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Abstract: Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the
human population. Different etiological factors such as hepatitis B and C virus, alcohol and diabetes
cause liver injury followed by inflammation, necrosis and hepatocytes proliferation. Continuous
cycles of this destructive–regenerative process culminates in liver cirrhosis which is characterized by
regenerating nodules that progress to dysplastic nodules and ultimately HCC. Despite its significance,
there is only an elemental understanding of the pathogenetic mechanisms, and there are only limited
therapeutic options. Therefore, the study of the involved molecular mechanisms can open a new
insight to define more effective treatment strategies. A variety of alterations have been reported in
HCC patients, particularly the cancer-associated microenvironment components including immune
cells, fibroblast cells, endothelial cells and extracellular matrix can support the neoplastic cells to
proliferate, growth and invade. This review summarizes the current state of knowledge and highlights
the principal challenges that are relevant to controlling this milieu.
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1. From Normal Liver to a Malignant Liver

Structurally, the liver consists of five parts: (1) hepatocytes and hepatic lobule; (2) vascular system;
(3) hepatic sinsusoidal cells; (4) biliary system; and (5) stroma [1]. Hepatocytes are parenchymal
cells that metabolize or detoxify all the substances which are absorbed by portal vein from the gut.
Hepatocytes occupy around 60% of totally cells in the liver [2,3]. On the other hand, non-parenchymal
parts including endothelial cells, Kupffer cells, stellate cells and lymphocytes are mostly attributed
to the immune modulatory function of liver in the body in front of invading pathogens [3]. Once
hepatic injury incurred, the liver histologically changes to a fibrotic tissue. Fibrosis is characterized
by abnormal liver nodule formation surrounded by collagen fibrils which are secreted from activated
hepatic stellate cells, during fibrosis the liver parenchyma is irreversibly replaced with collagen-rich
scar tissue [4]. Notably, in acute injuries, liver reverse the injury due to its capacity to repair the
damaged tissue while in chronic condition the healing processes fail [5]. Cholangiocarcinoma (from the
epithelium of intrahepatic bile duct), hepatoblastoma (from hepatic precursor cells) and hepatocellular
adenoma (from hepatocytes) are rare forms of liver cancer [6]. Around 85% of primary liver cancers
diagnosed as HCC are developed as a result of chronic hepatitis caused by HBV (hepatitis B virus)
HCV (hepatitis C virus), or NASH (non-alcoholic steatohepatitis) [3,7–10]. Therefore, studies of the
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underlying mechanisms of hepatocarcinogenesis are mandatory to find an effective HCC therapy
(Figure 1) [11–18].
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2. The Most Reported Signaling Pathways in Hepatocellular Carcinoma

Whittaker has recently discussed the well-identified signaling pathways during the HCC
progression [19]. These include RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, HGF/MET, FGF, IGF,
JAK/STAT, p53 and TGF-β signaling pathways [19]. In the first part of this review, we briefly discuss
the importance of some of these paths in HCC to make sense how a normal liver can swap towards the
malignant one (Figure 2).
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3. Ras/Raf/MEK/ERK Signaling Pathway

The path is one of the key signaling cascades in the cells where the cooperation of the proteins Ras,
Raf, MEK and ERK eventually regulate the proliferation, differentiation and apoptosis. Extracellular
signals are usually growth factors (including EGF, FGF and PDGF), hormones or differentiation
inducers [20]. The cascade begins with binding of a ligand to the surface receptor tyrosine kinase (RTK).
Following the attachment, autophosphorylation can occur on tyrosine residue of RTK cytoplasmic
tails which then activate the Ras, Raf, MEK and ERK sequentially. ERK goes to the nucleus and
triggers the expression of genes of proliferation (Figure 2). Constitutive activation of the cascade due
to the mutations, is critical factor to stimulate the hepatic stellate cells (HSC) towards fibrogenesis
and myofibroblast phenotype which will be explained later [5]. There are several lines of evidence
showing the importance of Ras/Raf/MEK/ERK signaling pathways in liver cancer progression,
especially HCC [20]. Overexpression of c-Raf, MEK, and ERK was observed in more than half of HCC
patients [21]. Schmitz and coworkers also showed the activation of ERK-1/2 in HCV positive-HCC
samples which was significantly associated with aggressive phenotype of the cells [22].

4. PI3K-AKT-mTOR Signaling Pathway

Phosphatidylinositide 3-kinases (PI3K) is another target of RTKs (after RTK-ligand interaction)
which phosphorylates the phosphatidylinositol (4,5)-bisphosphate (PIP2) to phosphatidylinositol
(3,4,5)-trisphosphate (PIP3). The pathway is reversed by tumor suppressor PTEN. In unstimulated
normal cells, PIP3 level is very low [23]. The mTOR (Mammalian Target of Rapamycin) is functionally
involved in cell growth and metabolism [24]. In fact, the mTOR is energy sensor and activates the
cellular translation and lipogenesis during the nutrition rich condition while it is inhibited due to
hypoxia or DNA damage (Figure 2) [25]. Deregulated PIP3-AKT-mTOR was frequently observed in
HCC patients [26]. In a study by Chen, overexpression of AKT and mTOR was found to be correlated
with HCC invasion and metastasis [27]. It has been demonstrated that AKT activation is correlated
with reduced overall survival in HCV positive patients suffering from HCC [22].

5. TGF-β Signaling Pathway

Transforming growth factor-β (TGF-β) is one master regulatory system in the cells to modulate
the process of proliferation, death, cytoskeleton orchestration, cellular adhesion and wound healing
in a cell specific manner [28]. The superfamily of TGF-β consists of more than 30 proteins including
TGF-β isotypes, myostatin, activin, inhibin, nodal and bone morphogenetic proteins. All of these
ligands are synthesized as latent precursors and will be activated through a proteolytic reaction. This
is one of the several ways in which the path can be regulated [29]. As the ligand is activated, it can
bind to the TGF-β receptors and transfers the signals into the nucleus through co-Smad complex
(Smad2, Smad3 and Smad4 proteins) [30]. Although the role of TGF-β in human cancer is controversial,
its involvement in fibrotic responses has been well documented. In this way, matrix deposition or
recruitment of immune cells at the site of inflammation are two of several important actions of TGF-β
cascade [30]. Paik and coworkers confirmed that the expression levels of TGF-β receptors have been
downregulated in HCC samples in comparison to the adjacent normal tissues showing its importance
for HCC initiation. This downregulation was also associated with higher tumor size and proliferation
capacity [31]. The gene expression alterations were also observed in co-Smad subunits. As an example,
increased expression of Smad4 was observed in HCC tissues and its siRNA-mediated suppression
inhibited the colony formation in Huh7 and PLC cell lines [32].

6. JAK/STAT Signaling Pathway

To transfer the signal of growth factors and inflammatory intermediates including interleukins
and interferons, JAK/STAT signaling has been well established which regulates proliferation,
differentiation, apoptosis and in one word, tissue homeostasis [33]. Once the ligand attached,
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dimerization of receptors occurs which recruits the STAT proteins near the membrane through the
JAK proteins. Now, STATs can be phosphorylated by JAK and moved to nucleus where they can act as
transcription factor of gene expression (Figure 2) [33]. It has also been demonstrated that following
hepatectomy, JAK/STAT will be activated through TNF-induced SOCS-3 overexpression [34]. Similar
to a variety of human malignancies, HCC tissues also show the disturbed JAK/STAT signaling
pathway. The path is one of the key activators of HSCs cells whose role in HCC progression has been
demonstated repeatedly. Inhibition of JAK/STAT signaling decreases the proliferation, migration and
ECM-producing characters of HSCs while triggers their apoptosis [35]. Saxena et al. found that leptin
increased the invasiveness and migratory potential of HepG2 line via JAK/STAT activation [36]. In a
microarray analysis, Basu et al. showed that HCV core-transfected hepatocytes can also induce the
STAT signaling through overexpression of IL-6, STAT3 and leptin receptor [37].

7. β-Catenin Signaling Pathway

β-Catenin signaling pathway is one of the most active signaling pathways in hepatocytes playing
an important role in liver development and of course regeneration [6]. Similar to other signaling
pathways, the pathway starts with binding a β-catenin to its cognate receptor and transfers a signal
into the cells where it can act as transcription factor of TCF-response promoters. When the receptor
is free of cargo, β-catenin is phosphorylated by complex of APC, Axin and GSK3 and is degraded
following ubiquitination [6].The importance of Wnt pathway in progression of liver cancer has been
demonstrated in several studies. Constitutive expression of β-catenin and Axin has been observed in
HCC patients [38]. Following HBx-transfection, β-catenin has been stabilized and translocated into
the Huh7 nucleus [39].

8. Signaling Pathway of p53

The tumor suppressor p53 is frequently mutated in half of human tumors. It is induced through
the cellular damages including hypoxia or viral infection and eventually leads to promote the cell cycle
arrest or apoptosis [40]. The p53 loss of function following mutations has been frequently observed
in precancerous dysplastic nodules and plays an important role from passing this stage toward early
HCC [19].It has also demonstrated that codon 249 of p53 is preferentially mutated due to exposure to
aflatoxin B1 or hepatitis B or C infection. This mutation is G:C to T:A and has been detected in serum
of HCC patients [41]. Honda et al. showed that altered expression of p53 has been correlated with
pathological features of the disease such as histological grade, survival, response to the therapy [42].

9. Viral Infections Disrupt Normal Signaling Pathways

It is well-documented that viral replication can interrupt the genomic stability as integrated into
the genome. For example, as hepatocytes are infected with HBV, the virus-coding protein HBx avoids
the p53 to interact with repair system-associated proteins by blocking its entrance into the nucleus so
accumulates the DNA errors [43]. HBx protein also interacts with other transcription factors including
TFIIB and TFIIH, CBP, PKC, NFκB, Ras, Raf, MAPK, AP-1 and JAK/STAT which are normally involved
in processes of cell growth or apoptosis [43]. Interestingly, it has been recently found by Liu that
hTERT expression and telomerase activity are increased in HBx-transfected cells and HBx-positive
HCC samples [44].

10. Tumor Microenvironment: New Horizon in Hepatocellular Carcinoma Pathogenesis

Normally, stroma maintains the tissue homeostasis and acts as a barrier toward tumor formation;
however, when a cell starts to be cancerous, its surrounding matrix changes in a way to support
cancer development [45,46]. This modified stroma around the malignant cells is termed tumor
microenvironment (TEM) [47]. The architecture of a typical TEM is composed of fibroblasts,
myofibroblasts, endothelial cells, pericytes, adipose cells, immune and inflammatory cells, and the
extracellular matrix (ECM) elements (Figure 3) [8,45]. It has also enriched with diffusible cytokines,
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chemokines or enzymes which are secreted from both cancerous and noncancerous cells. In a such
milieu, the reciprocal crosstalk of all these compartments with each other eventually decides how the
tumors growth [48]. There is a lot of evidence showing that HCC initiation and progression beneficiate
from its associated tumor territory which will be discussed in the following sections. In the first line,
we focus on structural and functional elements of TEM to explain how these components can influence
HCC progression and metastasis. Besides, how this tumor niche may be exploited to treat HCC will
be addressed.
Int. J. Mol. Sci. 2017, 18, 405 5 of 18 

 

 

Figure 3. The tumor microenvironment (TME) is the cellular milieu in which the HCC tumor grows, 
including surrounding blood vessels, hepatic stellate cells, macrophages, lymphocytes, cytokines, 
chemokines and the extracellular matrix (ECM). 

11. Carcinoma Associated Fibroblasts (CAFs) 

Fibroblasts are elongated cells with spindle-shape morphology which are embedded in fibrillar 
matrix of the connective tissue. They are actively involved in wound repair, deposition of 
extracellular matrix (ECM), tissue maturation and inflammatory responses [49]. A growing body of 
evidence indicates that a sub-population of fibroblasts can modulate cancer progression. These cells 
are known as carcinoma-associated fibroblasts (CAFs) or tumor-associated fibroblasts (TAFs). The 
CAFs have been extracted from a variety of human tumors including prostate [50], breast [51], ovary 
[52] and esophagus [53]. In tumor tissue, CAFs are activated from normal fibroblasts, although they 
can also be originated from endothelial cells, epithelial cells, smooth muscle cells, pre-adipocytes and 
bone marrow-derived progenitors [46]. The CAFs are phenotypically and genetically different from 
the ancestral cells. They express α-smooth muscle actin (α-SMA), a marker of myofibroblasts [54]. 
Since HCC tumors are initially arisen in the context of cirrhosis where the amount of activated 
fibroblasts are impressive, it is not so far-fetched that CAFs influence the HCC progression [55]. How 
the resting fibroblast cells moved to the activated state (myofibroblasts) is not clear but three probable 
models were suggested by Shimoda et al.: (1) mesenchymal cells trans-differentiate to myofibroblasts; 
(2) specialized circulating progenitor cells such as fibrotic cells or mesenchymal stem cells comes to 
the side of tumor and differentiated to myofibroblasts; (3) myofibroblasts can be originated from the 
rare population of pre-existing myofibroblasts which are clonally expanded during tumorigenesis; 
and (4) genetic alteration within stromal cells leads to formation of myofibroblasts and a variety of 
chromosomal aberrations, somatic mutations and epigenetic modifications were also observed in 
stromal region and micro-dissected from different human tumors although the results are 
controversial [46]. Phenotypically, CAFs have prominent Rough endoplasmic reticulum(R-ER) and 
Golgi apparatus makes them suitable for protein synthesis such as ECM constituents. As an example, 
type I collagen, fibronectin and tenascin-C and SPARC (secreted protein acidic and rich in cysteine) 
[49]. The CAFs remarkably secrete matrix-metalloproteinases including MMP-2, MMP-3 and MMP-9. 
This feature gives the cells to remodel the ECM and facilitates the tumor invasion through digesting 
ECM barriers and escape from primary tumor site [54,56]. Additionally, CAFs are potent to modulate 
the immune response by infiltrating the monocytes and macrophage to the site of injury through the 
secretion of a variety of cytokines and chemokinessuch as MCP-1 (monocyte chemotactic protein-1) 
and IL-1 (interleukin-1) [49]. By secreting the SDF-1 (stromal cell-derived factor-1), CAFs recruit the 
endothelial progenitor cells into the tumor site and promote angiogenesis [51]. It is very important to 

Figure 3. The tumor microenvironment (TME) is the cellular milieu in which the HCC tumor grows,
including surrounding blood vessels, hepatic stellate cells, macrophages, lymphocytes, cytokines,
chemokines and the extracellular matrix (ECM).

11. Carcinoma Associated Fibroblasts (CAFs)

Fibroblasts are elongated cells with spindle-shape morphology which are embedded in fibrillar
matrix of the connective tissue. They are actively involved in wound repair, deposition of extracellular
matrix (ECM), tissue maturation and inflammatory responses [49]. A growing body of evidence
indicates that a sub-population of fibroblasts can modulate cancer progression. These cells are known
as carcinoma-associated fibroblasts (CAFs) or tumor-associated fibroblasts (TAFs). The CAFs have
been extracted from a variety of human tumors including prostate [50], breast [51], ovary [52] and
esophagus [53]. In tumor tissue, CAFs are activated from normal fibroblasts, although they can
also be originated from endothelial cells, epithelial cells, smooth muscle cells, pre-adipocytes and
bone marrow-derived progenitors [46]. The CAFs are phenotypically and genetically different from
the ancestral cells. They express α-smooth muscle actin (α-SMA), a marker of myofibroblasts [54].
Since HCC tumors are initially arisen in the context of cirrhosis where the amount of activated
fibroblasts are impressive, it is not so far-fetched that CAFs influence the HCC progression [55].
How the resting fibroblast cells moved to the activated state (myofibroblasts) is not clear but three
probable models were suggested by Shimoda et al.: (1) mesenchymal cells trans-differentiate to
myofibroblasts; (2) specialized circulating progenitor cells such as fibrotic cells or mesenchymal
stem cells comes to the side of tumor and differentiated to myofibroblasts; (3) myofibroblasts can be
originated from the rare population of pre-existing myofibroblasts which are clonally expanded during
tumorigenesis; and (4) genetic alteration within stromal cells leads to formation of myofibroblasts
and a variety of chromosomal aberrations, somatic mutations and epigenetic modifications were also
observed in stromal region and micro-dissected from different human tumors although the results are
controversial [46]. Phenotypically, CAFs have prominent Rough endoplasmic reticulum(R-ER) and
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Golgi apparatus makes them suitable for protein synthesis such as ECM constituents. As an example,
type I collagen, fibronectin and tenascin-C and SPARC (secreted protein acidic and rich in cysteine) [49].
The CAFs remarkably secrete matrix-metalloproteinases including MMP-2, MMP-3 and MMP-9. This
feature gives the cells to remodel the ECM and facilitates the tumor invasion through digesting ECM
barriers and escape from primary tumor site [54,56]. Additionally, CAFs are potent to modulate the
immune response by infiltrating the monocytes and macrophage to the site of injury through the
secretion of a variety of cytokines and chemokinessuch as MCP-1 (monocyte chemotactic protein-1)
and IL-1 (interleukin-1) [49]. By secreting the SDF-1 (stromal cell-derived factor-1), CAFs recruit the
endothelial progenitor cells into the tumor site and promote angiogenesis [51]. It is very important
to stress that CAFs remain active even if the stimuli are removed. This is contrary to the process of
wound healing, where the activated cells undertake apoptosis or nemesis [49,57,58]. Regarding to
acquisition of these features by CAFs, scientists believe that these cells are one of the key modulator
of tumor initiation, progression, metastasis and invasion. Tissue culture experiments alongside with
in vivo xenograft models play in important role in this way. The researchers found that tumor growth,
angiogenesis and metastasis increased when the cancer cells are co-implanted with CAFs and not with
normal fibroblasts into the nude mice. As an example, when Ras-transformed MCF-7 breast cancer cells
are co-injected into the nude mice with CAFs or normal fibroblasts, xenograft infused with CAFs grows
larger than xenograft infused with normal fibroblast cells [51]. A growing body of evidence showed the
importance of CAFs during HCC progression. It is demonstrated that the frequency of CAFs around
HCC region is positively correlated with the tumor size. Additionally these cells secrete the hepatocyte
growth factor (HGF) in a level higher than the normal fibroblasts [59].CAFs-secreted CCL-2, -5, -7 and
CXCL16promote the migration and invasion of HCC cells and facilitate their metastasis to the bone,
brain and lung in severe combined immunodeficiency SCID mice by activation of TGF-β signaling
pathway [60]. Tuanjie and his colleagues found that fibroblast cells suppress the NK cells function
by secretion of prostaglandin E2 [61]. It is necessary to mention that natural killer dysfunction was
observed in several human solid tumors [62].

12. Hepatic Stellate Cells (HSCs)

Hepatic stellate cells (HSCs) or Ito cells are non-proliferating cells are localized in basolateral
surface of hepatocytes and the anti-luminal side of sinusoidal endothelial cells where they can
easily contact with hepatocytes and endothelial cells [5]. They are morphologically spindle-shaped,
with elongated nuclei and retinoid-storing droplets in their cytoplasm [63]. Hepatic stellate cells
act as critical effectors during liver injuries [63,64]. As a consequence of liver fibrogenesis, HSCs
trans-differentiate into the myofibroblast-like cells and became more contractile, proliferating and
potent to synthesize extracellular matrix components [65]. Activation of HSCs occurs in three phases,
initiation, perpetuation and resolution. During these steps, HSCs are exposed to the stimuli from
sinusoidal endothelium, Kupffer cells, hepatocytes, platelets and all products of injured hepatocytes.
Cells then moved into the site of injury and release the pro-inflammatory, pro-mitogenic and
pro-fibrogenic factors eventually lead extracellular matrix accumulation and stroma remodeling [5,66].
Infiltration of the activated HSCs into the stroma and their localization around tumor sinusoids,
suggests that HSCs may be involved in HCC progression [67]. Tumoral hepatocyte conditioned media
significantly increased the proliferation of rat HSCs as well as increased expression of α-SMA, Desmins,
PDGFR and Gelatinase A secretion [68]. Amann and colleagues examined the impact of HSCs on
HCC progression. They found that collected conditioned media from HSCs increased the growth
and invasiveness of HCC cancer cell lines. Similarly, co-implantation of HSCs along with HCC cells
into the nude mice increased the tumor growth and invasiveness through activation of NFκB and
ERK signaling pathways [69,70]. Additionally, data were obtained from microarray analysis, revealed
the activation of several genes of inflammation, chemotaxis, angiogenesis and metalloproteinase
following the co-culture of hepatoma cells with activated HSCs [9]. In an orthotopic liver tumor
mouse model, Zhao et al. demonstrated that HSCs provide an immunosuppressive niche for HCC
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through induction of regulatory T cellsand myeloid-derived suppressor cells (MDSCs) probably due
to activation ofCOX2-PGE2-EP4 signaling pathway [71,72].

13. Immune and Inflammatory Cells

The association of inflammation and cancer was firstly hypothesized by Rudolf Virchow
observations in 1863 as chronic irritation theory. In this theory, cancer is caused by severe irritation.
Virchow found that certain cancers are associated with inflammatory macrophages [73]. In later years,
other researcher showed that many cancers (including lung, prostate, gastric, colorectal, bladder,
hepatocellular carcinoma, pancreatic, cervical, esophageal, ovarian and melanoma), but not all are
connected with inflammation [74,75]. The Virchow’s theory was powered as scientists found that
anti-inflammatory drugs, such as aspirin, inhibit tumor formation and development [76,77].

In 1986, Harold Dvorak believed that the tumor environments are very similar to the wounds in
some aspect. He said that tumors are actually “wounds that do not heal” [78]. Now, it is uncovered
that tumor inflammatory cells come to the tumor area and prepare a niche for the neoplastic cells and
facilitate cancer angiogenesis, metastasis and invasion [79]. In fact, secreted cytokines and chemokines
by cancer cells recruit the immune and inflammatory cells to the site of neoplasm. Neutrophils,
monocytes, lymphocytes, dendritic cells, eosinophils and mast cells are the commonly observed
cells in tumor stroma although their count depends on cancer type [73,74]. It is interesting to know
that tumor-associated inflammatory cells are different from those classically related to inflammatory
pathways with tumor destructive action. Most of these cells are immature which are confined in tumor
mass or invasive edge. Similar to cancer cells, the inflammatory cells also secrete lots of cytokines,
chemokines, and proteases affecting cancer development [73]. Here we focus on macrophages as they
are one the most prominent inflammatory cells in tumor stroma and discuss their role during cancer
progression especially in case of HCC.

14. Tumor-Associated Macrophages (TAMs)

Macrophages are a type of leukocytes with antigen presentation capacity and are actively involved
in tissue remodeling, phagocytosis and scavenging the foreign substances or cellular debris [80].
They are originated from the circulatory bone marrow monocytes or yolk sac and are localized in
the tissue [81]. When the macrophages come around the tumoral region, these cells are termed
tumor-associated macrophages (TAMs). It is demonstrated that tumor-surrounding TAMs play
an important role during tumor development [81]. Increasing number of studies showed that
macrophages facilitate cell proliferation, angiogenesis, metastasis and invasion [79]. However, a
paradox quickly comes to the mind, how do the antitumor macrophages cause tumor growth? Beside,
how do they reach into the tumor boundary? Macrophage balance hypothesis provide an explanation
to the questions. Based on the theory, two distinct phenotypically states are related to the macrophages,
differing in function and the produced cytokines (Figure 3).These phenotypically changes are called
macrophage polarization [77]. The classically activated macrophages or M1-type are induced by
Th1 cytokine INF-γ or microbial antigens such as Lipopolysaccharides (LPSs). They are classically
macrophages that exert their cytotoxic function by releasing the reactive oxygen species (ROS) or
toxic intermediates [62]. The second one is the alternatively activated macrophages or M2 with low
antigen-presenting capacity and polarized by Th2 cytokine IL-4 or IL-13, TGF-β or glucocorticoids
(Figure 4) [82]. In spite of M1 macrophage, M2 cells decreased the inflammation and promote tissue
repair. It seems that in the early stage of tumorigenesis, M1 macrophages eliminate the tumor
cells as soldiers of adaptive immunity. However, in advanced stages, M1 macrophages replaced
with M2-type. M2 macrophages suppress the adaptive immune system and promote the cancer
proliferation, angiogenesis and ECM remodeling as well. Eventually, tumor cells escape from the
immune barriers and invade [69,77]. In other word, Th2-induced macrophage polarization changes
the anti-tumor environment to the immunosuppressive niche which is adaptive to the tumor cells [81].
It is demonstrated that most of the tumor cells express the protein termed monocyte chemotactic
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protein-1 (MCP-1) who recruited the TAMs into the tumor stroma although we should not ignore the
crucial role of tumoral M-CSF (macrophage-colony stimulating factor), angiopoietin-2, VEGF (vascular
endothelial growth factor) and MIP-1α (macrophage inflammatory protein 1α) in this way [74,83].
Usually, TAMs are accumulated in hypoxic region of the tumors where they are more prone to produce
the pro-angiogenic factors such as VEGF, TNF-α and matrix metalloproteinases [84]. Pro-angiogenic
factors interact with ECM and digest its elements such as fibrin and collagen to remodel ECM in
favor of vessels formation and of course cancer extravasation [81,82,85]. Like other cancers, liver
malignancies are also benefited from TAMs at the site of injury [82]. Dong et al. showed that high
presence of M2 macrophage are associated with aggressive phenotype of HCC [86]. Besides, monocytes
count and serum level of IL-6 were significantly higher in HCC patients [87]. On the other hand high
level of pro-metastatic cytokines including IL-6, IL-1 and TNF-α were significantly higher in the
blood samples of HCC patients than those from healthy counterparts [88]. As previously mentioned
M2 macrophages are strongly release all three cytokines. Peng and coworkers showed that TAMs
are associated with enhanced tumor angiogenesis in HCC specimens [89]. It has demonstrated that
TAMs activate the STAT3 signaling in hepatocellular carcinoma cell lines results in larger tumor size,
intrahepatic metastasis and high recurrence rate of the tumor [90]. Additionally, it has observed that
the therapeutically effects of sorafenib enhance following the tumor-associated macrophages depletion
by zoledronic acid [91].
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15. Extracellular Matrix

Hynes believed that extracellular matrix is not just “pretty fibrils” and it is more than a
passive physical support [92], it is a dynamic structure and functionally regulates the cell number,
morphology, movement and adhesion [93]. Such scaffold is also involved in tissue survival, growth and
differentiation. Of note, the composition of ECM varies from one tissue to another. By means of versatile
surface receptors, cells sense and transmit the signals from environment into the cells [94–97]. Normal
composition of ECM is regulated by precise control of gene expression, the process that eventually
leads to tissue homeostasis. Therefore, it would not be surprising if any changes affect the cell behaviors
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and develop the diseases [98,99]. To make sense, remodeling enzymes such as metalloproteinases
or serine proteases are normally inactive to avoid their destructive role on ECM [100]. Unusual
ECM is a hallmark of cancers [101]. Several findings have revealed that physical and biochemical
composition of ECM has clearly changed in tumoral stroma such as deposition of ECM. Increased
stiffness has been also observed in HCC tumors, this aspect is partly due to the overexpression of lysyl
oxidase (LOX) to produce collage cross-linking with other ECM components [102]. It is necessary to
mention that collagen fibrils are more oriented in cancer’s ECM than the normal one. It seems that
such topography facilitates the tumor angiogenesis and invasion [102]. On the other hand, remodeler
enzymes such as MMPs are also overexpressed in cancerous ECMs, and involved to physically
remove the basal membrane to invade [103]. It is demonstrated that MMPs produced fragments as
pro-apoptotic or pro-angiogenic effectors [104]. As previously discussed, CAFs, TAMs and endothelial
cells surrounding the tissue parenchyma are the main drivers of the ECM remodeling by secretion of a
variety of enzymes and cytokines. It is also important to recall that ECM components act as anchors
for tissue-residing stem cells where the different signaling pathways such as FGF2 or BMP4 eventually
dictate the cells to expand or differentiate. Obviously, disruption of such ecosystem potentiates the
cells as cancer stem cells [102,105]. In case of HCC, in silico analysis showed that ECM-encoded
genes including collagens, glycoproteins and proteoglycanes were differentially expressed between
cancerous cells and corresponding normal liver [106]. It has experimentally confirmed that serum
level of proteoglycanes endocan and syndecan-1 are increased in HCC patients and correlate with
survival and tumor recurrence [107]. Several studies have shown that endocans actively participate
in cell adhesion, proliferation and migration [108]. Altered expression of MMPs-encoding gens were
observed in different human tumors showing the role of such destructive enzymes during cancer
progression [103]. By means of northern blot analysis, increased expression of MMP-9 was detected
in HCC patients especially in tumor portion around the capsule. This finding demonstrated that
MMP-9 is probably involved in HCC invasion [109]. Similarly, Sun and coworker showed that high
expression of MMP-9 are strongly connected to the clinic-pathologic parameters including tumor
size, capsule status, tumor stage and HCC recurrence risk [110]. It seems that hepatitis B viral
HBx triggers the up-regulation of MMP-9 through the activation the PI3K, AKT and ERK signaling
pathways [111,112]. Additionally, increased expression of MMP-9 in serum of HCC patients make it as
a candidate diagnostic marker [113]. Similar pattern was observed for MMP-2 gene [114].

16. Tumor-Associated Endothelial Cells (TECs)

Endothelial cells (ECs) are the fundamental cells leaning the interior face of vessel’s walls. The ECs
are firmly attached to each other producing a barrier against porous vessels and bleeding. This property
is partly due to presence of tight junctions between two adjacent cells. Additionally, endothelial cells
are surrounded by other cells such as pericytes that make them more stable and control the vessel
diameter and elasticity as well [115]. Besides, endothelial cells interact with an ECM and basement
membrane proteins such as collagen, laminin and fibronectin. Such environment plays an important
role during endothelial cell stability, morphogenesis, proliferation and neoangiogenesis. In the later
one, basement membrane degrades and the exposure of endothelial cells to collagen triggers the
new blood formation [116]. During the tumor growth, neoangiogenesis is a critical step to supply
cancer cells for nutrients and oxygen. In fact, tumor progression and of course metastasis or invasion
are undeniably connected to angiogenesis [117]. How the angiogenesis starts, related to the tumor
environment’s changes. Such changes are produced in parallel with tumor growth. As an example,
tumor environment became hypoxic and metabolic pathways of tumor cells make it acidic. These
are two of important signals that induce neoangiogenesis through VEGF signaling pathway [117].
Interestingly, there are some evidences showing that endothelial cells (ECs) and their related pericytes
are morphologically and genetically different with normal one. This observation was evidently against
previous thoughts which knew the ECs as genetically stable cells. Studies showed tumor-associated
endothelial cells (TECs) have an irregular shape, the cells are porous and leaky as they have lost
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their conventional tight junctions [118,119]. In an experiment on melanoma- and liposarcoma-derived
cells, Hida and coworkers showed that TECs are genetically unstable. The cells are karyotyped
aneuploid with a variety of structural or numerical aberrations. Hida found that TECs grew faster
without any serum dependence condition [120]. There were also evidences of differential gene
expression between normal and tumorous ECs in this work. On an experiment on colorectal carcinoma,
Croix et al. evidenced that 64 genes are exclusively expressed in tumor-derived ECs. Some of these
genes were matrix remodeler enzymes to facilitate the formation of new vessel [121]. These kinds of
changes have challenged the effectiveness of angiogenesis therapy of cancers. Like other malignancies,
angiogenesis play an important role during HCC progression [122]. Studies showed that VEGF—an
endothelial-specific marker—has been increased in serum of patients suffering from HCC and strongly
related to the degree of invasiveness, metastasis and shorter survival [123,124]. Besides, inhibition of
VEGF suppresses the angiogenesis and decreases the Hepa129 and SVEC4-10 HCC cells to proliferate
and growth [125].

17. Therapeutic Value of Tumor Microenvironment in Hepatocellular Carcinoma

As pointed above, tumor microenvironment acts as a fertile soil to grow the cancerous seeds [126].
In fact, cancer cells surrounded by different cells such as fibroblasts and inflammatory cells which
are subjected to secrete a variety of growth factors, cytokines or matrix remodeling enzymes. In such
media, cancer cells are potentiated to proliferate, grow or invade. This is the reason that targeted
therapy of TEM is in field of attention by researchers [127]. Different strategies were taken by scientists
to achieve the goal; these are either targeting the ECM components or blocking the signaling cross-talk
between the cancer cells and their related stroma [128]. Targeting the components of angiogenesis
and inflammatory pathways are the two well-studied processes in treatment of HCC and other
malignancies and most of the developed drugs are also designed to target these paths [129]. Table 1
shows some of these drugs that are now under investigation for HCC treatment and have been nicely
reviewed by Taketomi [130]. Sorafenib is one of the most efficacious drugs that are now applied for
patients with advanced stage HCC. Sorafenib is multiple-kinase inhibitor capable to target VEGFR,
Raf-kinase and PDGFR and suppresses cell proliferation and angiogenesis. Sorafenib has passed
the phase III clinical trial to confirm its safety and tolerability [131]. Other drugs including Brivanib
(targets VEGFR, FGFR), Suitinib (PDGFR, VEGFR, C-KIT, FLT-3), Lilifanib (VEGFR, PDGFR), Erlotinib
(targets EGFR), Bevacizumab (targets VEGF), Cetuximab (targets EGFR), Axitinib (targets VEGFR)
are in different phases of clinical trial [132]. The Phosphomannopentaose sulfate (PI-88) is another
formulation to suppress HCC metastasis and recurrence through the inhibition of heparanase and
sulfatase enzymes. Such inhibition can negatively influence angiogenesis in tumor cells [133]. In a
randomized phase II of clinical trial, Liu and co-worker showed that dose 160mg/day of PI-88 is safe
for patients who underwent surgery [134]. Another alternative is inhibition of the stromal cells that
are actively connected with development of neoplastic niche. Among such cells CAFs, HSCs and
TAMs are good candidates. The Sibrotuzumab is one of such drugs designing to target activated HSCs.
Sibrotuzumab is promising preparation as it is nontoxic and preferentially target cancer cells [135].
Studies showed that HSCs and myofibroblasts express membrane-bounded serine proteases termed
fibroblast activation protein (FAP) [136]. The FAPs are belonged to the prolyloligopeptidase gene
family playing an important role in tumor biology and expresses in several solid epithelial-derived
tumors such as breast [137], gastric [138] and HCC [139]. Functionally, FAPs act as ECM remodeling
enzymes capable to target collagen producing biologically active fragments for the tumor growth and
invasion [140]. Targeting of central signaling pathways in HCC such as TGF-β is another noteworthy
approach. Transforming growth factor-β is a pleiotropic molecule mainly produced by HSCs. It
is involved in different acts from ECM synthesis and remodeling to proliferation and migration.
Galunisertib is an inhibitor of TGF-β which reduce the desmoplastic reaction, neoangiogenesis and
intravasation in HCC [141,142].The drug is on phase II clinical trial for patients who failed to response
to Sorafenib treatment [143].
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Table 1. TEM-based drugs in clinical trials for HCC treatment.

Drug Molecular Targets Phase of Clinical Trial Referances

Sorafenib VEGFR, PDGFR III [131]
Brivanib VEGFR, FGFR III [144]
Sunitinib VEGFR, PDGFR III [145]
Lilifanib VEGFR III [146]
Axitinib VEGFR II [147]

Selumetinib MEK II [148]
Cetuximab EGFR II [149]
Erlotinib EGFR III [150,151]

Bevacizumab VEGF II [152]
PI-88 HPR II [134]

Galuniserib TGF-β I [143]
Sibrotuzumab FAPs I [153]

18. Perspective and Conclusions

Despite the previous view that the tumor arose from genetically unstable cells, it has recently been
confirmed that tumor microenvironment can strongly support cells that are genetically potent to show
the cancer phenotype. In this way, all cellular and non-cellular fractions of tumor microenvironment
prepare a neoplastic niche where the tumor can proliferate rapidly and also escape from host defense
systems against damaged cells. The tumor microenvironment components also give cancer cells the
opportunity to degrade, be ready for passing the basement membrane, and invade. All of these
features make the tumor microenvironment a powerful target for cancer therapy. Now, scientists are
trying to disturb such neoplastic niche to stop the cancer. Although a long way ahead, the results until
now are promising.
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Abbreviations

α-SMA α-smooth muscle actin
CAF Carcinoma associated fibroblast
ECM Extracellular matrix
HBV Hepatitis B virus
HCV Hepatitis C virus
HCC Hepatocellular carcinoma
HSC Human stellate cells
LPSs Lipopolysaccharides
mTOR Mammalian Target of rapamycin
R-ER Rough endoplasmic reticulum
SDF-1 Stromal cell-derived factor-1
TEC Tumor endothelial cells
TAFs Tumor-associated fibroblasts
TAMs Tumor-associated macrophages
TEM Tumor microenvironment
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