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Abstract: Gene Regulatory Networks (GRNs) control many biological systems, but how such 
network coordination is shaped is still unknown. GRNs can be subdivided into basic connections 
that describe how the network members interact e.g., co-expression, physical interaction,  
co-localization, genetic influence, pathways, and shared protein domains. The important regulatory 
mechanisms of these networks involve miRNAs. We developed an R/Bioconductor package, namely 
SpidermiR, which offers an easy access to both GRNs and miRNAs to the end user, and integrates 
this information with differentially expressed genes obtained from The Cancer Genome Atlas. 
Specifically, SpidermiR allows the users to: (i) query and download GRNs and miRNAs from 
validated and predicted repositories; (ii) integrate miRNAs with GRNs in order to obtain  
miRNA–gene–gene and miRNA–protein–protein interactions, and to analyze miRNA GRNs in 
order to identify miRNA–gene communities; and (iii) graphically visualize the results of the 
analyses. These analyses can be performed through a single interface and without the need for any 
downloads. The full data sets are then rapidly integrated and processed locally. 

Keywords: microRNA; network; protein; gene 
 

1. Introduction 

Gene regulatory networks (GRNs) play a crucial role in many key biological processes, such as 
cell differentiation, metabolism, cell cycle, and signal transduction. For instance, when a pathological 
process is ongoing, the dynamics of GRNs are most likely altered. Thus, the differences observed in 
GRNs in healthy and pathological conditions may reveal the mechanisms behind disease onset and 
progression. 

A wide number of computational tools have been developed for analyzing and displaying GRN 
aided by the ever-increasing public availability of (big) data. 
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GeneMANIA [1] is one of the most popular web-based tools for studying validated biological 
networks. It enables different types of protein-protein and gene–gene interactions and networks to 
be predicted and visualized. Initially released in 2010, it currently indexes more than 2000 association 
networks, and maps more than 500,000,000 interactions from nine different organisms, extracted 
from a large number of publicly available sources.  

MicroRNAs (miRNAs), which are small non-coding RNAs, are emerging as key drivers in the 
regulation of GRNs [2,3]. This is evidenced by the growing number of papers on this topic (from 
approximately 200 articles published in 2010 to 600 in 2015). MicroRNAs are particularly appealing 
as non-invasive tools for disease diagnosis, prognosis, and also therapy, since they have been found 
to be stably expressed in biofluids (such as serum and plasma) in several pathologies [4,5]. 

Some studies have provided insights into miRNA–gene regulation, showing that miRNAs tend 
to target highly connected genes in cellular networks, thus identifying miRNA–gene communities 
[6,7]. Since community structure conveys important information on specific functions [8], several 
community detection algorithms have been implemented to identify community structural 
properties, e.g. centrality measures, path length properties, and vertex and edge attributes. 

Degree centrality (i.e., in the graphical representation of GRN, the number of neighboring 
vertices to which a node is directly connected) has been widely used for the analysis of biological 
networks [9]. It enables high-density nodes to be detected and ranked, e.g., proteins, genes, and 
miRNAs. 

Several online resources provide collections of multiple databases that enable biologists to easily 
identify the biological functions and regulatory relationships between a group of known/putative 
miRNAs and validated/predicted target proteins, genes, and also associations with diseases or drugs 
(see, e.g., miRTAR [10], miRwalk [11], DIANA [12], Miranda [13], PicTar [14], TargetScan [15], 
miRandola [16], miR2disease [17], and Pharmaco-miR [18]). However, these resources need to be 
imported into other software tools for processing, tabulation, analysis, and graphing. 

To overcome these limitations, more advanced tools have been recently made available to the 
scientific community such as collections of predicted and validated miRNA–target interactions  
(e.g., miRNATap [19], multiMiR [20], and MAGIA2 [21]). Although each of these tools supports the 
user with particular features, only MAGIA2 is able to automatically integrate the information on 
miRNA interaction networks with GRNs but with some limitations. For instance, there is no 
information on validated protein–protein or gene–gene interactions, or miRNA associations with 
diseases and drugs. MAGIA2 only provides information on the interaction between transcription 
factors and the genes regulated by those transcription factors, omitting any other information 
regarding gene–gene interaction. 

In this work, we describe a new software tool, namely “SpidermiR”, which automatically 
integrates with GRNs the information on miRNA interaction networks, and the association with 
drugs and diseases. It enables users to query, download, analyze, and visualize miRNA data with 
respect to specific GRNs, including different types of gene–gene (protein–protein) interactions (e.g., 
co-expression, genetic interactions, pathways, physical interactions, and shared protein domains).  

SpidermiR has already been integrated with the most comprehensive repository of human 
cancer molecular and clinical data, The Cancer Genome Atlas (TCGA) [22–24], collecting 33 different 
tumor types by sampling across hundreds of cases per tumor type.  

Most studies on TCGA data have focused on differentially expressed genes (DEGs) among 
different groups of tissue samples, and these analyses have not yet been able to fully reveal the 
relationships among genes or their dependency with miRNAs. Thus, the identification of miRNA-
gene communities enriched by DEG, as is possible with SpidermiR, could simplify the problem of 
data interpretation and clarify the role of miRNAs in the onset and development of a specific cancer. 

SpidermiR is available as open source and open development software in the bioconductor 
platform and thus is easily visible and accessible to an active user community, thereby promoting the 
reproducibility and the transparency of results.  
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2. Results and Discussion 

In this section, we present the key features implemented in the SpidermiR package, and 
highlight the advantages of this software compared to other packages currently available to the 
scientific community with similar purposes. 

We then present two case studies that will help in clarifying the utility of SpidermiR for users. 
The two case studies are shown in addition to the executable R code in the online documentation [25,26]. 

2.1. Key Features 

Figure 1 highlights the key features of SpidermiR. 
SpidermiR allows users to: (i) query and download GRNs from GeneMANIA and miRNAs from 

validated and predicted repositories, and harmonize annotations for miRNAs, genes, and proteins 
(query/download/annotation harmonization); (ii) integrate miRNA data with GRNs in order to 
obtain miRNA-regulated networks (miRNA–gene–gene and miRNA–protein–protein interactions) 
(enrichment), analyze miRNA GRNs to select specific interactions (interaction selection) and identify 
miRNA–gene communities (community detection); and (iii) graphically visualize and quantitatively 
summarize the miRNA-GRNs (graphics/metrics). 

These analyses can be performed without having to navigate and access different web-based 
databases, without the need to download data, and by integrating and locally processing the full data 
sets in a short time.  

 
Figure 1. The key features of SpidermiR package. 

SpidermiR is implemented as an R package, licensed under the General Public License (GPLv3). 
It is freely available, through the Bioconductor repository, at [25,26]. 

2.2. Benchmarking 

SpidermiR offers easy access to both GRNs and miRNAs, and integrates this information with 
differentially expressed genes obtained from TCGA. It has several advantages with respect to other 
tools for integrative network analysis with miRNA data: the main difference is that in the competing 
tools, the role of miRNAs in the gene network has scarcely been considered and assessed. 

As specified in the introduction, GeneMANIA is a web portal enabling users to build and 
visualize a composite gene–gene (both predicted and validated) or protein–protein (validated) 
functional interaction network. Currently, there are no functions that allow users to download these 
data in R or in Bioconductor in order to analyze them and integrate the networks with other 
information.  
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miRNAtap is a software package integrated in Bioconductor, solely focused on four predicted 
miRNA–gene databases (Miranda, PicTar, TargetScan, miRandola), and it integrates miRNA target 
prediction from different sources, aggregating them with various methods. Compared to miRNAtap, 
SpidermiR provides more features such as miRNA pharmaco/disease association, network data, 
analysis function, and miRNA–gene databases. 

MultimiR is an R script that provides users with both predicted data from eight external 
databases (DIANA, EIMMo, MicroCosm, miRanda, miRDB, PicTar, PITA, and TargetScan), and 
validated miRNA–gene interactions from miRecords, miRTarBase, and TarBase. It also provides the 
users with both disease and drug associations with miRNAs from several databases (miR2Disease, 
Pharmaco-miR and PhenomiR). Although MultimiR has a greater number of predicted databases it 
does not allow the user to integrate the GRN and TCGA data. Consequently, although several tools 
have recently been developed to improve miRNA–gene identification almost none of them address 
the complex problem of reconstructing miRNA–gene target–genes in the different network types.  

In fact, the association miRNA–gene is not sufficient to study miRNA activity. miRNA activity 
should be studied as part of a compound system where the single elements can interact among them 
on multiple levels. To understand such a complex system, it is crucial to study the multiple 
relationships between miRNA–gene target-genes and their roles in various diseases.  

MAGIA2 is an updated extension and evolution of MAGIA [27], a web tool for the integrated 
analysis of miRNAs and gene expression data aimed at the identification of GRNs. MAGIA2 reports 
validated and predicted miRNA–gene interactions from several miRNA databases supporting 
multiple organisms (human, mouse, rat, and drosophila) and using a large list of prediction 
algorithms. Although MAGIA2 is the most advanced tool currently available for integrative miRNA–
gene analyses, it is not able to integrate the information on validated protein–protein or gene–gene 
interactions, such as those reported by GeneMANIA, or those related to diseases and drugs as those 
implemented in MultimiR. MAGIA2 can estimate some of the relationships between transcription 
factor (TF)-gene interactions and miRNA–gene interactions, but the predicted regulatory circuits are 
limited to gene-TF interactions. Conversely, SpidermiR performs an integrative analysis on more 
comprehensive interaction types, and it provides all the features offered by the other competing tools, 
also including extracellular and circulating miRNAs and validated gene–gene interactions. 

Compared to MAGIA2, SpidermiR, has other advantages: (1) to identify regulatory circuits, users 
do not need to locally download the gene/miRNA expression data for each analysis; (2) since it is 
open software available in Bioconductor, users can integrate other analyses that are not already 
implemented in the tool; and (3) users can integrate miRNA–gene interaction into different network 
data, such as co-expression, physical interactions, genetic interactions, shared protein domains,  
co-localization and pathways, and are able to select miRNA–GRNs communities. 

In addition, compared to online web portal, packages in the statistical software R provide more 
user-controlled features with no limitations on the number of miRNA/genes to be used. 

The particular features (and sub features) of GeneMANIA, mirnaTap, multiMiR, MAGIA2, and 
SpidermiR tools are summarized in Table 1.  
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Table 1. Each column represents a software tool, and each row represents a feature. The checked cells indicate features that are implemented in the tool. Available platform 
abbreviations are defined as: R (only R script), B (integrated in Bioconductor package), and W (available as a web portal). * only gene-transcriptional factor, ** co-expression, 
genetic interaction, co-localization, and pathway. *** physical interactions, shared protein domain. 

Features Sub-Features SpidermiR GeneMANIA miRNATap multiMir Magia2 

Availability 

Platform B W B R W 
Functions for data query/download/annotation harmonization ●  ● ● ● 

Functions for GRNs enrichment ●    ● 
Functions for interaction selection ●    ● 

Functions for community detection ●     
Functions for miRNA–GRNs graphics ●    ● 

Functions for computation of miRNA–GRNs metrics ●    ● 
Expression level ●    ● 

Interaction Type 

Predicted miRNA–gene ●  ● ● ● 
Validated miRNA–gene ●   ● ● 

Disease–miRNA ●   ●  
miRNA–gene–drug ●   ●  

Extracellular/circulating miRNA ●     
Predicted gene–gene ● ●   ● * 
Validated gene–gene  ● ** ● **    

Validated protein–protein ● *** ● ***    
Validated gene–gene–miRNA ●     

Validated protein–protein–miRNA ●     
Predicted gene–gene–miRNA ●    ● * 
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2.3. Case Study No. 1. Prostate Cancer: Role of miRNAs in Shared Protein Domains 

In this case study, we illustrate an application of SpidermiR aimed at identifying miRNAs that 
control shared protein domains in aggressive prostate cancer (PC). Combining gene expression data 
on aggressive PC samples from TCGA and shared protein domains from GeneMANIA, SpidermiR 
enabled us to detect a community of shared protein domains enriched by DEGs with direct  
gene-gene interactions, regulated by specific miRNAs. These miRNAs regulators could be interesting 
as therapeutic tools in aggressive PC. 

Domains are generally considered as the conserved structural and functional units of proteins, 
and previous studies have shown that about 80% of protein pairs sharing the same domain also share 
the same function and have an a high degree of sequence similarity [28,29]. In the literature, there are 
several examples of proteins with similar domains, which are involved in cancer development: for 
instance, the protein family of Src, containing among other proteins Fyn and Yes, possesses all SH 
domains that are mutated in breast cancer, colon cancer, head and neck carcinoma, and non-small 
cell lung cancer [30]. 

We started with a network of shared protein domain interactions, consisting of 16,502 nodes 
(proteins) and 1,041,003 edges (interactions)—using SpidermiRquery, SpidermiRdownload, and 
SpidermiRprepare—and we enriched this network with miRNA-gene interactions, including only 
miRNAs already found to be deregulated in PC according to the literature, using 
SpidermiRanalyze_mirna_gene_complnet. This second network consisted of 13,338 nodes,  
(74 miRNAs and 13,264 genes) and 100,016 edges. 

We identified 421 DEGs from TCGA data between aggressive PC (Gleason Sore ≥ 7; n = 452) 
versus normal samples (n = 52), and we integrated DEGs into the second network, thus obtaining a 
third network of only 80 nodes (13 miRNAs and 67 genes) and 86 edges, containing DEGs which 
interact directly, using SpidermiRanalyze_DEnetworkTCGA [25,26]. 

This network was processed to find communities based on density metrics and we then focused 
on the community with the highest number of elements, resulting in a subnetwork of 47 nodes  
(5 miRNAs and 42 genes) and 59 edges (fourth network), using SpidermiRanalyze_Community_detection 
and SpidermiRanalyze_Community_detection_net. Three nodes were miRNAs with direct 
interactions with three genes with a high centrality (hubs), which are directly connected to all the 
other genes in the community. The modulation of these three miRNAs could help regulate the 
community, thus pointing to these miRNAs as potential therapeutic tools in aggressive PC.  
A graphical visualization of these communities is presented in Figure 2. 

miR-17-3p has already been found to play a role in PC growth and invasion [31], and has been 
proposed as a biomarker secreted in the urine of PC patients [5]. miR-29a and b have been proposed 
as tumor suppressors in PC [32–34].  

The HOX gene family includes various transcription factors that help to determine cell and tissue 
identity in the early development of PC [35], and increase greatly during the development of PC [36].  

FAT2 belongs to those Cadherin superfamily members that are homologous to Drosophila Fat, 
which functions as a regulator of Drosophila wing development [37]. FAT2 has been described as a 
regulator of invasiveness in breast cancer [38]. The literature has not yet clarified the role of FAT 
genes in PC, nor in other types of human cancers, where they could act as a controller of the invasion 
ability of the tumor cells by regulating the FAT Hippo signaling cascades [39]. 

Prostatic calcification is commonly observed and has been associated with PC [40]. Studies on 
tumor endothelial cells isolated from mice that spontaneously developed PC revealed that the 
calcification process in prostate vessels is sustained by the chondrogenic differentiation of endothelial 
cells. This population of cells, which is differentiated from chondrocytes, expresses increased levels 
of cartilage-specific markers, such as the type II collagen (COL2A1) gene, thus encoding the 
extracellular matrix protein type II collagen [41]. This gene was found in our analysis as one of the 
potential hubs regulated by miR-29a/b. 

In addition several members of the HOX family (e.g., HOXB6, B7) that belong to this subnetwork, 
are involved in PC onset [35] or development [36]. 
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Figure 2. A community of shared protein domains enriched by 42 interacting genes/proteins  
(blue color) differentially expressed in aggressive prostate cancer (PC), and regulated by five miRNAs 
(orange color) (using SpidermiRvisualize_mirnanet [25,26]). Three of these genes/proteins were found 
with a high degree of centrality and thus they are hubs of the network. 

2.4. Case Study No. 2. Breast Cancer: The Role of miRNAs in Regulating High Degree Centrality Proteins in 
Physical Interactions 

In this case study, we illustrate an application of SpidermiR aimed at identifying a network of 
key miRNAs involved in breast cancer (BC), which directly interact with proteins in physical 
interaction (PI). PIs are referred to as protein–protein interactions, and are crucial for assessing the 
structural and functional architecture of the cell in terms of how direct associations between molecules 
constitute protein complexes, signal transduction pathways and other cellular machinery [42]. There is a 
positive correlation between protein connectivity, described by PI parameter, and regulatory 
miRNAs, as demonstrated by Liang et al. [43]. Moreover, to assess protein connectivity, degree 
centrality parameter is a key measure. Proteins with a high degree centrality are usually more 
essential for the survival and growth of the organism than proteins with low degree centrality  
values [9,43]. However, to our knowledge, there is no comprehensive study on the relationship 
between proteins with high degree centrality and their regulating miRNAs with high degree 
centrality in this case study, we assessed the hypothesis that miRNAs with a high degree centrality 
may preferably regulate proteins with high degree centrality. 

We downloaded PI data in Homo sapiens from GeneMANIA, and we obtained a first network 
with 15,407 nodes (all proteins) and 189,030 edges, using SpidermiRquery, SpidermiRdownload, and 
SpidermiRprepare. We integrated miRNAs already found as deregulated in BC in the literature 
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within this network, thus obtaining a second network of miRNA-protein PI including 830 nodes  
(62 miRNAs and 768 proteins) and 1001 edges, by using SpidermiRanalyze_mirna_network [25,26]. 

Next, the degree centrality of the proteins in the first network and of miRNAs in the second 
network were computed by using the function SpidermiRanalyze_degree_centrality. Proteins were 
clustered according to their degree centrality (50 proteins/cluster), identifying more than 300 clusters 
of proteins, and we then assessed the relationships between miRNAs with higher centrality and their 
target proteins with higher centrality. Statistical results showed that proteins with higher centrality 
are effectively targets of miRNAs with higher centrality (Pearson correlation coefficient = 0.7)  
(see Figure 3). We then focused on the cluster of proteins with the highest degree centrality  
(cluster No. 1): we found eight proteins were interacting with seven miRNAs with a high degree of 
centrality (see Table 2). 

 
Figure 3. Pink color: number of miRNAs regulators of proteins with the highest degree of centrality 
in clusters. Green color: number of proteins in clusters regulated by miRNAs with the highest  
degree of centrality. Clusters are ordered according to their degree centrality (Cluster 1 = Highest 
degree centrality). 

Table 2. The 10 top miRNAs with the highest degree of centrality (d.c.) and their target proteins with 
the highest degree of centrality. 

miRNA Target Protein

miR-17-5p (d.c.296) 
APP (d.c. 2008)  

HSP90AA1 (d.c. 773) 
MYC (d.c. 570) 

miR-125b (d.c.55) TP53 (d.c. 630) 

miR-146a (d.c.38) TRAF6 (d.c. 517)  
BRCA1 (d.c. 416) 

miR-30a-3p (d.c.28) 
EP300  

YWHAE (d.c. 390) 
let-7a (d.c. 26) MYC (d.c. 570) 

miR-429 (d.c.26) 
MYC  

EP300 (d.c. 492) 
miR-145 (d.c.23) MYC 

Figure 4 shows this network, describing the key miRNAs involved in BC and directly interacting 
with proteins in PI (only the direct interactions among BIs of the network are shown). For some of 
the identified miRNAs, the regulation of genes with a high degree of centrality has already been 
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demonstrated. For instance, let-7a [44] and miR-145 [45] are known regulators of the high degree of 
centrality protein MYC, and miR-125b is the controller of the high degree of centrality protein p53 
[46]. miR-17-5p, the miRNA with the highest degree centrality in the network, has V-Myc Avian 
Myelocytomatosis Viral Oncogene Homolog (MYC), Amyloid β Precursor Protein (APP), and 
HSP90AA1 as target mRNAs, which also present a high degree of centrality. 

 
Figure 4. Representation of the eight proteins interacting with seven miRNAs with SpidermiRvisualize. 

3. Materials and Methods 

The SpidermiR package consists of functions that can be grouped into three main levels: (i) data; 
(ii) analysis; and (iii) visualization. In the following sections, we briefly describe the pipelines that 
can be used in case studies through these functions.  

3.1. Data 

The SpidermiR data function includes three main function categories: (i) query; (ii) download; 
and (iii) annotation harmonization. 

(i) “Query” enables users to query: (1) recent and archived data and to identify the elements to 
download; and (2) species and network type via GeneMANIA database. 

(ii) “Download” enables users to download: (1) gene–gene networks as previously queried;  
(2) miRNA validated data targets using miRTar and miRWalk databases [10,11]; (3) miRNA 
predicted data targets using DIANA, Miranda, PicTar, and TargetScan databases [12–15];  
(4) extracellular/circulating miRNAs using the miRandola database [16]; (5) the associations 
among miRNAs, genes, and diseases, using the miR2Disease database [17], and among miRNAs, 
genes and drugs, using the Pharmaco-miR database [18]. 

(iii) “Harmonization” enables users to process the data for downstream analyses and it prepares a 
matrix of gene networks by mapping Ensembl Gene ID to gene symbols. Gene symbols are 
needed to integrate miRNAdata. 

3.2. Analyses 

The analysis functions are designed to process network data through standard and novel 
computational methods. Once the network data have been prepared with Gene symbols ID, the 
downstream analyses can be divided into: (i) enrichment; (ii) interaction selection; and  
(iii) community detection. 

(i) “Enrichment” enables users to: (1) enrich the networks with some further biological information. 
For example, for each network users can integrate miRNA databases (validated or predicted) in 
order to find miRNA–gene target interactions in the downloaded gene network; (2) retrieve the 
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information on miRNA–gene and gene-pharmaco from the Pharmaco-miR database; (3) retrieve 
the extracellular/circulating miRNA database in order to find miRNA–gene target interactions 
in the downloaded gene network; (4) enrich a chosen network with DEGs. Users can simply 
choose the type of tumor, platform, and the ID samples from the TCGA portal and then obtain 
the directed interactions of DEG among them [23,24]. 
In the enrichment step, SpidermiR combines interactions found in all validated databases, and 
it combines only interactions commonly found in at least two predicted databases. 

(ii) “Interaction Selection”. In this step, users can play with the obtained network. For example, user 
can: (1) find sub-networks including all direct interactions involving at least one of the 
biomarkers of interest (BIs)—this is carried out on the basis of a set of BIs, genes, miRNA, or 
both; (2) search for sub-networks including all direct interactions involving only BIs; (3) can 
search for sub-networks including all direct and indirect interactions involving at least one of 
the BIs; (4) find the number of direct neighbors of a BI and select those BIs with a number of 
direct neighbours higher than a given cut-off value. 

(iii) “Community detection”. In this step, users can analyze the network to detect communities using 
algorithms developed in the study by Csardi et al. [47], and characterize them in terms of the 
number of community elements (both genes and miRNAs). On the basis of a community to 
which some BIs belong, the community can be characterized as a network of elements  
(both genes and miRNAs), and users can find out whether or not a set of BIs is included within 
such a community. 

3.3. Visualization 

The visualization functions enable users to display the results of the analyses through a graphical 
representation of networks (i.e., with vertices, nodes and edges) and plots (for other results). 

For example, users can see a 3D representation of the network [48] in different colors for 
miRNAs, genes, and drugs, and manage the network directly by moving/shifting the nodes and the 
edges, according to the analysis and visualization needs. Users can highlight specific BIs within a 
network with a different color. 

Some metrics are computed and plotted for the network, such as the number of direct neighbors 
of BI (i.e., the degree centrality), the cumulative frequency distribution of degree centrality of 
communities, and the adjacency matrix of the community, representing the degree of connections 
among the nodes. A summary of the networks is also provided showing the number of edges, nodes, 
and miRNAs. 

4. Conclusions 

The huge amount of data on validated biological networks currently made available in public 
repositories offers an excellent opportunity to interpret molecular mechanisms and molecular 
dynamics, as well as to promote discoveries of novel diagnoses, prognoses, treatments, and 
monitoring protocols to improve clinical outcomes for patients. 

However, the tools available to exploit these data are not exhaustive, and do not offer the user a 
workflow to download, integrate, and/or analyze the data with miRNAs in an environment that can 
also provide access to other statistical analysis methods, such as those provided by the increasingly 
popular Bioconductor repository. 

In this paper we have presented SpidermiR, a software tool freely available on the Bioconductor 
platform, which provides functions to query, download, and process biological network data. 

With the various functions, users can incorporate additional biological information retrieved 
from public databases in the selected network, such as miRNA data (validated, predicted, and 
extracellular circulating miRNA), disease annotations, drug associations, and TCGA data. 

In addition, using interactive and community detection users can apply standard and novel 
methods for the analysis of miRNA-gene-gene interactions, and this is especially useful in the field 
of genomics and epigenomics research, also in identifying diagnostic and prognostic biomarkers for 
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specific tumors and simulating candidate miRNAs as therapeutic agents. The visualization functions 
enable users to display the results generated by the analyses through a graphical representation  
of networks. 

These functions provide an easy, time-saving computational instrument for complex 
investigations, without having to navigate through different web and data portals and integrating 
different computational platforms. 

Our two case studies highlight the typical uses of our package, such as protein-protein 
interactions (shared_protein_domains and physical_interactions), gene–miRNA interactions,  
gene-gene–miRNA, miRNA disease associations, TCGA data, community detection, and degree 
centrality. Our studies also demonstrate how the package can generate candidate biomarkers, and 
network communities and their miRNA regulators, which could subsequently be tested 
experimentally in the laboratory. 
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