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Abstract: Sexually transmitted infections (STIs) are caused by a wide variety of bacteria, viruses, and
parasites that are transmitted from one person to another primarily by vaginal, anal, or oral sexual
contact. Syphilis is a serious disease caused by a sexually transmitted infection. Syphilis is caused by
the bacterium Treponema pallidum subspecies pallidum. Treponema pallidum (T. pallidum) is a motile,
gram-negative spirochete, which can be transmitted both sexually and from mother to child, and can
invade virtually any organ or structure in the human body. The current worldwide prevalence
of syphilis emphasizes the need for continued preventive measures and strategies. Unfortunately,
effective measures are limited. In this study, we focus on the identification of vaccine targets
and putative drugs against syphilis disease using reverse vaccinology and subtractive genomics.
We compared 13 strains of T. pallidum using T. pallidum Nichols as the reference genome. Using
an in silicoapproach, four pathogenic islands were detected in the genome of T. pallidum Nichols.
We identified 15 putative antigenic proteins and sixdrug targets through reverse vaccinology and
subtractive genomics, respectively, which can be used as candidate therapeutic targets in the future.

Keywords: sexually transmitted infections (STIs); drug target; vaccine target

1. Introduction

Sexually transmitted infections (STIs) are triggered by a number of bacteria, viruses, and parasites
that are transferred mainly by vaginal, anal, or oral sexual contact between people. Different STIs can
be existent or transmitted instantaneously, and such infections can trigger other STIs [1]. The World
Health Organization (WHO) has reported more than 30 different bacteria, viruses, and parasites that
are responsible for disease transmission through sexual contact.

Syphilis is among the most severe sexually transmitted infections (STIs) caused by the
Treponema pallidum subspecies pallidum, a motile, gram-negative spirochete bacterium [2]. The annual
estimated frequency of infectious syphilis is 36 million cases and over 11 million new infections; thus,
it is an important public health burden globally [3]. Furthermore, the number of cases increased 10-fold
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in the last 15 years, with 4317 newly reported infections in 2014. This number is the highest it has been
in the last 40 years and was mainly observed among men who have sex with men (MSM) [2].

If not properly treated, syphilis can cause long-term problems. It is important to screen women
for syphilis during pregnancy to provide rapid treatment and to avoid congenital infections. Syphilis
is a globally reemerging infection, as recently observed in the United States and Italy. Asian, African,
and Latin American countries have high syphilis occurrences and are motivated to control prenatal
care [4,5]. According to the Ministry of Health, in Brazil, 50,000 pregnant women are diagnosed with
syphilis annually. The prevalence ranges from 1.1% to 11.5%, depending on maternal schooling and
prenatal care. As a result, almost 12,000 infants are born with congenital syphilis each year [4]. In Brazil,
the regulation of syphilis is one of the goals of the Pact for Health project initiated by the World Health
Organization (WHO) for the elimination of congenital syphilis [4].

Despite sevendecades of penicillin use for the treatment of syphilis infections, T. pallidum exhibits
complete sensitivity to this antibiotic. An increase in treatment complexity has led to the use of
azithromycin as an oral antibiotic. However, over the last few decades, resistance against macrolides
has been reported in many countries and at present, macrolides are not recommended for the cure
or prophylaxis of syphilis [6]. The recent global prevalence of syphilis elicits a need for sustained
preventive measures and strategies. Unfortunately, effective measures are inadequate. Relevant
application of chemicals, antibiotics, lotions, creams, and thorough washing with soap and water after
sexual contact are ineffective. The development of an effective vaccination appears to be the only
alternative for the control of syphilis in the future. In spite of intense research for developing proper
syphilis treatments, restricted progress has been noticed [7]. There are recent cases of emergence
reported in several countries including Norway [8], China [9], the United States, Western Europe [10],
and Martinique [11]. Although in today’s drug discovery process, high-throughput techniques and
synthetic chemistry accelerate the process dramatically, it still takes 10–15 years to introduce a new
drug to the market and therefore, a large investment is required [12].

The first step in the drug and vaccine discovery process is target identification. With the
advent of new sequencing technologies and the deluge of genomic data, scientists are able to use
computational methods to rapidly identify new targets, which are more time and cost effective
than old approaches. Computational methods (i.e., subtractive genomics) are broadly used in this
process. Recently, working with bacterial pathogens using an in silico approach, a large number
of targets have been identified that are either resistant to drugs or for which no appropriate
vaccine is available [13]. Reverse vaccinology is a conventional and popular approach in the
post-genomic era for the prompt identification of novel vaccine targets [14,15]. Approaches, such as
comparative and subtractive genomics and differential genome analyses [16], are being widely
utilized for target identification in several human pathogens, including Mycobacterium tuberculosis [17],
Helicobacter pylori [18], Burkholderia pseudomallei [19], Pseudomonas aeruginosa [20], Salmonella typhi [21],
and Neisseria gonorrhoeae [22]. Generally, the principle behind these approaches is the identification
of gene/protein targets that are essential for the survival of the pathogen but are not homologous
to genes/proteins of the host [23]. Nevertheless, the identified targets may have a certain degree of
homology with the host protein and are essential for the survival of the pathogen; hence, they can
also be selected for structure-based selective inhibitor development as an additional molecular target.
The differences in the active sites or other pockets with suitable druggability of the pathogenic protein
could play an important role when compared to the host protein [24,25]. In this study, we mainly focus
on the in silico identification of putative vaccine and drug targets against syphilis disease using reverse
vaccinology and subtractive genomics. The goal was to identify plant-derived new lead antimicrobial
compounds, and the proposed drug molecules show favorable interactions, lowered energy values,
and high complementarity with the predicted targets.
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2. Result and Discussion

The total number of proteins described in each of the following sections and all the methodologies
used in our work are described on the workflow in Figure 1.
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Figure 1. Complete workflow with the number of genes selected in each step and methodologies
used. The sentences in black describe the analyses made and the software used in each step.
The sentences in red represent the number of proteins selected in each step. CDS = coding DNA
sequence; MVD = Molegro Virtual Docker.

2.1. Identification of Intra-Species Conserved Non-Host Homologous Proteinsand Pathogenicity Islands

We compared 13 Treponema pallidum strains (Table 1) using Treponema pallidum Nichols as the
reference using the orthoMCL software [26]. Coding DNA sequences (CDSs) shared by all species
were considered a part of the core genome. Considering the human genome as the host genome, a set
of 565 conserved non-host homologous proteins were identified. The prediction of genomic islands
(GIs) was subsequently performed. GIs are gene clusters, usually >8 kb in size, likely acquired via
horizontal gene transfers (HGT), and often playing a role in the environmental or host adaptation of
bacteria. GIs significantly influence bacterial evolution and provide further insight in differentiating
bacterial species and strains. For T. pallidum Nichols strains, 10 putative GIs were identified through
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the Genomic Island Prediction Software (GIPSy) [27], using Treponema denticola as a closely related,
non-pathogenic organism. Of the 10 GIs, four are classified as pathogenicity islands (PAIs), i.e., they
present high concentrations of virulence factors and are absent in the aforementioned closely related
non-pathogenic organism (Figure 2).

Table 1. Genomic features of all T. pallidum (Tp) strains.

Strain Size (Mb) GC% Gene Protein

Tp_Nichols 1.13 52.80 1044 970
Tp_Sea81-4 1.13 52.80 1032 931

Tp_SS14 1.13 52.80 1042 971
Tp_Chicago 1.13 52.80 1030 969
Tp_SamoaD 1.13 52.80 1027 971

Tp_CDC2 1.13 52.80 1030 973
Tp_Gautheir 1.13 52.80 1029 971

Tp_DAL1 1.13 52.80 1030 969
Tp_MexicoA 1.14 52.80 1029 968

Tp_Fribourg-Blanc 1.14 52.80 1030 970
Tp_SS14 (14.8.2015) 1.13 52.80 1029 970

Tp_BosniaA 1.13 52.80 1027 970
Tp_pallidum 1.13 52.70 1033 964
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Guanine-Cytosine (GC) content is shown in black.

2.2. Assessment of Essential Genes

Essentiality analysis identifies significant genes required for pathogen survival such as adhesion,
entry into the host, infection, and persistence in the host [13]. The conserved 565 non-hosts homologous
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proteins were subjected to the Database of Essential Genes (DEG) for the identification of essential
proteins, through which a final set of 268 proteins was obtained (Table S1). Essential proteins are
necessary for the survival of pathogen within the host. When these essential proteins are declared to
be virulent, they can be of vital significance to unveil novel therapeutic targets. There is a probability
of essential proteins to be conserved among various populations and species because of their vital
roles in various pathways for pathogen survival [13,28]. Virulence is the characteristic of a pathogen
responsible for causing severe human diseases. In the present study, these properties have been given
high priority to identify potential vaccine candidates computationally. Although only 268 proteins
were identified as essential by DEG, we considered all 565 proteins for our analyses.

2.3. Prediction of Candidate Vaccine Target for T. pallidum

The subcellular localization of conserved non-hosts homologous proteins of T. pallidum strains
were predicted with the SurfG+ software [29]. We classified 207 gene products as putative
surface-exposed (PSE) proteins, secreted proteins, or membrane proteins (Table 2). The proteins
predicted by SurfG+ were further analyzed with the software Vaxign [30] for antigenic properties with
adhesion probabilities greater than 0.51, resulting in the detection of three proteins in the T. pallidum
strains Nichols (Table 3). We found that out of these three proteins, Tp_Nichols141 and Tp_Nichols797
were hypothetical proteins. Tp_Nichols141 belongs to the pathogenicity island 1 (Figure 2). When
the adhesion probability threshold was >0.4, we also identified 12 more proteins that can also be
considered potential vaccine candidates against T. pallidum.

Table 2. Subcellular location of Treponema pallidum (Tp) strain proteins.

Localization Number of Proteins

Cytoplasmic Protein 358
Membrane Protein 83

PSE a 88
Secreted Protein 36

a Putative Surface Exposed.

Previous studies have shown the importance of targeting proteins involved in the capability of
T. pallidum to invade host tissues and to evade the functional immune response, contributing to its
persistence during the “latency” stage. Most of the described gene targets code for proteins responsible
for the attachment to extracellular matrix bridges (Tp0136, TP0155, Tp0483, and Tp0751), such as the
low density integral Outer Membrane Proteins (OMPs) [6]. Briefly, in our predictions of good vaccine
targets, we have identified Tp_Nichols350 and TpNichols852 with similarities to two previously
described OMPs (TP0453 and Tp_0326), along with two additional OMP domain containing proteins:
Tp_Nichols797 and Tp_Nichols141. Interestingly, both Tp_Nichols797 and Tp_Nichols141 presented
adhesion probabilities higher than 0.5 and should be given priority in in vitro assays.
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Table 3. Putative antigenic proteins of Treponema pallidum (Tp) identified using Vaxign.

Tp_Nichols Protein ID Gene Name Subcellular
Localization

SignalP Result
(Cleavage Site)

TMHMM
Result InterProScan (Domain) Gene Product Adhesion

Probability

Tp_Nichols797 WP_010882178.1 - SEC Yes
(between 25 and 26) TMH = 0

Outer membrane protein/outer
membrane enzyme PagP,

beta-barrel—IPR011250 (65–219)
Hypothetical protein 0.552

Tp_Nichols141 WP_014342713.1 - PSE No TMH = 1
Outer membrane protein/outer

membrane enzyme PagP,
beta-barrel—IPR011250 (100–225)

Hypothetical protein 0.525

Tp_Nichols466 WP_010881878.1 ntpK MEM No TMH = 4
V-ATPase proteolipid subunit

C-like domain—IPR002379
(76–138)

Two-sector ATPase,
V(0) subunit K 0.590

Tp_Nichols930 WP_010882306.1 slyD PSE No TMH = 1
Peptidyl-prolyl cis-trans isomerase,

FKBP-type,
N-terminal—IPR000774 (66–143)

FKBP-type peptidyl-prolyl
cis-trans isomerase SlyD 0.488

Tp_Nichols471 WP_010881883.1 nlpE SEC Yes
(between 23 and 24) TMH = 0 No Copper resistance

lipoprotein NlpE 0.475

Tp_Nichols650 WP_010882040.1 - PSE No TMH = 2 Domain of unknown function
DUF2147—IPR019223 (71–193) Hypothetical Protein 0.474

Tp_Nichols1046 WP_010882416.1 ftr1 MEM No TMH = 6 No Conserved hypothetical integral
membrane protein 0.44

Tp_Nichols52 WP_010881498.1 TPANIC_0600 PSE No TMH = 1 Duplicated hybrid
motif—Ipr011055 (196–355) Zinc metalloprotease 0.428

Tp_Nichols610 WP_010882004.1 - SEC No TMH = 1 Zinc finger,
CHCC-type—IPR019401 (8–34) Hypothetical Protein 0.425

Tp_Nichols323 WP_010881746.1 - SEC No TMH = 1 Sporulation-related
domain—IPR007730 (172–252) Hypothetical Protein 0.41

Tp_Nichols852 WP_010882234.1 TP_0453 SEC Yes
(between 23 and 24) TMH = 0 No Outer membrane protein TP0453 0.408

Tp_Nichols350 WP_014342788.1 tp92 SEC Yes
(between 37 and 38) TMH = 1 Bacterial surface antigen

(D15)—IPR000184 (478–849)
Putative outer membrane

protein assembly factor TP_0326 0.405

Tp_Nichols98 WP_010881537.1 - PSE No TMH = 0 No Hypothetical Protein 0.401

Tp_Nichols347 WP_010881771.1 TP_0323 MEM No No
Ribose/galactose ABC
transporter, permease

protein (RbsC-2)
0.401

Tp_Nichols362 WP_010881783.1 TPANIC_0335 MEM No TMH = 2 No Putative membrane protein 0.401

SEC = secreted; PSE = Putative surface exposed; MEM = Membrane; TMH = Transmembrane Helix, TMHMM = Transmembrane Helix prediction server, based on a hidden Markov model.
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2.4. High Throughput Structural Modeling

The main focus of this study was to find candidate vaccine targets. However, according to
Caroline et al., 2014 [6], the difficulty in curing syphilis is due to the vilification of many antibiotics for
treatment or prophylaxis. Our contributionsincludetheprediction of some novel drug targets against
Treponema pallidum. For this, the identified 565 conserved non-host homologous Treponema pallidum
proteins were submitted to MHOLline [31] an online web tool, to predict the modelome. MHOLline
utilizes multi-fasta files of amino acids as an input data and then uses HMMTOP, BLAST, BATS,
MODELLER, and PROCHECK programs for the detailed analyses. The program HMMTOP detects
transmembrane regions. The BLAST algorithm is used to identify the template structure by performing
a random search against the Protein Data Bank. BATS (Blast Automatic Targeting for Structures)
carries out the refinement in the template search and it is a key step for the model construction.
BATS refinement identifies sequences that make the modeling possible by selecting a template from
a BLAST output file using their BATS scores, expectation values, identity, and sequence similarity as
criteria, as well as considering the number of gaps and the alignment coverage. BATS selects the best
template for 3D model generation and performs automated alignment using the MODELLER program.
Furthermore, it gathers all the BLAST output files into four distinctive groups (i.e., G0, G1, G2, and G3)
according to the following criteria: G0 = unaligned sequence; G1 = E-value > 10 × 10−5 or identity
<15%; G2 = E-value ≤ 10 × 10−5 and identity ≥25% AND LVI ≤ 0.7; G3 = E-value ≤ 10 × 10−5

and identity ≤15% and <25% OR LVI (Length Variation Index) >0.7. Only the first three distinct
quality G2 model groups were taken into consideration in this study; these were: 1—very high quality
model sequences (identity ≥75%) (LVI ≤ 0.1), 2—high quality model sequences (identity ≥50%) and
<75%) (LVI ≤ 0.1), and 3—good quality model sequences (identity ≥50%) (LVI > 0.1 and ≤0.3) [31]).
Therefore, all the considered protein 3D models were constructed from sequences for which their
template is available with identity ≥50%. We found 26 proteins (8 very high, 12 high, and 6 good) in
the first 3 distinct quality G2 model groups.

The membrane and cell wall associated proteins are, theoretically, more exposed as targets than
the cytoplasmic drug targets. However, membrane proteins are difficulty to purify and assay [32].
Cytoplasmic membrane proteins are also very important for the physiology of bacteria, as they are
involved in many important metabolic functions. Therefore, the membrane, putative surface exposed,
and secreted proteins are better applicable as targets for reverse vaccinology, whereas the pivotal role
of cytoplasmic proteins in maintenance of cell viability makes them more favorable as drug targets [33].
Out of the 26 proteins, only cytoplasmic proteins that were present in any GIs were selected as
candidate drug targets. Six proteins that were also present in the 268 proteins were identified as
essential in the DEG analyses and were considered for the target prioritization and docking studies
(Table 4).

The outer membrane may pose a barrier for drugs to gain access to cytoplasmic targets. However,
small molecules are able to gain access to the periplasm through porins and reach the cytoplasm.
In previous studies, it was shown that one of the pore forming OMPs, OmpF, has an exclusion limit of
600 Daltons, for example, which is used by ions, amino acids, and small sugars as a means to reach
the periplasm [34]. The molecular weight of the compounds used here varies from ~275.1 g/mol
(liriodenine) to~488.7 g/mol (jacarandic acid) and they may also be able to use porins to gain access to
the periplasm. Alternatively, the use of nanoparticles as delivery systems or a combined treatment,
such as with polymyxins and derivatives that increase the permeability of the outer membrane,
may also help in overcoming the outer membrane barrier [35].
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Table 4. Drug target prioritization parameters and functional annotation of the six non-homologous putative targets.

Locus Tag, Gene,
and Protein ID Official Full Name Mol. Wt (KDa) a Functions b Cellular

Component c Pathways d Virulence e DEG Analyses

Tp_Nichols130, uvrB,
WP_010881565.1

UvrABC system
protein B 76.19

MF: ATP (Adenosine triphosphate)
binding, DNA binding, excinuclease

ABC activity, helicase activity. BP:
nucleotide-excision repair, SOS response.

Cytoplasm Unknown Yes Essential gene

Tp_Nichols593, Pfp,
WP_010881989.1

Pyrophosphate-fructose
6-phosphate

1-phosphotransferase
62.43 – Cytoplasm Glycolysis Yes Essential gene

Tp_Nichols609, asnA,
WP_010882003.1

Aspartate-ammonia
ligase 36.86

MF: Aminoacyl-tRNA ligase activity,
aspartate-ammonia ligase activity, ATP
binding.BP: L-asparagine biosynthetic

process, tRNA aminoacylation for
protein translation.

Cytoplasm L-asparaginebiosynthesis Yes Essential gene

Tp_Nichols754, recA,
WP_010882137.1 Protein RecA 45.33

MF: ATP binding, damaged DNA binding,
DNA-dependent ATPase activity, single

stranded DNA binding.BP: DNA
recombination, DNA repair, SOS response.

Cytoplasm Unknown Yes Essential gene

Tp_Nichols990, Ndh,
WP_010882364.1

NADH (Nicotinamide
adenine dinucleotide)

dehydrogenase
48.64

MF: flavin adenine dinucleotide binding,
NADH dehydrogenase activity.BP: cell

redox homeostasis.
Cytoplasmic Unknown Yes Essential gene

Tp_Nichols1011, Dxs,
WP_010882382.1

1-deoxy-D-xylulose-
5-phosphate synthase 129.82

MF: 1-deoxy-D-xylulose-5-phosphate
synthase activity, magnesium ion binding,

thiamine pyrophosphate binding.BP:
1-deoxy-D-xylulose-5-phosphate
biosynthetic process, terpenoid
biosynthesis process, Thiamine

biosynthesis process.

Cytoplasmic
1-deoxy-D-xylulose

5-phosphate
biosynthesis

Yes Essential gene

a Molecular weight was determined using the ProtParam tool [36]; b Molecular function (MF) and biological process (BP) for each target protein was determined using UniProt; c Cellular
localization of pathogen targets was performed using SurfG+; d KEGG (Kyoto Encyclopedia of Genes and Genomes) was used to find the role of these targets in different cellular pathways;
e PAIDB (PAthogenisity Island DataBase) and GIPSy were used to check if the putative targets are involved in pathogen virulence. DEG = Database of Essential Genes; MF = Molecular
function; BP = Biological process.
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2.5. Analyses of Non-Host Homologous Targets and Molecular Docking

In molecular docking, lower energy scores represent better protein-ligand bindings compared
to higher energy values [37]. We considered the lower MolDock score and the interaction with the
residues that were involved in the active site of the target for the prediction of therapeutic candidates.
For each target protein (uvrB, pfp, asnA, recA, ndh, and dxs), a library of 28 natural compounds were
docked to examine each molecule one-by-one for the selection of the final set of promising molecules
that showed favorable interactions with the active site residues of targets. The biological importance
for each target is described here (Table 4) along with an analysis of the predicted protein-ligand
interaction(s). The name of the molecules, MolDock scores for the selected ligands, and the number of
predicted hydrogen bonds with the active residues involved in these interactions are shown below for
each target protein (Table 5). The predicted configurations of one of the best-docked molecules are also
shown for each pathogen target in Figure 3A–F.
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cavity of drug target. (A) Tp_Nichols130 (uvrB, Uvr ABC system protein B) with potamogetonin
(CID 5742898); (B) Tp_Nichols593 (pfp, pyrophosphate—fructose 6-phosphate 1-phosphotransferase)
with jacarandic acid (CID 73645); (C) Tp_Nichols609 (asnA, aspartate-ammonia ligase) with
leptophyllin B (CID 10447482); (D) Tp_Nichols754 (recA, RecA protein) with dihydrochelirubine
(CID 440589); (E) Tp_Nichols9904 (ndh, NADH dehydrogenase) with leptophyllin B (CID 10447482);
(F) Tp_Nichols1011 (dxs 1-deoxy-D-xylulose-5-phosphate synthase) with pinoresinol (CID 234817).

Based on a structural comparison with a crystallographic structure of the uvrB template
(2d7d, uvrB from Bacillus subtilis), the active site residues involved in H-bond interactions with the
crystallographic ligand adenosine-5′-diphosphate are Phe10, Gln11, Gln16, Gly41, Gly43, and Arg541.
One of these residues, Gly41, was predicted to make hydrogen bonds to the ligand potamogetonin
(CID 5742898) with a MolDock score of −97.81. Similarly, for the target pfp template (2F48,
Borrelia burgdorferi), the active site residues involving in H-bond interactions are Lys211, Pro210,
Asp214, Gly90, Tyr434, Arg154, Met259, Arg261, and Glu320. The residue Lys211 interacts with
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jacarandic acid (CID 73645) and pinoresinol (CID 234817) with MolDock scores of −62.15 and −112.67,
respectively. The compound leptophyllin B (CID 10447482) interacts with the identified active site
residues Ser111, Cys113, Asp115, Tyr218, and Ser251of asnA (PDB ID: 12AS from Escherichia coli) and
Leu298, Asp32, and Asn36 of ndh (PDB Template ID: 2BC0 from Streptococcus pyogenes).

Interestingly, the drug molecule pinoresinol (CID234817) was predicted to show good results
against four of our targets uvrB, pfp, asnA, and dxs. Pinoresinol is a lignan, biphenolic compound
found in Araucaria araucana and Sambucus williamsii. It possesses bactericidal and fungicidal activities
and therapeutic potential as an antifungal agent for the treatment of fungal infectious diseases in
humans [38,39]. Thus, the identification of pinoresinol in our in silico study strengthens our protocol
and can be potentially used as a new drug for the treatment of syphilis.

Table 5. The MolDock scores of natural compounds and predicted hydrogen bonds for the selected
best-ranked molecules against each drug target.

Compounds Name MolDock Score Number of H-Bond Residues Interacting

Tp_Nichols130 (UvrB, Uvr ABC System Protein B)

Diospyrin (CID 308140)
MW: ~374.3 g/mol −119.83 4 Gly506, Asp508

Pinoresinol (CID 234817)
MW: ~358.4 g/mol −114.82 2 His64, Asp508

Potamogetonin (CID 5742898)
MW: ~314.4 g/mol −97.81 4 Gly41, Lys44, Gly506, Asp508

Tp_Nichols593 (pfp, Pyrophosphate-fructose 6-phosphate 1-phosphotransferase)

Pinoresinol (CID 234817)
MW: ~358.4 g/mol −112.67 5 Ser88, Lys211, Gly260, Glu320

Jacarandic acid (CID 73645)
MW: ~488.7 g/mol −62.15 7 Ser88, Ser186, Gly183, Lys211, Glu320, Ser396

Texalin (CID 473253)
MW: ~266.3 g/mol −91.57 4 Gly90, Thr212, Ser186, Ile213

Tp_Nichols609 (asnA, Aspartate-ammonia ligase)

Leptophyllin B (CID 10447482)
MW: ~299.4 g/mol −141.21 5 Ser111, Cys113, Asp115, Tyr218, Ser251

Pinoresinol (CID 234817)
MW: ~358.4 g/mol −132.814 5 Ser49, Lys77, Ser251, Arg255

Liriodenine (CID 10144)
MW: ~275.1 g/mol −95.65 2 Lys77, Arg255

Tp_Nichols754 (recA, Protein RecA)

Dihydrochelirubine (CID 440589)
MW: ~363.4 g/mol −138.94 4 Gly84, Lys85, Ser83, Thr86

Piperine (CID 638024)
MW: ~285.3 g/mol −17.14 5 Ser83, Gly84, Lys84, Gln207, Gly279

Rhein (CID 10168)
MW: ~284.2 g/mol −96.11 7 Ser83, Gly84, Thr86, Tyr116, Asn254, Gly279

Tp_Nichols990 (ndh, NADH dehydrogenase)

Leptophyllin B (CID 10447482)
MW: ~299.4 g/mol −122.62 4 Leu298, Asp32, Asn36

Dicentrinone (CID 177744)
MW: ~335.3 g/mol −111.09 4 Arg33, Ala11

Isosakuranetin (CID 160481)
MW: ~286.3 g/mol −109.35 3 Arg33, Ala11, Cyc42

Tp_Nichols1011 (dxs, 1-deoxy-D-xylulose-5-phosphate synthase)

Pinoresinol (CID 234817)
MW: ~358.4 g/mol −146.18 5 Asp978, Thr1006, Thr32, Arg115

Piperine (CID 638024)
MW: ~285.3 g/mol −131.40 3 Thr32, Arg115, Trp980

Berberine (CID 2353)
MW: ~336.4 g/mol −115.94 3 Thr32, Gly979, Asn1011

MW = molecular weight; CID = PubChem Compound Identifier.
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3. Materials and Methods

3.1. Selection of Data

The genome sequences of all 13 strains of T. pallidum were retrieved from the NCBI
(National Center for Biotechnology Information) server [40]. For homogeneity in the functional
annotation, all genomes were annotated using the RAST server (RapidAnnotationsusing
SubsystemsTechnology) [41]. Furthermore, these annotated genome sequences were used for analysis.

3.2. Identification of Intra-Species Conserved Non-Host Homologous Proteins

In comparative genomics, the orthologous genes are clustered to obtain a framework to integrate
information from multiple genomes, highlighting the conservation and divergence of gene families
and biological processes. For pathogens, clustering orthologs can facilitate drug and/or vaccine targets
identification. We compared 13 strains of Treponema pallidum using Treponema pallidum Nichols as the
reference genome, using orthoMCL software [26] with an E-value of 1 × 10−50. CDSs shared by all
strains were considered a part of the core genome. The possible candidates for drugs and/or vaccines
should be non-homologues to human proteins; thus, autoimmunity is avoided, and an accurate
immune response is elicited against the targeted pathogen. Accordingly, these core genes were
subjected to orthoMCL software (E-value = 1 × 10−50) against the human genome for the identification
of non-host homolog targets.

3.3. Identification of Pathogenicity Islands

Knowledge about pathogenicity islands, the virulence factors they encode, their mobility, and
their structure is not only helpful in understanding the bacterial evolution and their interactions with
eukaryotic host cells, but may also facilitate in providing delivery systems for vaccination and tools
for the development of new approaches for treating bacterial infections [28]. The identification of
pathogenicity islands in the genome of T. pallidum Nichols was performed with GIPSy (Genomic Island
Prediction Software) [27] through the detection of regions presenting: deviations in genomic signature
(i.e., anomalous G+C and/or codon usage deviation); presence of transposase, virulence or flanking
tRNA genes; and absence in the non-pathogenic organism Treponema denticola.

3.4. Assessment of Essential Genes

A subtractive genomics approach was followed to identify conserved targets that were essential to
the bacteria [13]. The set of core conserved proteins of T. pallidum Nichols was subjected to the Database
of Essential Genes (DEG) [42] for homology analyses. The DEG contains experimentally validated
data from bacteria, archaea, and eukaryotes that are comprised of currently reported essential genomic
elements including protein-coding genes that are indispensable to support cellular life. The cut-off
values used for BLASTp were: E-value = 0.0001, bit score =100, and identity = 25% [15,18,30].

3.5. Reverse Vaccinology Approach for Prediction of Putative T. pallidum Vaccine Targets

For potential vaccine targets, subcellular localization and the secretion of pathogenic proteins are
important factors for consideration, where secreted and membrane proteins are the first to be in contact
with the host, eliciting an immune response. Therefore, the prediction of the exoproteome or secretome,
composed of the proteins localized in the extracellular matrix or outer membrane of the organism, is
highly valuable for reverse vaccinology strategies. In combination with subtractive proteomics, reverse
vaccinology can provide a more reliable output compared to screening of the whole data set without
considering prioritizing parameters [13]. The non-host homologous conserved proteome of T. pallidum
Nichols was screened using SurfG+ software [29] to identify secreted proteins, membrane proteins,
and putative surface exposed proteins. We searched for cleavage sites and transmembrane helices in
all 15 proteins using SignalP [43] and TMHMM (Transmembrane Helix prediction server, based on
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a hidden Markov model) [44], respectively, and we also predicted the presence of functional domains
for all the 15 proteins with InterProScan, which uses several databases for domain prediction [45].
The dataset was screened by Vaxign [30] by searching for proteins with the following features: major
histocompatibility complex (MHC I) and (MHC II) binding properties, an adhesion probability greater
than 0.51, and no similarity to host proteins.

3.6. High Throughput Structural Modeling

MHOLline [31] was used to predict the modelome (complete set of protein 3D models for the
whole conserved core non-host homologous proteome). MHOLline utilizes multi-fasta files of amino
acids as input data and then uses HMMTOP, BLAST, BATS, MODELLER, and PROCHECK programs
for the detailed analyses. The program HMMTOP detects transmembrane regions [46]. The BLAST
algorithm is used to identify template structure by performing random searches against the Protein
Data Bank [47]. BATS (Blast Automatic Targeting for Structures) performs the refinement in the
template search; its use represents a key step for the model construction. BATS refinement identifies
sequences that make the modeling possible by selecting templates from the BLAST output file using
their BATS scores, expectation values, identity, and sequence similarity as criteria as well as considering
the number of gaps and the alignment coverage. BATS selects the best template for 3D model
generation and performs automated alignment used by the MODELLER program. The adopted
methodology was revised accordingly from the original work by Hassan et al. [46].

3.7. Ligand Libraries and Docking Analyses

The ligand libraries of 28 natural compounds presented by Tiwari et al., 2014 [48] were used
for the docking analysis. The 3D structures of all target proteins were carefully examined for
structural errors (wrong bonds, missing atoms, and protonation states) in the MVD (Molegro Virtual
Docker) [37]. The active side residues of the target proteins were identified by comparing its
3D structure to the respective templates. Furthermore, taking identified cavities from a template
used in a grid for molecular docking. The program includes three search algorithms for molecular
docking analyses, namely MolDock Optimizer [37], MolDock Simplex Evolution (SE), and Iterated
Simplex (IS). We employed the MolDock Optimizer search algorithm, which is based on a differential
evolutionary algorithm, using the default parameters, that are (a) population size = 50; (b) scaling
factor = 0.5; and (c) crossover rate = 0.9. The 3D poses of docked molecules were analyzed in
Chimera [49]. Molecular function (MF) and biological process (BP) for each target protein were
determined using UniProt [41]. The biochemical pathway of these proteins were checked using
KEGG (Kyoto Encyclopedia of Genes and Genomes) [50], SurfG+ software [29], and virulence using
GIPSy [31]. The final list of targets was based on 12 criteria, as described earlier in [13,46].

4. Conclusions

Here, the genomic information was used with the aim of determining the conserved proteome of
13 strains of Treponema pallidum in a search for regions of genome plasticity. Moreover, we used reverse
vaccinology and subtractive genomics to predict new antigenic/drug targets, which can be used in
the development of new vaccines and drugs for Treponema pallidum. After a detailed in silico analysis
between host and pathogen proteins, we suggest that the identified non-host homologous proteins
could be considered for prophylaxis of syphilis due to further experimental validations.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/2/402/s1.
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