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Abstract: The progression of many common disorders involves a complex interplay of multiple 
factors, including numerous different genes and environmental factors. Gene–environmental cohort 
studies focus on the identification of risk factors that cannot be discovered by conventional 
epidemiological methodologies. Such epidemiological methodologies preclude precise predictions, 
because the exact risk factors can be revealed only after detailed analyses of the interactions among 
multiple factors, that is, between genes and environmental factors. To date, these cohort studies 
have reported some promising results. However, the findings do not yet have sufficient clinical 
significance for the development of precise, personalized preventive medicine. Especially, some 
promising preliminary studies have been conducted in terms of the prevention of obesity.  
Large-scale validation studies of those preliminary studies, using a prospective cohort design and 
long follow-ups, will produce useful and practical evidence for the development of preventive 
medicine in the future. 
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1. Introduction 

The development of many common disorders involves complex interplays of multiple factors, 
including numerous genes and environmental factors. Gene–environmental cohort studies focus on 
the identification of risk factors that cannot be discovered by conventional epidemiological 
methodologies [1,2]. Such epidemiological methodologies preclude precise predictions, because the 
exact risk factors can be revealed only after detailed analyses of the interactions among multiple 
factors, that is, between different genes and environmental factors. To date, the cohort studies on 
gene–environmental interactions have reported some promising results. However, the findings do 
not yet have sufficient clinical significance to allow for the development of precise or personalized 
preventive medicine (Figure 1). In this paper, I review the findings of the available studies on gene–
environmental interactions and discuss how to apply these findings to the development of  
preventive medicine. 
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Figure 1. Concept of personalized preventive medicine using gene–environmental interaction. 

2. Current Concepts and Study Design for Investigating Gene–Environmental Interactions 

2.1. Current Concepts 

To clarify gene–environmental interactions in non-communicable diseases (NCDs) is important 
in the field of preventive medicine. The genomic information from germ cell lines remains the same 
throughout the lifespan of a person. Thus, preventive medicine for such genomic factors cannot be 
established. On the other hand, environmental factors, particularly including personal lifestyle habits 
such as diet and exercise, can be improved by personal efforts. Thus, preventive interventions aimed 
at improving such factors are possible, and primary prevention against developing a disease in the 
first place by improving personal lifestyle habits will continue to be the focus of preventive medicine, 
even in the genomic medicine era. Nevertheless, information on gene–environmental interactions has 
the potential to enable precise disease prevention, and represents a major advantage in the genomic 
medicine era. 

One of the advantages of obtaining information of gene–environmental interactions is the 
identification of target lifestyles at which the intervention should be aimed towards. Large-scale 
genomic studies, such as genome-wide association studies (GWASs), can only identify the association 
of genomic variations and the onset of NCDs [3]. However, information on the appropriate 
preventive interventions cannot be provided by such studies. Thus, only general interventions in diet 
and exercise, such as the implementation of low-calorie diets and high-intensity exercise programs, 
would be conducted in individuals with the high-risk genetic variations identified by GWASs. 

In contrast, analyses of gene–environmental interactions can provide more practical and precise 
information. For example, clarification of the combinations of certain genetic variations and the exact 
nutritional intakes that increase or decrease the risk of disease onset would allow us to conduct more 
specific intervention programs, tailored to each individual, by recommending reduced or increased 
intake of a particular food or nutrient. Accordingly, compared to general instructions for diet or 
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exercise therapy, more specific instructions based on the result of gene–environmental interaction 
studies would be more effective in the prevention of the disease. 

2.2. Study Designs for Investigating Gene–Environmental Interactions 

Recent GWASs have adopted a case-control design [3]. In such studies, the frequency of genomic 
variations was compared between the case and control groups. However, the risk of serious bias is 
substantial in gene–environmental interaction analyses. In case-control studies, DNA samples can be 
collected even after disease onset, because DNA information from germ cell lines remains unchanged 
throughout an individual’s lifespan. In contrast, environmental information must be collected before 
disease onset in order to clarify the causation of the disease. In gene–environmental interaction 
analyses, large amounts of information on lifestyle habits need to be collected [4–6], and it is always 
difficult to recall information from before the disease onset, especially in cases where the disease first 
developed 20 or 30 years ago. Even for relatively simple factors such as smoking habits, recall bias 
can be problematic [1]. 

Studies using a prospective cohort design have advantages related to the conduction of gene–
environmental interaction analyses. However, a weakness of such studies is that they are associated 
with long follow-up periods and high costs [1]. Studies using this design generally require a follow-
up period of at least 5 years, usually up to 10 years. In addition, they also need huge sample sizes to 
ensure statistically significant results. To obtain sufficient numbers of disease cases, a large number 
of healthy participants first have to be enrolled. Gene–environmental interaction analyses using 
genome-wide single nucleotide polymorphisms (SNPs) usually require 100,000–1,000,000 samples; to 
detect gene–environmental interactions in diabetes, stroke, or heart failure, which are associated with 
an annual morbidity rate of 0.2%, 200,000 people with 5-year follow-ups were needed which was 
calculated by the QUANTO program [1,7]. Currently, many large-scale prospective genomic cohort 
studies have been conducted or are being planned for worldwide, including the UK Biobank, 
Precision Medicine Initiative Cohort Program, and Tohoku Medical Mega Bank [8–11]. However, 
most of these studies have short follow-up times; thus, it can be considered that further studies with 
long-term follow-up data will allow us to detect novel gene–environmental interactions. 

Another important approach for investigating gene–environmental interactions is Mendelian 
randomization, a method based on Mendel’s second law, the law of random assortment. Instead of 
directly using environmental factors, genetic markers, such as variants of SNPs, for which 
information can be obtained by GWASs, are used. Genetic information derived from germ cell lines 
is unchangeable during a person’s lifetime; thus, the possibility of reverse causation can be eliminated. 
In addition, due to the law of random assortment, this method can be a powerful tool when serious 
bias and/or confounding factors may affect the study results [12,13]. For example, in one previous 
meta-analysis investigating the association between alcohol intake and onset of cardiovascular 
disease [14], Mendelian randomization was conducted using variants of the alcohol dehydrogenase 
1B gene (ADH1B). This study revealed that people with the enzyme variant related to low alcoholic 
decomposition activity tended to drink a lower amount of alcohol. In that study, the subjects could 
be divided into groups with high vs. low intake amounts based on Mendel’s second law. On the other 
hand, allocation to groups with low or high amounts of alcohol intake based on self-reported intake 
is extremely difficult, because it is impossible to limit the personal behavior for a long time, such as 
10 years or more. 

Another study investigating the association between consumption of isothiocyanate, 
abundantly present in vegetables, and the onset of lung cancer [15], used Mendelian randomization 
based on the genetic variants of the glutathione-S-transferase enzyme. This enzyme plays a role in 
the metabolism of isothiocyanate and the deactivation of polycyclic aromatic hydrocarbon, which is 
related to the risk of cancer onset. In this setting, adjustment for the affection of polycyclic aromatic 
hydrocarbon is needed; thus, exposure to polycyclic aromatic hydrocarbon, which is mainly found 
in cigarette smoke, was adjusted for by using the factor of smoking status as a co-variant in the 
multiple regression models or by conducting stratified analyses according to smoking status. This 
study suggested that Mendelian randomization can be a useful tool for investigating gene–
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environmental interactions. Nevertheless, this method has not been widely used. This is probably 
because the associations between genomic information and phenotypes, such as disease onset, will 
require future advances of genomic studies. 

3. Significance of Gene–Environmental Interactions in Preventive Medicine 

3.1. Applying Gene–Environmental Interaction Analyses to Preventive Medicine: Expectations and Limitations 

Although prospective cohort studies are the most appropriate study design to clarify gene–
environmental interactions with a high effect size, as mentioned in Section 2.2, long follow-up periods 
are required to obtain high-level evidence. Recently, the approach using GWASs, conducted using a 
case-control design, has been attempted in preventive medicine against NCDs. However, the 
adaptation of the findings to the development of preventive medicine has been limited. The main 
reason is that odds ratios of gene–environmental interactions usually range between 1–1.5, which is 
too small to use as benchmarks to conduct preventive interventions. For example, gene-environment 
interactions have been reported in breast cancer [16], with interactions between certain SNP 
variations and alcohol consumption reported to associate with increased breast cancer risk; however, 
the odds ratio was only 1.45 [17]. Currently, several research groups, including ours, are conducting 
studies that may lead to the development of effective preventive medicine in obesity. 

3.2. Gene–Environmental Interactions in Obesity 

The study by Speliotes et al. provided important information regarding gene–environmental 
interactions in obesity [18]. The authors reported 32 important SNPs associated with the risk of 
obesity in a European population and calculated the genetic risk score using information obtained 
from a GWAS by weighting each SNP according to the effect size. In brief, the genetic risk score was 
calculated using the β coefficients of the SNPs obtained from the previous GWAS [18,19]. Next, the 
genetic risk score was calculated by multiplying the number of effect alleles (0, 1, or 2) at each locus 
by the β coefficient of that SNP, dividing by the maximum allowable sum of the β coefficients, and 
then multiplying by twice the number of alleles. Higher scores indicate a greater genetic 
predisposition to obesity. 

Using this score, handling genomic information of gene–environmental interactions may be 
facilitated. Accordingly, using this method, subsequent studies found an interaction between the 
genetic risk score and consumption of sugar-sweetened beverages in the development of obesity [20,21]. 
Individuals with a higher genetic risk score and consuming sugar-sweetened beverages showed 
significant increases in their body mass index (BMI) compared to those with lower genetic risk scores. 
Similar interactions have also been reported between BMI and fried foods [22] and between BMI and 
physical activities [23,24]. However, information on gene–environmental interactions in obesity is 
still limited, which is one of the main reasons for why an effective prevention method against obesity 
has not yet been established. 

In our recent study, we elucidated the effects of gene-environment interactions on obesity, 
specifically between genetic factors and various obesity-related lifestyle factors, using data from a 
population-based prospective cohort study [25]. The genetic risk score from the β coefficients of 29 
SNPs from East Asian subjects was used to conduct the analyses [18,19]. We reported several 
potentially useful gene–environmental interactions for the risk of high BMI, including associations 
between the genetic risk score and animal fat intake, vegetable fat intake, or animal protein intake. 
For example, in the group with a high genomic risk score, animal fat intake and fiber intake were 
significantly associated with BMI increases, while vegetable fat intake and animal protein intake were 
significantly associated with decreased BMI. On the other hand, in the group with the lowest genetic 
risk score, a high amount of carbohydrate intake and a sedentary lifestyle were associated with BMI 
increases. Thus, preventive measures in terms of lifestyle changes should be individualized according 
to the genomic risk, that is, personal preventive medicine. However, the sample size of our previous 
study was relatively small, with only approximately 1000 people included, and the statistical power 
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was hence not sufficient to draw any definite conclusions. Validation studies using larger data sets 
are required in the future. 

4. Challenges for Establishing Personalized Preventive Medicine 

The use of large-scale prospective cohort studies would produce important findings in terms of 
gene–environmental interactions; however, some challenges remain to be discussed. First, “the 
missing heritability of complex disease” [26] has to be found. The genetic variants that have been 
found in GWASs can only explain a small proportion of the risk of disease onset. GWASs can 
effectively find common variants, with a frequency >5%, that are implicated in common diseases. 
However, low frequency variants, with a frequency of 0.01%–0.05% and with intermediate effects, 
cannot be found by GWASs [27,28], and this might account for a large part of “the missing 
heritability”. Thus, Manolio et al. [1,26] proposed several strategies to find this “missing heritability”. 
Their strategy focused on finding low-frequency variants with intermediate effects by various 
technical approaches, including thorough advances in sequencing. The latest technology in 
sequencing provides monumental increases in speed and volume, which could, in the future, allow 
us to find these variants by examining either the target region of interest or the whole genome [29]. 

These technologies will be of great benefit to gene–environmental interaction analyses using 
data from cohort studies. While the previous studies focused only on analysis using SNPs, which are 
common variants [18,25], gene–environmental analyses on the interactions of low-frequency variants 
and environmental factors will be able to be conducted in the future. Handling and analyzing the 
huge amounts of data obtained from the novel sequencing technologies will be another challenge in 
the near future. Although some methods have been proposed [30], future advances in data science 
will be required, and the progress made in artificial intelligence may be beneficial for this purpose. 

Second, the strategies of applying the findings from gene–environmental interactions have to be 
considered. All information on gene–environmental interactions cannot be applied to the 
development of preventive medicine, even if statistically significant. Valid environmental factors to 
be intervened include personal lifestyle habits such as diet and exercise, which can be improved by 
personal efforts. Thus, developing preventive intervention programs aimed at improving such 
factors are possible, and primary prevention against developing a disease in the first place by 
improving personal lifestyle habits will continue to be the focus of preventive medicine. The next 
challenge will be to develop more effective, individualized programs. To investigate the effectiveness 
of various intervention programs, prospective studies comparing these programs are required. This 
phase will be essential for establishing effective personalized preventive medicine strategies. 

Third, personalized preventive medicine is associated with higher costs than conventional 
preventive medicine. Gene typing costs much higher than conventional examinations, including 
blood tests, urine tests, radiography, cardiography, and physical examination. Measurement of 
genetic risk at the population level would be quite challenging in some countries. A person’s 
understanding and interpretation of genomic information is critical to conduct personalized 
preventive medicine using genomic information [31]. Therefore, education regarding “genetic 
literacy” is needed at least for patients who receive preventive interventions, which are associated 
with high additional costs. Thus, identification of the groups in which preventive medicine can be 
cost-effective, such as those who have a high risk for disease onset and in whom preventive 
intervention can effectively prevent this onset, is probably an appropriate approach to establish 
personalized preventive medicine. 

5. Conclusions 

Clarifying gene–environmental interactions in NCDs represents an attractive approach to 
establish personalized preventive medicine; however, there are currently limited data supporting 
interventions that can be easily adopted in clinical practice, while there are some promising 
preliminary studies. Longer follow-up studies of the present genomic prospective cohort studies will 
allow us to obtain practical evidence for the establishment of preventive medicine. 
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