Supplementary Materials: Synthesis of Five Known Brassinosteroid Analogs from Hyodeoxycholic Acid and Their Activities as Plant-Growth Regulators

María Isabel Duran, Cesar González, Alison Acosta, Andrés F. Olea, Katy Díaz and Luis Espinoza

FTIR and full NMR Spectra of Compounds 10, 13, 12 and 15.

Methyl 3α -acetoxy-6-oxo-7-oxa- 5α -cholan-24-oate (10)

FTIR

3.5

3.0

2.5

2.0

1.5

1.0

ppm

4.0

5.0

4.5

Methyl 3α -acetoxy-6-oxa-7-oxo- 5α -cholan-24-oate (13).

FTIR

Acid-3 α -hydroxy-6-oxo-7-oxa-5 α -cholan-24-oic (12) **FTIR**

Acid-3 α -hysroxy-6-oxa-7-oxo-5 α -cholan-24-oic (15) **FTIR**

¹H-¹³C 2D HSQC

¹³C DEPT-135 NMR

10 ppm

In the ¹H-NMR spectrum of compound **12** a signal was observed at δ_{H} = 4.21 ppm (1H, dd, J = 12.5 and 9.8 Hz), assigned to hydrogen H-7a, and correlated by 2D 1 H- 13 C HSQC with the signal & = 71.75 ppm (CH₂-7 from ¹³C and DEPT-135 spectra). Signals at $\delta_{\rm H}$ = 4.08-4.03 ppm (2H, m) were assigned to hydrogen atoms H-7b and H-3, correlated with the signals & = 71.75 and 65.49 ppm (Table 1), respectively (by 2D HSQC and DEPT-135 spectra). Signals at $\delta_{\rm H}$ = 2.33-2.29 ppm (1H, m) and $\delta_{\rm H}$ = 2.23-2.07 ppm (1H, m) were assigned to hydrogen H-23 and correlated with the signal $\delta_{\rm C}$ = 32.15 ppm by 2D HSQC, ¹³C and DEPT-135 spectra. Signals at $\delta_{\rm H}$ = 0.95 ppm (3H, d, J = 6.4 Hz), $\delta_{\rm H}$ = 0.86 ppm (3H, s) and $\delta_{\rm H}$ = 0.74 ppm (3H, s) were assigned to methyl groups CH₃-21, CH₃-19 and CH₃-18, respectively. Additionally, H-5 α at δ_{H} = 3.24 ppm (1H, dd, *J* = 12.5 and 4.2 Hz) showed ²*J*HC 2D HMBC correlation with signal at & = 33.39 ppm that was assigned to carbon C-4 and with signal at & = 179.68 ppm, assigned to the carboxylic group of lactone function (C-6) (Figure S1a). H-5 α also showed ³*J*_{HC} correlation with signals at δc = 14.93, 34.04 and 59.49 ppm, which were assigned to carbons CH₃-19, C-1 and C-9, respectively. The signal of H-7a ($\delta_{\rm H}$ = 4.21 ppm) shows a correlation at ³J_{HC} with signal at $\delta_{\rm C}$ = 59.49 ppm (C-9), whereas the signal of H-7b ($\delta_{\rm H}$ = 4.08-4.03 ppm) showed ²J_{HC} correlation with signal at & = 40.79 ppm (C-8) and ${}^{3}J_{HC}$ with signals at & = 52.54, 59.49 and 179.68 ppm (Table 1), which were assigned to carbons C-17, C-9 and C-6, respectively (Figure S1a).

A similar analysis was performed for structure assignment of compound **15**. Thus, hydrogen H-5 α at $\delta_{\rm H}$ = 4.68 ppm (1H, dd, *J* = 11.0 and 5.2 Hz) correlated by 2D HSQC with signal at $\delta_{\rm C}$ = 81.59 ppm (C-5), and also showed ²*J*_{HC} 2D HMBC correlation with signal at $\delta_{\rm C}$ = 36.57 (C-4) and ³*J*_{HC} with signals at $\delta_{\rm C}$ = 11.83, 59.09 and 178.28 ppm (Table 1), which have been assigned to carbons C-19, C-9 and carboxylic group of lactone function (C-6) (Figure S1b). Signal of hydrogen H-7a at $\delta_{\rm H}$ = 2.61 ppm (1H, dd, *J* = 12.6 and 12.0 Hz) showed ²*J*_{HC} correlation with signals at $\delta_{\rm C}$ = 36.36 ppm (C-8) and 178.28 ppm (C-6). The hydrogen H-7b at $\delta_{\rm H}$ = 2.40 ppm (1H, d, *J* = 12.0 Hz) also showed ²*J*_{HC} correlations with C-8 and C-6 and ³*J*_{HC} with signals at $\delta_{\rm C}$ = 56.54 ppm (C-17) and C-9 (Figure S1b).

Figure S1. Major correlations observed for compounds **12** (a) and **15** (b); ${}^{2}J_{HC}$ (**red arrows**) and ${}^{3}J_{HC}$ (**blue arrows**) of hydrogens H-5 α and H-7.