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Abstract: Undifferentiated pleomorphic sarcoma (UPS) is an aggressive mesenchymal neoplasm with
no specific line of differentiation. Eribulin, a novel synthetic microtubule inhibitor, has shown anticancer
activity in several tumors, including soft tissue sarcomas (STS). We investigated the molecular biology of
UPS, and the mechanisms of action of this innovative microtubule-depolymerizing drug. A primary
culture from a patient with UPS was established and characterized in terms of gene expression.
The activity of eribulin was also compared with that of other drugs currently used for STS treatment,
including trabectedin. Finally, Western blot analysis was performed to better elucidate the activity of
eribulin. Our results showed an upregulation of epithelial mesenchymal transition-related genes,
and a downregulation of epithelial markers. Furthermore, genes involved in chemoresistance were
upregulated. Pharmacological analysis confirmed limited sensitivity to chemotherapy. Interestingly,
eribulin exhibited a similar activity to that of standard treatments. Molecular analysis revealed
the expression of cell cycle arrest-related and pro-apoptotic-related proteins. These findings are
suggestive of aggressive behavior in UPS. Furthermore, the identification of chemoresistance-related
genes could facilitate the development of innovative drugs to improve patient outcome. Overall,
the results from the present study furnish a rationale for elucidating the role of eribulin for the
treatment of UPS.

Keywords: undifferentiated pleomorphic sarcoma; malignant fibrous histiocytoma; primary culture;
EMT; drug resistance; chemotherapy; eribulin

1. Introduction

Undifferentiated pleomorphic sarcoma (UPS), previously known as malignant fibrous histiocytoma
(MFH), is a mesenchymal malignancy of soft tissue or bone that shows no definable line of differentiation.
It is characterized by highly variable morphologic features, for the most part consisting of transition
from storiform to pleomorphic areas. UPS is the fourth most common soft tissue sarcoma (STS) usually
affecting elderly patients, with a slight male predominance [1]. Its incidence in children is very rare [2].
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Although the majority of UPSs are high-grade lesions with a predilection for the lower extremities,
the upper extremities can also be affected. The incidence of local recurrence varies between 19% and
31%, the rate of metastases is 31–35%, and the 5-year overall survival is 65–70% [3]. At present, there
are no specific immunohistochemical markers available for the standard differential diagnosis, which is
based on the exclusion of other entities i.e., dedifferentiated liposarcoma, pleomorphic leiomyosarcoma,
pleomorphic liposarcoma, pleomorphic rhabdomyosarcoma, myxofibrosarcoma, poorly differentiated
carcinoma, and melanoma [4]. The mainstay of therapy for localized disease is surgical resection with
negative margins (R0 resection) combined with (neo)adjuvant treatments in selected cases. En bloc
resection with 2-cm healthy tissue margins has been widely supplanted by limb- or function-sparing
surgery, and amputation is only considered in selected cases [5]. Surgical resection with R0 margins
remains the primary goal for retroperitoneal localized disease. However, large dimensions and the
specific anatomy of lesions may make it difficult to obtain wide surgical margins, in which case,
adjuvant radiotherapy may be useful [6,7]. The gold standard for metastatic disease is chemotherapy,
but outcome is generally very poor. The most common sites of metastasis are the lungs (90% incidence),
followed by bone (85%) and liver (1%) [8,9]. Anthracyclines are the most widely used drugs for the
treatment of advanced and metastatic STS, including UPS, with a 16–27% response rate when used as
single agents [10,11]. The association of both anthracyclines and ifosfamide has led to an improvement
in response rates, but not in overall survival (OS) [12], and is used to obtain tumor shrinkage for
clinical benefit. In other cases, a monotherapy regimen with doxorubicin is preferred, especially in
a palliative setting [13]. The recent advent of novel agents with encouraging preliminary results may
further improve treatment options and clinical outcomes.

Eribulin mesylate (Figure 1) is a novel marine-derived synthetic macrocyclic ketone analog of
halichondrin B, with an innovative mechanism of action involving the inhibition of microtubule dynamics.
In 2010, eribulin was approved by the U.S. Food and Drug Administration (FDA) as monotherapy
for patients with advanced/metastatic breast cancer previously treated with an anthracycline or
taxane [14]. Recently, eribulin was also FDA- and European Medicines Agency (EMA)-approved for the
treatment of patients with inoperable liposarcoma (LPS) after the failure of anthracycline-based
therapy [15]. This microtubule inhibitor drug has an antitumor activity that differs from any
other microtubule-depolymerizing drug. In particular, its unique mechanism of action would
seem to involve the disruption of microtubule polymerization through site-specific binding of
β-tubulin, with no effect on depolymerization [16]. The consequent sequestration of β-tubulin into
non-functional aggregates leads to the inhibition of microtubule dynamics, cancer cell growth- and
cell cycle-arrest, and finally, apoptosis [17–19]. However, although several studies have demonstrated
the antitumor activity of eribulin, its mechanism of action is still not clearly understood. Recent
preclinical studies have shown other complex effects mediated by eribulin, including vasculature
alteration, inhibition of Wnt/β-catenin signaling, suppression of migration and invasion, and reversal
of epithelial–mesenchymal transition in breast cancer, adenocarcinoma, and liposarcoma [20–23].
In a non-randomized multicenter phase II study, the European Organization for Research and
Treatment of Cancer (EORTC) Soft Tissue and Bone Sarcoma Group (STBSG) assessed the activity and
safety of eribulin in patients with different STS histotypes, but did not report specific results on UPS [24].
The following phase III study by the same group compared the efficacy of eribulin and dacarbazine in
advanced LPS and leiomyosarcoma patients [25]. However, few data are available on eribulin activity
in other aggressive sarcoma subtypes known for their refractoriness to chemotherapy [26,27].

Our understanding of the molecular biology of UPS is limited, as other STS, by the small number
of cell lines available [28,29]. In this regard, primary cultures offer the ideal material to study the
heterogeneous biology and behavior of UPS. We established a UPS primary culture from a surgically
resected specimen of a 68 year old male patient. The primary culture was characterized in terms
of gene expression, and, as the disease is aggressive, we also investigated epithelial mesenchymal
transition (EMT) and drug resistance-related gene expression. We compared the anticancer activity
of eribulin with that of standard drugs, to elucidate the role of eribulin in UPS treatment. We also



Int. J. Mol. Sci. 2017, 18, 2662 3 of 14

investigated the efficacy of trabectedin, a marine-derived anticancer agent that has shown to improve
the clinical outcome of patients with metastatic STS, especially liposarcomas and leiomyosarcomas
(referred to as L-sarcomas in the literature) [30,31]. Trabectedin was approved in 2007 by the EMA,
and in 2015 by the FDA, for the treatment of advanced STS after failure of anthracyclines or for disease
not amenable to treatment with these agents [32]. In addition, we explored the efficacy of dacarbazine,
a treatment option for metastatic STS (including UPS), which was used as control in a phase III trial
evaluating eribulin efficacy in patients with advanced liposarcoma or leiomyosarcoma [25]. Finally, we
studied the molecular mechanism by which eribulin exerted its cytotoxic effect on our UPS primary
culture to improve current understanding of the antitumor effect of this tubulin inhibitor.

The present work provides a valuable insight into the natural history of UPS, and sheds light on
the potential role of eribulin and other drugs, including trabectedin, for the treatment of this poorly
understood cancer.
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(MDM2/Cep12 ratio of 1.0), thus, the diagnosis of dedifferentiated liposarcoma was excluded [33,34]. 
The diagnosis was UPS with R0 resection, and the negative margins were confirmed by H&E staining 
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Figure 1. Chemical structure of eribulin.

2. Results

2.1. Tumor Diagnosis

The patient underwent an MRI scan of the right thigh, revealing the presence of a large, solid mass
in the vastus lateralis of the quadriceps femoris muscle (maximum diameter 20 cm and transverse
diameter around 5 cm) (Figure 2a,b). Macroscopic examination of the resected tumor mass, which
weighed 630 g, showed a muscle segment of 21 cm × 10 cm × 6 cm covered by a lozenge of skin
(18 cm × 8 cm). When incised, the mass had the appearance of a gelatinous, polylobulated nodule
(9 cm × 10 cm) with healthy tissue margins. Microscopically, the hematoxylin and eosin (H&E) stained
sections, reviewed by an experienced sarcoma pathologist, showed a muscle mass diffusely infiltrated
by a tumor with spindle, markedly atypical, and pleomorphic cells with necrotic areas and several
atypical mitoses (Figure 2e). Immunohistochemical analysis showed positivity for CD34 (Figure 2g)
and negativity for muscular markers and S100. There was no MDM2 amplification (MDM2/Cep12
ratio of 1.0), thus, the diagnosis of dedifferentiated liposarcoma was excluded [33,34]. The diagnosis
was UPS with R0 resection, and the negative margins were confirmed by H&E staining (Figure 2c).

2.2. Establishment of Patient-Derived Undifferentiated Pleomorphic Sarcoma (UPS) Culture

Patient-derived cells continued to grow after culture passages. Morphological analysis of the
cultured cells performed by an experienced sarcoma pathologist confirmed the establishment of a UPS
primary culture (Figure 2f). The proportion of UPS cells was 50%. Furthermore, the morphological
evaluation of matched patient-derived cells from healthy tissue confirmed the establishment of the UPS
primary culture (Figure 2d). Given that the immunohistochemical analysis of the UPS lesion revealed
positivity for CD34, we evaluated the expression of the antigen in the primary culture, confirming the
positivity of the cultured cells for that marker (Figure 2h).
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Figure 2. (a) Coronal post-contrast MRI image showing the presence of a large solid mass in the vastus 
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of the lesion (transverse diameter 53 mm × 88 mm) located in the middle–distal third of the quadriceps 
femoris muscle; (c) H&E staining of the surgical specimen showing the tumor-infiltrated muscle (20×). 
Margins were negative (R0 resection); (d) H&E staining of cytospun healthy cells from the patient-
derived UPS primary culture (20×); (e) H&E staining of the surgical specimen showing 
undifferentiated pleomorphic sarcoma cells (light blue stroma) (20×); (f) H&E staining of cytospun 
UPS primary culture showing undifferentiated pleomorphic sarcoma cells (light blue stroma) (20×); 
(g) Immunohistochemical expression of CD34 in the tumor specimen showing undifferentiated 
pleomorphic sarcoma cells (brown cytoplasmic staining); (h) Immunohistochemical expression of 
CD34 in the cytospun UPS primary culture showing undifferentiated pleomorphic sarcoma cells 
(brown cytoplasmic staining) and cell nuclei stained with hematoxylin (blue spots). 
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downregulated with respect to control. Tgf-β, a marker involved in several tumor-associated 
pathways, and EMT regulators, such as snail, were downregulated. Expression of the matrix 
modifying enzyme mmp2 was 2-fold higher that of control, while mmp9 and the antiapoptotic,  
EMT-related gene slugwere downregulated. Higher levels of some chemoresistance-related genes 
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Figure 2. (a) Coronal post-contrast MRI image showing the presence of a large solid mass in the
vastus lateralis of the right quadriceps femoris muscle (longitudinal diameter 20 cm). Absence of
focal abnormalities in the remaining muscle–tendon structures of the thigh bilaterally; (b) Axial MRI
image of the lesion (transverse diameter 53 mm × 88 mm) located in the middle–distal third of the
quadriceps femoris muscle; (c) H&E staining of the surgical specimen showing the tumor-infiltrated
muscle (20×). Margins were negative (R0 resection); (d) H&E staining of cytospun healthy cells
from the patient-derived UPS primary culture (20×); (e) H&E staining of the surgical specimen
showing undifferentiated pleomorphic sarcoma cells (light blue stroma) (20×); (f) H&E staining of
cytospun UPS primary culture showing undifferentiated pleomorphic sarcoma cells (light blue stroma)
(20×); (g) Immunohistochemical expression of CD34 in the tumor specimen showing undifferentiated
pleomorphic sarcoma cells (brown cytoplasmic staining); (h) Immunohistochemical expression of CD34
in the cytospun UPS primary culture showing undifferentiated pleomorphic sarcoma cells (brown
cytoplasmic staining) and cell nuclei stained with hematoxylin (blue spots).

2.3. Gene Expression Profile of Patient-Derived UPS Culture

Several markers involved in EMT and chemoresistance were evaluated to characterize the
aggressiveness of the tumor (Figure 3a,b). The expression of the mesenchymal marker vimentin
was 2.6-fold higher than that of the control tissue, whereas e-cadherin, an epithelial marker, was
downregulated with respect to control. Tgf-β, a marker involved in several tumor-associated pathways,
and EMT regulators, such as snail, were downregulated. Expression of the matrix modifying enzyme
mmp2 was 2-fold higher that of control, while mmp9 and the antiapoptotic, EMT-related gene slug
were downregulated. Higher levels of some chemoresistance-related genes were also observed.
In particular, the expression of laptm4a and laptm4b genes, both involved in the transport of small
molecules across endosomal and lysosomal membranes [35,36], were 3.2- and 1.05-fold higher that of
control, respectively.
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confirmed by the upregulation of p21, whose expression was 2.75-fold higher than that of control. 
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healthy tissue (H); (b) Relative expression of chemoresistance-related genes and CD109 gene in the UPS
primary culture and matched healthy tissue. Differences between groups were assessed by a two-tailed
Student’s t-test, and accepted as significant * p < 0.05.

2.4. Chemotherapy Assessment in UPS Primary Culture

The antiproliferative activity of eribulin in the UPS primary culture was assessed by the mitochondrial
reduction assay MTT (Figure 4a,b). The efficacy of eribulin (ERI) treatment was compared with that of
a combination of an anthracycline (epirubicin, EPI) and ifosfamide (IFO), and an anthracycline alone
(doxorubicin, DOXO), both of which represent the standard of care for unresectable or metastatic sarcomas,
including UPS [12,13]. The primary culture was also exposed to the promising drug, trabectedin (TRABE),
and to one of the second-line treatment options for metastatic STS, dacarbazine (DACA).

Patient-derived primary culture cells treated with the combination of EPI/IFO showed 71%
survival compared to untreated controls (CTR) (EPI/IFO vs. CTR, p = 0.011; EPI/IFO vs. DOXO,
p = 0.23; EPI/IFO vs. TRABE, p = 0.02, EPI/IFO vs. DACA, p = 0.0004) (Figure 4a). Treatment with
DOXO resulted in 74% cell survival, 74% with ERI (ERI vs. CTR, p = 0.017; ERI vs. EPI/IFO, p = 0.23;
ERI vs. DOXO p = 0.47; ERI vs. TRABE, p = 0.04; ERI vs. DACA p = 0.0008) and 86% with TRABE.
DACA did not affect survival. Images of the UPS culture (Figure 4b) acquired after drug exposure
were consistent with data obtained from the cytotoxicity assay. In particular, a similar cell confluence
of EPI/IFO, DOXO and ERI was seen, while TRABE and DACA showed a higher confluence compared
to the previous treatments.

2.5. The Activity of Eribulin in the UPS Primary Culture

Cell morphology was examined after treatment to gain a further insight into the mechanism
through which eribulin exerts its anticancer activity. Morphological changes, such as rounding up and
cell shrinkage, were observed after exposure to eribulin, while untreated cells continued to proliferate
with a storiform pattern, and did not show these specific features (Figure 4c). We thus analyzed
the expression level of some apoptosis-related proteins to determine how this microtubule-targeted
drug induces its cytotoxic effect (Figure 4d). Cell cycle arrest mediated by eribulin was confirmed
by the upregulation of p21, whose expression was 2.75-fold higher than that of control. Furthermore,
the expression levels of pro-apoptotic protein Bax and anti-apoptotic protein Bcl-xL were evaluated to
investigate the mechanisms involved in inducing apoptosis. The results showed an upregulation of Bax
and downregulation of Bcl-xL, confirming the drug-mediated induction of apoptosis. Finally, since the
expression of Bax was promoted by eribulin, its downstream proteins were further assessed. Caspase-3
and caspase-9 were upregulated, indicating that eribulin exerts its antitumor activity through the
activation of a caspase-dependent apoptotic pathway.
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caspase-9). Vinculin was used as loading control. Fold changes of band density were normalized to 
the band of the CTR group. 
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Figure 4. (a) Cytotoxicity assay in UPS primary culture exposed to the following drugs: epirubicin(EPI)
plus ifosfamide (IFO), doxorubicin (DOXO), eribulin (ERI), trabectedin (TRABE), and dacarbazine
(DACA). Differences between groups were assessed by a two-tailed Student’s t-test, and accepted as
significant at p < 0.05; (b) Images of the primary culture after treatment (2× and 10× magnification,
scale bar 2000 µm and 400 µm, respectively); (c) Morphological features observed in the primary
culture after ERI treatment (20× and 40× magnification, scale bar 200 µm and 100 µm, respectively);
(d) Western blot analysis of apoptosis-related proteins (p21, BAX, Bcl-xL; caspase-3 and caspase-9).
Vinculin was used as loading control. Fold changes of band density were normalized to the band of the
CTR group.

3. Discussion

UPS, formerly known as malignant fibrous histiocytoma, was recognized for the first time
as a distinct histologic STS subtype in the early 1960s [37,38]. It represents a spectrum of tumors
with fibroblastic/myofibroblastic features, and no definable line of differentiation [39]. The disease
manifests a wide range of histologic appearances, such as marked pleomorphism with spindle
cells, multinucleated giant cells, and storiform areas [3]. UPS occurs mainly in adults, with the
highest incidence rates between 50 and 70 years of age [40]. Diagnosis is based on the evaluation
of hematoxylin-eosin stained sections from biopsied lesions, as specific tumor biomarkers have yet
to be identified. Thus, the role of immunohistochemistry is mainly to exclude other diseases [3].
From a clinical point of view, the majority of UPS are high-grade lesions, and the incidence of local
recurrence ranges between 19% and 31%. Metastases occur in 31–35% of patients, and the 5-year
overall survival is 65–70% [41]. The standard therapeutic strategy for localized disease is surgery with
(neo)adjuvant treatments in selected cases [5]. Chemotherapy is the standard of care in a metastatic
setting, but its role is limited, and outcomes are generally poor [42]. A better understanding of the
molecular background and treatment sensitivity of UPS is needed to improve the management and
outcome of patients. In this regard, well-characterized cell lines could be fundamental in elucidating
tumor pathophysiology, mechanisms of resistance, and the role of chemotherapy in UPS. However,
given that UPS was only recently acknowledged as a distinct pathological entity, there are still no
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commercial UPS cell lines available [29]. Thus, patient-derived primary cultures represent the ideal
experimental material to study the heterogeneous biology of UPS [43–47].

In the present work, cells were derived from a UPS lesion of a 68-year old male patient who underwent
tumor resection. Morphological and immunohistochemical analysis confirmed the establishment of the
UPS primary culture (Figure 2f,h). Gene expression analysis of the tumor specimen confirmed the
mesenchymal origin of this disease. In particular, vimentin and mmp2, both mesenchymal-related genes,
were upregulated, whereas the expression of e-cadherin, an epithelial gene, was lower than that of matched
healthy tissue (Figure 3a). Furthermore, upregulation of genes involved in drug resistance, especially to
anthracyclines, was observed. In this regard, the amplification of laptm4a and laptm4b genes has been
reported in numerous chemoresistant tumors, including breast and gallbladder cancer [36,48]. These
genes would seem to be involved in the membrane trafficking of drugs, especially anthracyclines. Thus,
their overexpression could partially explain the similar antiproliferative activity of the anthracycline-based
regimens (EPI/IFO and DOXO) used in our study. Further analyses are needed to elucidate the role of
these genes in UPS. We also evaluated the diagnostic impact of CD109 expression, previously analyzed
by our group in a series of patient-derived myxofibroscarcoma primary cultures [49]. Results showed
a downregulation of cd109 gene in this STS histotype with respect to healthy donors, indicating the
potential usefulness of cd109 in the standard differential diagnosis of MFS [49,50].

Finally, in order to elucidate the role of chemotherapy in UPS, we exposed the primary culture
to different drugs currently used for the treatment of advanced STS. The activity of novel drugs,
such as trabectedin and eribulin, the latter under investigation for use in STS, was also assessed.
Results revealed a similar activity of doxorubicin alone, the epirubicin–ifosfamide combination,
and eribulin alone. Although trabectedin showed a lower antiproliferative effect than the above
drugs, it nevertheless induced a cytotoxic effect, confirming previous reports of its antitumor activity
in UPS [51,52]. Dacarbazine did not affect cell survival. The significant anticancer activity of
eribulin in the primary culture with respect to the first-line ifosfamide–epirubicin combination,
prompted us to analyze the mechanism of action through which eribulin exerts its antitumor activity
in UPS. Morphological changes in the cell culture, such as rounding up and cell shrinkage, were
detected after eribulin treatment with respect to control cells, which were characterized by a storiform
pattern (Figure 4b,c). We thus analyzed apoptosis-related proteins to better understand the cytotoxic
activity mediated by this new interfering microtubule. Results indicated that eribulin exerted its
antiproliferative activity through the activation of p21 and Bax, and the suppression of Bcl-xL.
The upregulation of the 2 pro-apoptotic proteins led to the collapse of mitochondrial transmembrane
potential. Finally, investigation of the downstream proteins caspase-3 and caspase-9 showed that
eribulin enhanced their expression. These data suggest that eribulin induces cell cycle arrest and cell
death programming through a caspase-dependent mitochondrial pathway (Figure 5).
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4. Experimental Section

4.1. Ethics Statement

Briefly, the tumor mass was harvested intraoperatively from a patient undergoing surgical
resection, as reported in the Results section. The study was approved by IRST-Area Vasta Romagna
Ethics Committee, approval no. 4751, 31 July 2015, and all the procedures were performed following
Good Clinical Practice and in accordance with the principles laid down in the Helsinki declaration.
The patient gave written informed consent to take part in the study.

4.2. Patient History

A 68 year old male presented with a solitary, rapidly growing lesion in his right thigh. His past
medical history was unremarkable. An MRI scan showed a large solid lesion in the quadriceps
femoris muscle of the limb (longitudinal diameter 20 cm and transverse diameters 53 mm × 88 mm).
A biopsy revealed the presence of a malignant mesenchymal tumor with poorly differentiated myxoid
aspects compatible with undifferentiated pleomorphic sarcoma. A full-body CT scan was negative.
The patient underwent surgical resection of the lesion, the pathology report describing a nodular
lesion (9 cm × 10 cm) from high-grade undifferentiated pleomorphic sarcoma with wide disease-free
margins. As there was no evidence of metastatic disease post-surgery, adjuvant radiotherapy was
administered. Chest CT re-staging after radiation treatment revealed the presence of a single lung
lesion suggestive of metastasis, and subsequently confirmed as such by an FDG PET/CT scan (Siemens
Healthcare Ltd., Milan, Italy). The patient recently underwent metastasectomy.

4.3. Histological and Immunohistochemical Diagnosis

The surgical specimen was selected and analyzed by an experienced sarcoma pathologist,
and processed within 3 h of surgical resection. Normal tissue comprising thigh muscle and adipose
tissue and blood vessels obtained by tumor R0 resection was used as study control (Figure 2c).
Differential diagnosis was performed by hematoxylin and eosin (H&E, Sigma Aldrich, St. Louis,
MO, USA) staining. Briefly, the surgical material was washed twice with sterile phosphate buffered
saline (PBS), paraffin-embedded in a cryomold and then frozen at −80 ◦C. The frozen tissue blocks were
then sectioned into 5 µm-thick slices using a microtome, after which the sections were hydrated and
stained with hematoxylin (Sigma Aldrich, St. Louis, MO, USA) and eosin (Sigma-Aldrich), according
to the manufacturer’s instructions. Finally, the stained sections were washed three times with PBS 1×,
mounted with Cytoseal™ XYL (Thermo Scientific™ Richard-Allan Scientific™, San Diego, CA, USA)
mounting media, covered with a coverslip, and analyzed. CD34 determination was performed by
immunohistochemical staining. Briefly, 5 µm-thick sections cut from paraffin-embedded tissue were
deparaffinized with xylene for 1 h, after which they were rehydrated and incubated with antigen
retrieval solution in a water bath at 98.5 ◦C for 30 min. The sections were cooled for 20 min, incubated
for 10 min with 3% hydrogen peroxide solution, and washed twice with demineralized water. They
were then incubated with 3% bovine serum albumin in PBS for 20 min, and incubated with CD34
antibody (Abcam®, Cambridge, UK) diluted 1:200 at room temperature for one hour. CD34 antibody
was detected by immunoperoxidase techniques using the streptavidin–biotin–peroxidase complex
(ABC) method [53]. Cell nuclei were counterstained with hematoxylin (Sigma Aldrich). The slides
were mounted with Cytoseal™ XYL (Thermo Scientific™ Richard-Allan Scientific™) mounting media,
covered with a coverslip, and analyzed. Finally, MDM2 gene amplification was assessed by FISH
analysis (Vysis MDM2/CEP 12 FISH Probe Kit, Abbott Park, IL, USA) to exclude a diagnosis of
dedifferentiated liposarcoma.

4.4. Establishment of UPS Primary Cell Culture

A patient-derived UPS primary cell culture was established from surgical tissue. The tumor
specimens were washed twice in PBS, and shredded into 1–2 mm3 pieces with surgical scalpels.
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The obtained pieces were then incubated with a PBS solution of 2 mg/mL collagenase type I (Millipore
Corporation, Billerica, MA, USA) at 37 ◦C in stirring conditions for 15 min, after which the sample
was stored overnight at room temperature. Collagenase digestion was then blocked by adding
DMEM supplemented with 10% fetal bovine serum, 1% glutamine, and 10% penicillin/streptomycin,
after which cells were isolated from the aggregates using a 100 µm sterile filter (CellTrics, Partec,
Münster, Germany). Cells were counted and seeded in standard monolayer cultures at a density of
80,000 cells/cm2, and maintained in complete DMEM medium at 37 ◦C in a 5% CO2 atmosphere. All
the experiments were performed with the use of low-passage primary cultures, and analyzed by an
experienced sarcoma pathologist.

4.5. Histological and Immunohistochemical Analysis of UPS Primary Culture

Hematoxylin and eosin (H&E) staining was performed to evaluate the morphological features
and distribution of cells of the patient-derived UPS culture. Cells (100,000) were cytospun to glass
slides, fixed in acetone for 10 min, and then in chloroform for 5 min, and stored at −20 ◦C. Finally,
the slides were thawed, hydrated, and stained with H&E following the manufacturer’s instructions.
The stained slides were analyzed with an optical Zeiss Axioskop microscope (Carl Zeiss, Gottïngen,
Germany) equipped with a Polaroid camera. CD34 immunohistochemical analysis was performed on
the cytological slides following the protocol reported in the Histological and Immunohistochemical
Diagnosis section. The stained slides were analyzed with an optical Zeiss Axioskop microscope
equipped with a Polaroid camera.

4.6. Gene Expression Analysis

RNA extraction was carried out using the cells isolated from tissue specimens without being
cultured in vitro, in order to avoid molecular changes. Briefly, mRNA isolation was performed using
TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions. iScript
cDNA Synthesis Kit (BioRad, Hercules, CA, USA) was used to reverse transcribe 500 ng of extracted
RNA. Gene expression analysis was then carried out by Real-Time PCR using a 7500 Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA). Amplification was performed in a total volume
of 20 µL containing 2× Taqman Universal PCR Master Mix (Applied Biosystems) and 2 µL of cDNA.
The following markers were analyzed: vimentin, e-cadherin, tgf-β, snail, mmp2, mmp9, and slug. Actb
and hprt were used as reference genes. The resulting amount of the transcripts was normalized to
the reference genes with the 2(-delta delta C(T)) method. We used SYBR Select Master Mix (Applied
Biosystems) with 2 µL of cDNA for tp53i3, laptm4a, rab22a, s100p, cd109, and laptm4b analysis. Actb and
gapdh were used as reference genes.

4.7. Drug Testing

For drug assessment, 10,000 cells/well were seeded in 96-well plates. Cells were allowed to
recover for 3 days, and were then treated. Drug regimens were selected according to the plasma peak
concentration of each drug from pharmacokinetic clinical data; epirubicin 2 µg/mL (Accord Healthcare
Italia Ltd., Milan, Italy) plus ifosfamide 100 µM (Baxter Ltd., Rome, Italy) [54–58], doxorubicin
4 µg/mL (Accord Healthcare Italia Ltd., Milan, Italy) [57], 371 ng/mL eribulin (Eisai Ltd., Milan,
Italy) [22,59], trabectedin 17 ng/mL (PharmaMar Ltd., Milan, Italy) [60], and dacarbazine 8 ug/mL
(Medac Pharma Ltd., Rome, Italy) [61]. Survival percentages were assessed, as previously reported [62],
by MMT assay (Sigma Aldrich) after drug exposure for 72 h. Experiments were performed twice.

4.8. Protein Expression Analysis

Patient-derived cell cultures were exposed to eribulin at the human plasma peak concentration,
as reported in the Drug Testing section. After 72 h, cells were trypsinized, immediately frozen with
liquid nitrogen, and stored at −80 ◦C. Proteins were then extracted using a RIPA buffer with 10% PMSF,
1% HALT phosphatase inhibitor cocktail, and 0.5% protease inhibitor cocktail. The cell suspension
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was centrifuged at 15,000 rpm for 20 min at 4 ◦C and protein contents were determined using a BCA
protein assay kit (Pierce™ BCA Protein Assay Kit, Thermo Scientific, Waltham, MA, USA). An equal
amount of protein from each sample was separated on Criterion™ Precast Gel Tris-HCl (Biorad,
Hercules, CA, USA) and transferred to polyvinylidene fluoride membranes (Millipore Corporation).
The membranes were blocked for 2 h with a solution containing 5% fat-free milk PBS with 0.1%
Tween 20 (Sigma Aldrich, St. Louis, MO, USA) at room temperature, and incubated overnight at 4 ◦C
with each of the following antibodies: anti-p21 (1:2000 Cell Signaling, Danvers, MA, USA), anti-Bax
(1:1000 Cell Signaling), anti-Bcl-xL (1:1000 Cell Signaling), anti-caspase-3 (1:1000 Cell Signaling),
anti-caspase-9 (1:1000 Cell Signaling), and anti-vinculin (1:1000 Thermo Scientific). After washing,
the membranes were incubated for 1 h at room temperature with horseradish peroxidase-conjugated
secondary antibody. Densitometric analysis of proteins was performed on Western blot with Quantity
One software version 4.6.9 (BioRad, Hercules, CA, USA).

4.9. Statistical Analysis

Three independent replicates were performed for each experiment. Data are presented as mean ±
standard deviation (SD), or mean ± standard error (SE), as stated, with n indicating the number of
replicates. Differences between groups were assessed by a two-tailed Student’s t-test, and accepted as
significant at p < 0.05.

5. Conclusions

In conclusion, the results from the present study highlight the potential importance of using
patient-derived primary cultures to study the tumor heterogeneity and clinical diversity of UPS.
They also increase our understanding of the molecular background of this STS histotype, and could
contribute to the development of new therapeutic strategies. Finally, our investigation of the
mechanism of action of the promising microtubule-depolymerizing drug, eribulin, provides a rationale
for a more in-depth evaluation of its role in the treatment of this mesenchymal malignancy.
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