The PCR primers are designed to amplify methylated and unmethylated templates. PCR
amplification of individual DNA molecules takes place within aqueous nanocompartments, suspended
in a continuous oil phase. Each aqueous nanocompartment contains the DNA polymerase, template
DNA, primers, and beads. When the PCR reaction occurs in each of the compartments, the PCR product
binds to the bead so that each bead ends up with thousands of PCR products. After PCR, the beads
are collected by breaking the emulsion and the fluorescent probe, which hybridizes specifically to
either methylated- or unmethylated-derived sequences on the beads. Li et al. [26] used cyanine dye 5
(Cy5)-labeled probes for methylated sequences, and fluorescein isothiocyanate (FITC)-labeled probes
for unmethylated sequences. Beads are analyzed with a flow cytometer.
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Figure 3. A schema of Methyl-BEAMing. Template DNA were amplified in water-in-oil emulsion
by digital PCR. Methylation status was analyzed by a flow cytometer after methylation-specific
probe hybridization.

3. Use of Bodily Fluids for Cancer Detection

3.1. Saliva

Methylation status of salivary DNA is performed for early detection of head and neck squamous
cell carcinoma (HNSCC). Several genes have been analyzed for their promoter hypermethylation.
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Among the genes, EDNRB was the most focused gene for its diagnostic power; however, the specificity
was lower than expected.

Saliva is a bodily fluid that can be easily and non-invasively obtained without difficult processes.
Saliva has been used for early detection of HNSCCs (Table 1 and Table S1) [27–34]. All reports we
reviewed used salivary DNA obtained from a salivary wash (an amount from 10 to 25 mL). A study of
the detection of HNSCC using salivary DNA methylation was first reported by Rosas et al. [27] in 2001.
Saliva was collected from 30 HNSCC patients and another 30 healthy controls. The methylation status
of p16, MGMT, and DAPK genes were analyzed using MSP. At least one gene was hypermethylated
in 56.0% of the tumor tissues and 36.6% of the saliva of HNSCC patients. In sixty-five percent of the
patients whose tumor tissues were hypermethylated, hypermethylation could be successfully detected
in their salivary DNA. In contrast, only one case was hypermethylated in healthy controls. As a result,
the sensitivity and specificity of the study was 36.6% and 96.6%, respectively. Righini et al. [28]
performed similar analyses, but added another three genes (TIMP3, CDH1, RASSF1A). The sensitivity
and specificity of the study were 78% and 100%, respectively. Adding the candidate genes of
hypermethylation, they could improve the sensitivity of the study. Carvalho et al. [34] analyzed
several gene panels of which the sensitivity and specificity were 22–35% and 90–97%, respectively,
by the combination of 13 genes. The association with hypermethylation of EDNRB in saliva and
HNSCC was analyzed in several studies [29,30,33]. Demokan et al. [30] analyzed hypermethylation
of the EDNRB gene in HNSCC tissues and saliva. Tumor-specific hypermethylation of EDNRB was
reported in the study, and the saliva from patients with HNSCC showed frequent hypermethylation.
EDNRB hypermethylation of saliva was used for the detection of HNSCC with a sensitivity of 67.6%
and a specificity of 93.2%. Comparing the other genes reported, EDNRB shows a higher sensitivity
and specificity for detecting HNSCC. However, the prospective study was conducted by the same
group, and the specificity was lower than expected (51%).

3.2. Sputum

The methylation status of sputum was analyzed for the detection of lung cancer. Hypermethylation
of RASSF1A has been analyzed, from early studies to recent studies. Most of the studies containing
the RASSF1A gene among the analyzed genes resulted in good sensitivity and specificity; thus,
hypermethylation of the RASSF1A gene might be a promising biomarker for lung cancer detection.

Sputum is broadly used for the detection of lung cancer. Lung cancer is the leading cause of
cancer deaths in the world. According to the National Comprehensive Cancer Network (NCCN)
guidelines, the first method used for the screening of lung cancer for high risk cohorts is a baseline
low-dose computed tomography (CT) [35]. Classically, cytology of sputum has been performed for the
purpose of lung cancer diagnosis. The use of sputum is noninvasive and inexpensive compared to a
CT scan; however, the sensitivity and specificity of the diagnosis of lung cancer is reported to be 66%
and 99% [36], respectively.

In the past few decades, molecular approaches to detect lung cancer, using sputum, have been
reported (Table 2 and Table S2) [37–50]. Honorio et al. [38] analyzed promoter hypermethylation of the
RASSF1A gene in sputum in 2003. The sensitivity was 50% (4/8) for small cell lung cancer (SCLC) and
21% (5/24) for non-small cell lung cancer (NSCLC). Belinsky et al. [43] analyzed hypermethylation of
the p16, MGMT, RASSF1A, DAPK, HCAD, PAX5α, PAX5β, and GATA5 genes in sputum and serum
using MSP. In their study, they showed that the sensitivity of sputum for the detection of lung cancer
was higher than that of serum. The positive predictive value increased to 86% with a panel of the
top four genes (p16, DAPK, PAX5β, and GATA5) in sputum. Shivapurkar et al. [42] also showed that
a combination of several genes could increase the sensitivity. They analyzed four genes (3-OST-2,
RASSF1A, p16, and APC) according to hypermethylation in sputum. The sensitivity to detecting lung
cancer in each gene was 31%, 38%, 23%, and 23%, respectively; however, the sensitivity increased
to 54% and 62% with a specificity of 100% by the combination of 3-OST-2 and RASSF1A or all of
four genes. In recent years, Hubers et al. [47] have produced several reports regarding sputum
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hypermethylation for lung cancer diagnosis; their first report was published in 2014 [48]. In 2014,
they analyzed the hypermethylation of three genes (RASSF1A, APC, and cytoglobin) in relatively large
cohorts. Among three genes, RASSF1A showed the best results to discriminate lung cancer cases
from control cases. Its sensitivity and specificity, in both sets, were 41–52% and 94–96%, respectively.
Considering that these results were derived from just one gene, RASSF1A might have great potential
as a diagnostic biomarker. Furthermore, Hubers et al. [49] validated their results in an independent
set with the addition of some genes. In that study, RASSF1A, APC, cytoglobin, 3OST2, PRDM14,
FA19A4, and PHACTR3 were analyzed using qMSP. The RASSF1A gene, again, showed the best
results of sensitivity and specificity among the seven genes (sensitivity of 26.5–42.5%, specificity of
88.3%–96.5%). In the most recent reports by Hulbert et al. [50] another set of six genes (SOX17, TAC1,
HOXA7, CDO1, HOA9, and ZFP42) was analyzed by using a new extraction method for DNA called
methylation-on-beads (MOB), as they thought that a reduction of sensitivity to methylation detection
might occur due to technical limitations. Results of the study were surprising, with a sensitivity and
specificity in the genes that showed the best results: 86% and 75% (TAC1), 63% and 92% (HOXA7),
and 84% and 88% (SOX17). The results of these three genes were comparable to that of RASSF1A.

3.3. Stool

Methylation analysis in CRC detection has been developed, and the fecal occult blood test
demonstrates excellent performance in CRC screening. The fecal DNA test was improved and its
ability to be used for cancer screening was compared to the fecal immunochemical test (FIT) in a large
cohort; its sensitivity was superior to that of FIT.

Stool has already been widely used for CRC detection in the fecal occult blood test (FOBT).
FOBT can be divided into two types: Guaiac FOBT and FIT. Guaiac FOBT has been used for CRC
screening since the 1970s, and its usability for reduction in CRC mortality has been proven by several
studies [51–53]. The sensitivity and specificity of the test is reported to be 31–63% and 92–96% [54,55],
respectively. Guaiac FOBT (gFOBT), however, does not positively react specifically to human blood,
and so dietary restrictions are necessary for this test. Moreover, gFOBT requires three independent
stool samples. On the other hand, FIT detects human hemoglobin using immunological assays. It does
not require dietary restrictions and needs a single sample of stool. The sensitivity and specificity of FIT
were reported in a recent meta-analysis to be 79% and 94% [56], respectively. Compared to gFOBT,
FIT has been performed in several studies, all of which concluded that FIT has a higher sensitivity in
detecting colorectal neoplasia [55,57,58].

On the other hand, several of studies reported fecal DNA methylation for the early detection
of CRC or adenoma (Table 3 and Table S3) [54,59–74]. In 2004, Müller et al. [59] analyzed the
hypermethylation of several genes and concluded that hypermethylation of the SFRP2 gene in stool
samples can detect CRC with a sensitivity and specificity of 77–90% and 77%, respectively. While the
SFRP2 gene showed excellent sensitivity to detect CRC, its specificity was poor. Lenhard et al. [61]
reported that hypermethylation of the HIC1 gene in stool samples can detect CRC with a sensitivity of
42% and a specificity of 100%. Similarly, Chen et al. [62] reported that hypermethylation of the vimentin
gene could detect CRC with a sensitivity of 46% and a specificity of 90%. Moreover, hypermethylation
of vimentin could detect Stage I and II CRC with a sensitivity of 43%. According to these results,
analysis of the hypermethylation of single genes potentially has limitations with regard to sensitivity
or specificity. From this point of view, Huang et al. [63] analyzed the hypermethylation of the SFRP2,
HPP1, and MGMT genes in stool DNA from a large population (52 CRC, 35 benign colorectal disease,
and 24 healthy controls). The sensitivity and specificity to detect CRC in the three combined genes
was 96.2% and 95.8%, respectively. Among the three genes, SFRP2 showed the best sensitivity and
specificity (94.2% and 95.8%, respectively).
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Table 1. Studies of methylation analysis of saliva for the detection of head and neck squamous cell carcinoma.

Author Year Method Prospective Study Sample Size
(Number of Patients) Gene Sensitivity (%) Specificity (%)

Rosas et al. [27] 2001 MSP No HNSCC (30)
Healthy control (30) DAPK, MGMT, p16 At least 1 gene (37%) At least 1 gene (97%)

Righini et al. [28] 2007 MSP No HNSCC (60)
Non Malignant (30)

CDH1, DAPK, MGMT,
p16, RASSF1, TIMP3 At least 1 gene (79%) At least 1 gene (100%)

Carvalho et al. [34] 2008 qMSP No HNSCC (211)
Control (527)

AIM1, CCNA1, CCND2, CDH1,
DAPK, DCC, ESR1, MGMT, MINT1,

MINT31, PGP9.5, p16, TIMP3
At least 1 of 4 gene (31%) At least 1 of 4 gene (90%)

Demokan et al. [29] 2010 qMSP No HNSCC (71)
Healthy Control (61) EDNRB, KIF1A EDRNB + KIF1A (77%) EDRNB + KIF1A (93%)

Pattani et al. [30] 2010 qMSP Yes

Clinically high risk patients
Total (191)

Malignant (35)
Premalignant (43)

Benign (113)

EDNRB EDNRB (65%) EDNRB (51%)

Carvalho et al. [31] 2011 qMSP No HNSCC (61) CCNA1, DAPK, DCC, MGMT,
MINT31, p16, TIMP3 At least 1 gene (54%)

Schussel et al. [33] 2013 qMSP Yes
Clinically high risk patients

HNSCC or dysplasia (48)
Benign (113)

DCC, EDNRB EDRNB + DCC + risk
classification (75%)

EDRNB + DCC + risk
classification (48%)

Rettori et al. [32] 2013 qMSP No HNSCC (146)
Healthy control (60)

CCNA1, DAPK, DCC, MGMT, TIMP3,
and other 19 genes At least 1 gene (55%) At least 1 gene (76%)

Table 2. Studies of methylation analysis of the sputum for the detection of lung cancer.

Author Year Method Prospective Study Sample Size
(Number of Patients) Gene Sensitivity (%) Specificity (%)

Belinsky et al. [37] 1998 MSP No LC (7)
Smokers (26) p16 p16 (43%) p16 (81%)

Honorio et al. [38] 2003 MSP No
SCLC (8)

NSCLC (24)
Chronic Smokers (13)

RASSF1A

SCLC; RASSF1A (50%)
NSCLC; RASSF1A (21%)

Chronic Smokers;
RASSF1A (31%)

Konno et al. [39] 2004 MSP No LC (78)
None LC (52) APC, p16, RARβ

APC (28%), p16 (22%),
RARβ (27%)

APC (96%), p16 (100%),
RARβ (93%)

Belinsky et al. [41] 2006 Nested
MSP No LC (98)

Healthy Controls (92)

BETA3, DAPK, GATA4, GATA5,
HCAD, HLHP, IGFBP3, LAMC2,

MGMT, PAX5α, PAX5β, p16,
RASSF1A, SFRP1

GATA5 (74%), LAMC2
(72%), SFRP1 (68%)

GATA5 (74%), LAMC2
(30%), SFRP1 (29%)
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Table 2. Cont.

Author Year Method Prospective Study Sample Size
(Number of Patients) Gene Sensitivity (%) Specificity (%)

Cirincione et al. [40] 2006 MSP No
LC (18)

Healthy Controls
(smoker) (112)

p16, RARβ2, RASSF1A At least 1 gene (50%) At least 1 gene (38%)

Belinsky et al. [43] 2007 MSP No LC (Stage III) (72) DAPK, GATA5, HCAD, MGMT,
PAX5α, PAX5β, p16, RASSF1A

GATA5 (43%), MGMT (32%),
p16 (40%)

Shivapurkar et al. [42] 2007 qMSP No NSCLC (13)
Controls without LC (25) APC, p16, RASSF1A, HS3ST2 At least 1 gene (62%) At least 1 gene (100%)

Shivapurkar et al. [44] 2008 qMSP No LC (13)
Non Cancer (25) CYGB CYGB (30%) CYGB (100%)

Guzmán et al. [45] 2012 MSP No
LC (26)

COPD (23)
Healthy Controls (33)

CDH1, MGMT, p16

LC
CDH1 (35%), MGMT (65%),

p16 (73%)
COPD

CDH1 (45%), MGMT (65%),
p16 (70%)

Healthy controls
CDH1 (32%), MGMT (6%),

p16 (9%)

Leng et al. [46] 2012

Nested
MSP

(cohort1)
qMSP

(cohort2)

No

Cohort 1
LC (64)

Non Cancer (64)
Cohort 2
LC (40)

Non Cancer (90)

GATA5, PAX5α, SULF2

Cohort 1
GATA5 (33%), PAX5α (25%),

SULF2 (34%)
Cohort 2

GATA5 (78%), PAX5α (63%),
SULF2 (78%)

Cohort 1
GATA5 (74%), PAX5α
(80%), SULF2 (75%)

Cohort 2
GATA5 (53%), PAX5α
(67%), SULF2 (45%)

Hubers et al. [48] 2014 qMSP No LC (20)
COPD (31)

APC, CYGB, FAM19A4, HS3ST2,
PHACTR3, PRDM14, RASSF1A RASSF1A + 3OST2 (85%) RASSF1A + 3OST2 (74%)

Hubers et al. [47] 2014 qMSP No

Set1
LC (98)

None LC (90)
Set2

LC (60)
none LC (445)

APC, CYGB, RASSF1A Set1; At least 1 gene (63%)
Set2; At least 1 gene (90%)

Set1; At least 1 gene (78%)
Set2; At least 1 gene (47%)

Hubers et al. [49] 2015 qMSP No

Learning set
LC (73)

none LC (86)
Validation set

LC (159)
none LC (154)

APC, CYGB, FA19A4, HS3ST2,
PHACTR3, PRDM14, RASSF1A

Learning Set
HS3ST2 + PHACTR3 +

RASSF1A (82%)
Validation Set

HS3ST2 + PHACTR3 +
RASSF1A (79%)

Learning Set
HS3ST2 + PHACTR3 +

RASSF1A (66%)
Validation Set

HS3ST2 + PHACTR3 +
RASSF1A (64%)

Hulbert et al. [50] 2016 qMSP No LC (90)
none LC (24)

CDO1, HOXA7, HOXA9, SOX17,
TAC1, ZFP42

HOXA7 + SOX17 +
TAC1 (98%)

HOXA7 + SOX17 +
TAC1 (71%)

LC: Lung Cancer; COPD: Chronic Obstructive Pulmonary Disease.
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Table 3. Studies of methylation analysis of the stool for the detection of colorectal cancer.

Author Year Method Prospective Study Sample Size
(Number of Patients) Gene Sensitivity (%) Specificity (%)

Song et al. [60] 2004 MSP No CRC (20)
Normal CF (20) APC, ATM, HLTF, MGMT, hMLH-1 At least 1 gene (70%)

Müller et al. [59] 2004 qMSP No

Training Set
CRC (10)

Healthy Control (13)
Validation Set

CRC (13)
Healthy Control (13)

SFRP2 Training Set; SFRP2 (90%)
Validation Set; SFRP2 (77%)

Training Set; SFRP2 (77%)
Validation Set; SFRP2 (77%)

Lenhard et al. [61] 2005 MSP No

CRC (26)
Adenoma (13)

Hyperplastic Polyp (9)
CIBD (9)

Normal control (32)

HIC1 CRC; HIC1 (42%)
Adenoma; HIC1 (31%) CRC + Adenoma; HIC1 (98%)

Chen et al. [62] 2005 MSP No CRC (94)
Normal Control (198) VIM All Stages; VIM (46%)

Stage I and II; VIM (43%) VIM (90%)

Huang et al. [63] 2007 MSP No

CRC (52)
Adenoma (21)

Hyperplastic Polyp (8)
Ulcerative Colitis (6)
Healthy Control (24)

HPP1, MGMT,SFRP2 CRC; At least 1 gene (96%)
Adenoma; At least 1 gene (71%) CRC + Adenoma; At least 1 gene (96%)

Zhang et al. [64] 2007 MSP No
CRC (29)

Adenoma (7)
Healthy Control (17)

SFRP1 CRC + Adenoma; SFRP1 (89%) CRC + Adenoma; SFRP1 (86%)

Wang et al. [65] 2008 qMSP No

CRC (69)
Adenoma (34)

Hyperplastic Polyp (26)
Healthy Control (30)

SFRP2
CRC; SFRP2 (87%)

Adenoma; SFRP2 (62%)
Hyperplastic Polyp; SFRP2 (42%)

CRC + Adenoma; SFRP2 (93%)

Ahlquist et al. [54] 2008 OBT
SDT Yes

Total (3764)
CRC (39)

Adenoma (251)

SDT-1
SDT-2

CRC + Adenoma
Hemoccult (11%),

HemoccultSensa (21%), SDT-1
(20%), SDT-2 (40%)

CRC + Adenoma; Hemoccult (98%),
HemoccultSensa (97%), SDT-1 (96%)

Nagasaka et al. [69] 2009 Hi-SA No

CRC (84)
Adenoma (56)

Hyperplastic Polyp (12)
Without Neoplasms (113)

Other Disease (31)

RASSF2, SFRP2

CRC
RASSF2 (27%), SFRP2 (31%)

Adenoma
RASSF2 (11%), SFRP2 (25%)

CRC + Adenoma; RASSF2 (95%), SFRP2 (92%)
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Table 3. Cont.

Author Year Method Prospective Study Sample Size
(Number of Patients) Gene Sensitivity (%) Specificity (%)

Glöckner et al. [68] 2009 MSP No
CRC (84)

Adenoma (26)
CF negative control (87)

TFPI2

Training Set
CRC; TFPI2 (89%)

Validation Set
CRC; TFPI2 (76%)

Adenoma; TFPI2 (21%)

Training Set
CRC; TFPI2 (79%)

Validation Set
CRC; TFPI2 (93%)

Adenoma; TFPI2 (93%)

Hellebrekers et al. [70] 2009 qMSP No

Set1
CRC (28)

Healthy Control (45)
Set2

CRC (47)
Healthy Controls (30)

GATA4
GATA5

Set1; GATA4 (71%)
Set2; GATA4 (51%)

Set1; GATA4 (84%)
Set2; GATA4 (93%)

Melotte et al. [71] 2009 qMSP No

Training Set
CRC (28)

CF Negative Control (45)
Validation Set

CRC (47)
CF Negative Control (30)

NDRG4 Training Set; NDRG4 (61%)
Validation Set; NDRG4 (53%)

Training Set; NDRG4 (93%)
Validation Set; NDRG4 (100%)

Baek et al. [66] 2009 MSP No
CRC (60)

Adenoma (52)
CF Negative (37)

MGMT, hMLH1, VIM CRC; At least 1 gene (75%)
Adenoma; At least 1 gene (60%)

CRC + Adenoma; MGMT (86%), hMLH1
(100%), VIM (100%)

Kim et al. [67] 2009 qMSP No
CRC (20)

Adenoma (17)
CF Normal (15)

B4GALT, OSMR, SFRP1 CRC; OSMR + SFRP (60%)
Adenoma; OSMR + SFRP1 (35%) CRC + Adenoma; OSMR + SFRP1 (100%)

Ahlquist et al. [72] 2012 SDT No
CRC (252)

Adenoma (133)
CF Negative Control (293)

BMP3, NDRG4, TFPI2, VIM, kras
(mutation)

CRC; SDT (85%)
Adenoma (>1 cm); SDT (63%)

CRC; SDT (89%)
Adenoma (>1 cm); SDT (89%)

Imperiale et al. [73] 2014 SDT Yes Total (9989)
CRC (65) BMP3, NDRG4, kras (mutation) SDT (92%), FIT (74%) SDT (90%), FIT (96%)

Zhang et al. [74] 2014 MSP No

CRC (48)
Adenoma (35)

Hyperplastic Polyp (32)
Healthy Control (30)

SFRP2, WIF-1 CRC; SFRP2 + WIF-1 (81%)
Adenoma; SFRP2 + WIF-1 (81%) CRC + Adenoma; SFRP2 + WIF-1 (97%)

CF: Colon Fiber; CIBD: Chronic Inflammatory Bowel Disease; Hi-SA: High-Sensitivity Assay for Bisulfite DNA; SDT-1: Stool DNA Test-1 (point mutations of kras, APC, and p53); SDT-2:
Stool DNA Test-2 (kras mutation, APC mutator cluster regions, and methylation of VIM); OBT: Occult Blood Test.
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Fecal DNA tests have also been reported as a new screening test for CRC. Stool DNA test 1 (STD-1)
and STD-2 are representative. STD-1 consists of a marker panel of 21 point mutations (three on Kras,
10 on APC, and eight on p53). STD-2 consists of three tumor-specific genetic change (Kras mutations,
scanning of APC mutator cluster regions, and methylation of the vimentin gene). Ahlquist et al. [54]
compared gFOBT, FIT, STD-1, and STD-2 for a screening test of colorectal neoplasm, and reported
that, while STD-1 provided no improvement over FIT, STD-2 detected significantly more neoplasms
than gFOBT and FIT. Ahlquist et al. [72] developed a next-generation stool DNA test and reported
its performance. The test detects four methylated genes (vimentin, NDRG4, BMP3, and TFPI2) and
mutation of the kras gene. Next generation stool tests can detect CRC and adenoma with sensitivities of
85% and 54%, respectively. Moreover, the test had high detection rates for nonmetastatic stages of CRC
(87% detection rate for Stage I–III CRCs). Furthermore, important advances in stool DNA tests, such as
the use of stabilizing buffers and more discriminating markers, were incorporated. Imperiale et al. [73]
reported a new stool DNA test in 2014, and the test (Cologuard® (Exact Science, Madison, WI,
USA)) was approved as screening tools for CRC by the U.S. Food and Drug Administration (FDA).
The sensitivity for detecting CRC was 92.3% with DNA testing, and 73.8% with FIT. Stool DNA tests
could detect CRC significantly better than FIT (p = 0.002). Moreover, the DNA test could detect
advanced precancerous regions (advanced adenomas or sessile serrated polyps measuring >1 cm)
and polyps with high-grade dysplasia (p < 0.001 and p = 0.004, respectively). The specificity of the
DNA test and FIT, however, were 86.6% and 94.9%, respectively, and the number of patients who were
excluded from the study was greater in the DNA tests group (n = 689) than in the FIT group (n = 34).
As described above, cancer detection in stool has an advantage compared to other bodily fluids in the
detection of cancer.

3.4. Urine (For the Detection of Bladder Cancer)

Studies of the analysis of urinary DNA methylation for the detection of bladder cancer have
been performed broadly. Despite the numerous studies, none of the promising methylation markers
have been found. Recently, urinary tests, combining methylation status and mutation status, were
performed in large cohorts.

Urine has also been used to analyze its methylation status for the purpose of the early detection
of urinary tract cancers. Classically, cytological examination of urine was performed; however, its
sensitivity for low-grade and low-stage cancer was low. For that reason, alternative non-invasive tests
have been developed. BTA stat®, BTA TRAK®, NMP-22®, UroVysion™, and ImmunoCyt/uCyt™ are
FDA-approved test kits for bladder cancer detection. None of these, however, are used in daily clinical
practice because of their low specificity and technical problems [75]. Several other molecular markers
have been developed; however, none of the markers were confirmed as promising markers. In this
section, studies on methylation analyses using urinary DNA for the detection of bladder cancer are
reviewed (Table 4 and Table S4) [76–102].

The methylation status of urinary DNA for the detection of bladder cancer was first analyzed
in 2002 by Chan et al. [76]. In this study, aberrant methylation in tumor samples was detected in
RARβ2 (87.8%), DAPK (58.2%), E-cadherin (63.3%), and p16 (26.5%). Methylation was also analyzed in
paired urine samples, of which sensitivities were 45.5%, 68.2%, 59.1%, and 13.6%, respectively.
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Table 4. Studies of methylation analysis of the urine for the detection of bladder cancer.

Author Year Method Prospective Study Sample Size
(Number of Patients) Gene Sensitivity (%) Specificity (%)

Chan et al. [76] 2002 MSP No BC (22)
Normal Control (17) DAPK, E-cadherin, p16, RARβ At least 1 gene (91%) At least 1 gene (77%)

Chan et al. [77] 2003 MSP No BC (14)
Normal control (10) RASSF1A RASSF1A (50%) RASSF1A (100%)

Sathyanarayana et al. [79] 2004 MSP No

BC (71)
Bladder Wash (28)
Voided Urine (43)

None Malignant (6)

LAMA3, LAMB3, LAMC2 At least 1 gene (49%) At least 1 gene (100%)

Friedrich et al. [78] 2004 qMSP No BC (37)
Normal Control (20) BCL2, DAPK, TERT BCL2 (65%), DAPK (22%),

TERT (51%) At least 1 gene (100%)

Dulaimi et al. [80] 2004 MSP No

BC (45)
normal (12)

Inflammatory
Urinary Disease (9)

APC, p14, RASSF1A At least 1 gene (87%) At least 1 gene (100%)

Hoque et al. [82] 2006 qMSP No BC (175)
Normal Control (94) ARF, GSTP1, MGMT, p16 At least 1 gene (69%) At least 1 gene (100%)

Urakami S et al. [83] 2006 MSP No BC (24)
Normal Control (20) DKK3, SFRP1, SFRP2, SFRP4, SFRP5, WIF1 At least 1 gene (61%) At least 1 gene (93%)

Yates et al. [81] 2006 qMSP Yes
BC (35)

Benign Control (35)
Healthy Volunteer (34)

APC, DAPK, E-cadherin, GSTP1,
p14, p16, RARB, RASSF1A

APC + E-cadherin +
RASSF1A (69%)

APC + E-cadherin +
RASSF1A (60%)

Yu et al. [84] 2007 MSP No

BC (132)
Normal Control (7)

Noncancerous Urinary
Lesion (23)

Other disease(6)

ABCC6, ALX4, BCL2, BMP3, BRCA1, CCNA1,
CDH13, CFTR, DRM, HPR1, ITGA4, MINT1,

MTA1, MYOD1, RASSF1A, RPRM, RUNX3, SALL3

Combination of 11
genes (92%) Combination of 11 genes (87%)

Sun et al. [85] 2009 MSP No

BC (82)
Noncancerous Urinary

Lesion (15)
Normal Control (5)

CDH1, FANCF, LOXL1, LOXL4, p16, SFRP1,
SOX9, TIG1, TIMP3, XAF1

LOXL1 (40%), SFRP1 (37%),
XAF1 (71%)

LOXL1 (73%), SFRP1 (93%),
XAF1 (33%)

Lin et al. [87] 2010 MSP No BC (57)
Normal Control (20) E-cadherin, p14, p16, RASSF1A At least 1 gene (83%)

Renard et al. [86] 2010 qMSP Yes

Symptomatic patients
Training Set

BC (48)
Normal Control (121)

Validation Set
BC (35)

Normal Control (57)

NID2, TWIST1

Training Set; NID2
and TWIST1 (88%)

Validation Set; NID2
and TWIST1 (94%)

Training Set; NID2
and TWIST1 (94%)

Validation Set; NID2
and TWIST1 (91%)
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Table 4. Cont.

Author Year Method Prospective Study Sample Size
(Number of Patients) Gene Sensitivity (%) Specificity (%)

Reinert et al. [89] 2011 MS-HRM No BC (115)
BPH or Bladder Stone (59) EOMES, HOXA9, POU4F2, ZNF154 At least 3 genes (84%) At least 3 genes (96%)

Eissa et al. [88] 2011 MSP No

BC (210)
Benign Urological

Disease (61)
Normal Control (49)

APC, RARβ2 APC (60%), RARβ2 (63%) APC (84%), RARβ2 (95%)

Chen et al. [91] 2011 qMSP No BC (30)
None Cancer Control (19) DAPK, IRF8, p14, RASSF1A, SFRP1 IRF8 (57%), p14 (28%),

SFRP1 (41%)
IRF8 (95%), p14 (100%),

SFRP1 (100%)

Vinci et al. [90] 2011 qMSP Yes

Bladder cancer (108)
Control (105)

BPH (29)
Urinary tract infection (17)

Bladder Stone (16)
Normal Volunteer(43)

BCL2, DAPK, hTERT At least 1 gene (79%) At least 1 gene (90%)

Serizawa et al. [92] 2011 qMSP No BC (113)
Normal Control (33)

APC, DBC1, RARB, RASSF1A, SFRP1,
SFRP2, SFRP4, SFRP5

FGFR (mutation), PIK3CA (mutation),
RAS (mutation), TP53 (mutation)

Total (70%) Total (94%)

Chung et al. [94] 2011 qMSP No BC (128)
None Cancer Control (110)

A2BP1, CA10, DBC1, MYO3A, NKX6-2,
NPTX2, PENK, SOX11

CA10 + MYO3A + NKX6-2 +
SOX11 (81%)

CA10 + MYO3A + NKX6-2 +
SOX11 (97%)

Costa et al. [93] 2011 qMSP No

BC (50)
RCC (50)
PC (50)

Healthy Control (48)

PCDH17, TCF21
BC; PCDH17 + TCF21 (60%)

RCC; PCDH17 + TCF21 (32%)
PC; PCDH17 + TCF21 (26%)

BC; PCDH17 + TCF21 (100%)
RCC; PCDH17 + TCF21 (100%)
PC; PCDH17 + TCF21 (100%)

Reinert et al. [95] 2012 qMSP No BC (184)
BPH or Bladder Stone (35) EOMES, HOXA9, POU4F2, TWIST1, VIM, ZNF154 EOMES (88%), TWIST1 (88%),

VIM (89%)
EOMES (97%), TWIST1 (100%),

VIM (100%)

Chihara et al. [96] 2013 Pyrosequencing No BC (73)
Healthy Volunteer (18)

Hypermethylation; HOXA9_1,
HOXA9_2, MYOD, SOX1, TJP2

Hypomethylation; CAPG, CASP8,
HLADPA1, IFNG, RIPK3, SPP1, VAMP8

HOXA9_1 (86%), HOXA9_2
(86%), MYOD (87%),

TJP2 (93%)

HOXA9_1 (89%), HOXA9_2
(62%), MYOD (88%), TJP2 (56%)
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Table 4. Cont.

Author Year Method Prospective Study Sample Size
(Number of Patients) Gene Sensitivity (%) Specificity (%)

Abern et al. [98] 2014 qMSP Yes

Hematuria or on
surveillance for prior

NMIBC
Total (111)

BC (24)
None Cancer Control (87)

NID2, TWIST1 NID2, TWIST1 (75%) NID2, TWIST1 (71%)

Hayashi et al. [97] 2014 qMSP No BC (20)
Normal Control (20) VGF VGF (40%) VGF (95%)

Fantony et al. [100] 2015 qMSP Yes

Hematuria or on
surveillance for prior

NMIBC, or NMIBC treated
with BCG
Total (209)

BC (52)
Suspicious of BC (12)

Negative for Cystoscopy
(145)

NID2, TWIST1 Believe the positive (67%)
Believe the negative (37%)

Believe the positive (61%)
Believe the negative (86%)

Yeh et al. [99] 2015 qMSP No

Training set
BC (69)

None Cancer Control (28)
Test set
BC (33)

None Cancer Control (28)

ZNF671 Training Set; ZNF671 (42%)
Test Set; ZNF671 (48%)

Training set; ZNF671 (93%)
Test set; ZNF671 (89%)

Dahmcke et al. [102] 2016 qMSP Yes

Hematuria
Total (475)

BC (99)
None Cancer Control (376)

BCL2, CCNA1, EOMES, ONECUT2, SALL3, VIM,
FGFR (mutation), TERT (mutation) Total (97%) Total (77%)

Roperch et al. [101] 2016 qMSP No BC (167)
None Cancer Control (105) HS3ST2, SEPT9, SLIT2, FGFR3 (mutation) Total (Methylation +

Mutation) (98%)
Total (Methylation +

Mutation) (85%)

BC: Bladder Cancer; RCC: Renal Cell Carcinoma; BPH: Benign Prostate Hyperplasia; NMIBC: Non Muscle Invasive Bladder Cancer; MS-HRM: Methylation Sensitive High
Resolution Melting.
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Hoque et al. [82] analyzed the methylation of urinary DNA in a large cohort (175 for bladder
cancer and 94 for age-matched control) using qMSP. They assessed p16, ARF, MGMT, and GSTP1;
their sensitivities were 45%, 28%, 35%, and 43%, respectively; the specificity was 100%. Despite their
low sensitivity to individual genes for the detection of bladder cancer, combined sensitivity (at least
one gene) was increased to 69%. Yu et al. [84] also applied multiple gene panels for the detection
of bladder cancer using urinary DNA methylation. They analyzed 18 genes, of which sensitivities
were 12–58% and they searched for the optimal combination of the genes. A panel of 11 genes (SALL3,
CFTR, ABCC6, HPP1, RASSF1A, MT1A, ALX4, CDH13, RPRM, MINT1, and BRCA1) had the highest
sensitivity and a feasible specificity (91.7% and 87.0%, respectively). In this process, the sensitivity and
specificity already reached 82.6% and 100% using a combination of four genes (SALL3, CFTR, ABCC6,
and HPP1), and addition of another set of 11 genes increased the sensitivity to 91.7% in exchange for a
decrease in specificity to 87.0%.

In 2010, Renard et al. [86] identified two genes (TWIST1 and NID2) for the early detection of
bladder cancer. In their study, they first performed a pharmacologic unmasking microarray to identify
the candidate genes for the methylation marker and then they narrowed down the candidates by
methylation analysis of bladder cancer tissue samples. Of the 10 genes they identified, they selected the
TWIST1 and NID2 genes. The panel of two genes was applied to the detection of bladder cancer using
urinary DNA methylation analyses. A higher sensitivity and feasible specificity were shown in both
the training and validation sets (sensitivity; 88% and 94%, specificity; 94% and 91%, respectively), and,
notably, a sensitivity of 80–89% was found for early-stage and low-grade cancer. This study, however,
was later validated by two prospective studies that failed to replicate the excellent performance [98,100].
Recently, Dahmcke et al. [102] conducted a prospective study for the detection of bladder cancer in a
patient cohort of gross hematuria. In this study, the methylation status of six genes (SALL3, ONECUT2,
CCNA1, BCL2, EOMES, and VIM) and the mutation of two genes (TERT and FGFR3) were used as a test
for urinary DNA. Patients with hematuria were concluded in the study (n = 475), and all of the patients
underwent cystoscopy. Ninety-nine patients were diagnosed with bladder cancer. The sensitivity and
specificity of the test were 97% and 77%, respectively, and the area under the curve (AUC) of the test
was calculated as 96.3%. The negative predictive value was 99.0%, and, with this value, the author
noted that this DNA test could reduce the number of patients who would need to undergo cystoscopy.

3.5. Urine (For the Detection of Prostate Cancer)

Contrary to studies on the detection of bladder cancer, the number of urinary DNA methylation
studies for prostate cancer is small; however, almost all studies analyzed the methylation status of
GSTP1. Early studies suggested that GSTP1 methylation is a promising marker; however, a recent
prospective study revealed it to have insufficient specificity.

The methylation status of urine has also been analyzed for the early detection of prostate cancer.
The standard tools for early detection of prostate cancer are PSA and digital rectal exam (DRE). Due to
its lower specificity in the discrimination of benign prostate hyperplasia (BPH), however, false positive
results have been a clinical problem. Only 25% of men with PSA values between 4 and 10 ng/mL have
a positive biopsy [103]. If the cut off value was set to 4.1 ng/mL, the sensitivity and specificity were
reported to be 20.5% and 93.8% [104], respectively. A new molecular biomarker is still required for the
screening of prostate cancer. In this section, studies of methylation analyses of urinary DNA for the
early detection of prostate cancer are reviewed (Table 5 and Table S5) [105–114].



Int. J. Mol. Sci. 2017, 18, 735 17 of 25

Table 5. Studies of methylation analysis of the urine for the detection of prostate cancer.

Author Year Method Prospective Study Sample Size
(Number of Patients) Gene Sensitivity (%) Specificity (%)

Goessl et al. [105] 2000 MSP No PC (33)
BPH (26) GSTP1 GSTP1 (36%) GSTP1 (100%)

Goessl et al. [108] 2001 MSP No PC (29)
BPH (40) GSTP1 GSTP1 (77%) GSTP1 (97%)

Goessl et al. [107] 2001 MSP No
PC (40)
PIN (7)

BPH (45)
GSTP1 PC; GSTP1 (73%)

PIN; GSTP1 (29%) PC and PIN; GSTP1 (98%)

Cairns et al. [106] 2001 MSP No PC (22) GSTP1 GSTP1 (27%)

Jeronimo et al. [109] 2002 MSP
qMSP No PC (69)

BPH (31) GSTP1 qMSP; GSTP1 (19%)
MSP; GSTP1 (30%) qMSP and MSP; GSTP1 (67%)

Hoque et al. [110] 2005 qMSP No PC (52)
None Cancer Control (91)

APC, ARF, E-cadherin, GSTP1, MGMT,
p16, RARβ2, RASSF1A, TIMP3 At least 1 of 4 genes (87%) At least 1 of 4 genes (100%)

Roupret et al. [111] 2007 qMSP No PC (95)
None Cancer Control (38)

APC, CDH1, DAPK, GSTP1, MGMT, p14,
p16, RARβ2, RASSF1A, TIMP3 At least 1 of 4 genes (89%) At least 1 of 4 genes (89%)

Venar et al. [114] 2008 qMSP Yes
PSA > 2.5 ng/mL

Biopsy Positive (111)
Biopsy Negative (123)

APC, GSTP1, RARβ2 Cohort1; At least 1 gene (55%)
Cohort2; At least 1 gene (53%)

Cohort1; At least 1 gene (80%)
Cohort2; At least 1 gene (76%)

Baden et al. [112] 2009 qMSP Yes
PSA 2–10 ng/mL

PC(178)
None Cancer Control (159)

APC, GSTP1, RARβ2 At least 1 Gene (60%) At least 1 Gene (81%)

Daniunaite et al. [113] 2014 qMSP No PC (253)
BPH (32) GSTP1, RARB, RASSF1 GSTP1 (11%), RARB (29%),

RASSF1 (45%)
GSTP1 (97%), RARB (81%),

RASSF1 (84%)

PC: Prostate Cancer; PIN: Prostatic Intraepithelial Neoplasia.
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Urinary DNA methylation analysis for the screening of prostate cancer was first reported in 2000
by Goessl et al. [105]. They used the MSP method with a fluorescent labeled primer for methylation
analyses. They analyzed the methylation status of GSTP1 in urine, plasma, serum, and ejaculate, of
which the sensitivity of urinary GSTP1 methylation was 36% and the specificity was 100%. The same
group later analyzed GSTP1 methylation in urine samples, which were obtained after a 15 to 30 s
prostate massage [107]. Using this method, the sensitivity of GSTP1 methylation increased to 73%.
Moreover, when focusing on T1-2N0M0 patients, the sensitivity increased from 0% (0 of 11 patients) to
68% (15 of 22 patients). Hoque et al. [110] also analyzed urinary GSTP1 methylation using qMSP with
eight other genes (p16, ARF, MGMT, RARβ, E-cadherin, TIMP3, RASSF1A, and APC). The urine samples
of age-matched individuals with no history of genitourinary malignancies were used as controls.
The sensitivity and specificity of GSTP1 were 48% and 100%, respectively. The panel of four genes
(p16, ARF, MGMT, and GSTP1) could discriminate prostate cancer with a sensitivity and specificity
of 87% and 100%, respectively. In 2008, Venar et al. [114] conducted a multicenter prospective study
for patients with PSA levels higher than 2.5 ng/mL. Urinary samples were collected after the DRE
procedure. The methylation status of GSTP1, RARβ2, and APC were analyzed. The sensitivity and
specificity of three combined genes were 53–55% and 76–80%, respectively. Another prospective
study was conducted in 2009 for patients with PSA levels from 2 to 10 ng/mL, which contained 178
prostate cancer patients and 159 noncancerous patients [112]. The sensitivity and specificity of the
combination of three genes were 60% and 81%, respectively. The specificities of these studies were
lower than expected.

4. Conclusions

Several studies were conducted regarding cancer screening via the analysis of methylation in
bodily fluids. In CRC screening, a higher sensitivity and specificity of stool DNA tests were reported
and they can be used in clinical situations. In other cancers, there were no promising methylation
markers that could be used in clinics. Some of the gene candidates, such as NID2 or TWIST1 in
urinary DNA, seemed to be promising markers, however, these studies are denied in prospective
studies [86,98,100].

Most of the studies combined several genes in order to increase sensitivity, as the sensitivity of
each gene was generally low. As the number of genes increased, the cost and time needed for the
tests also will increase greatly. Simple and low-cost tests are required in cancer screening because it
is performed for millions of people. To resolve this problem, a promising single methylation marker,
which has a high sensitivity and specificity, needs to be explored.
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