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Abstract: Cortisol is a steroid hormone essential to the maintenance of homeostasis that is released 
in response to stress and low blood glucose concentration. Cortisol is converted from cortisone by 
11β-hydroxysteroid dehydrogenase type 1 (HSD11B1). It has been reported that too much cortisol 
or overexpression of HSD11B1 induces obesity and the insulin resistance that accompanies 
metabolic syndrome in rodent adipose tissue. In our previous study, HSD11B1-transgenic (TG) 
fibroblasts were established, and a porcine model was generated by SCNT using those fibroblasts. 
Hepatocytes overexpressing HSD11B1 were obtained from livers of this porcine model and cultured 
in vitro. However, the primary hepatocytes were found to have a short life span or low proliferation 
rate. To overcome these problems, the SV40 large T antigen was transduced into primary HSD11B1-
TG hepatocytes, and those cells were immortalized. Immortalized HSD11B1-TG hepatocytes 
showed restored morphology, more rapid proliferation rate, and more expression of HSD11B1 than 
primary hepatocytes. As well, these cells kept the hepatic characteristics such as gluconeogenic 
response to cortisone and increased expression of hepatic makers. The immortalized HSD11B1-TG 
hepatocytes may be useful for studying traits and potential therapeutic drugs for treatment of 
metabolic disorders induced by overexpression of HSD11B1. 
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1. Introduction 

The liver plays a major role in metabolism including regulation of glycogen storage, protein 
synthesis, hormone production and detoxification of various metabolites. The liver primarily consists 
of hepatocytes, which contribute to the major functions of liver and are a principal target of cortisol. 
A study of Clinical Endocrinology reported a direct connection between cortisol levels in men and 
fatty liver disease [1]. According to that study, nonalcoholic fatty liver disease patients had chronic 
overactivity in the hypothalamo-pituitary-adrenal axis, which led to a subclinical version of Cushing 
syndrome and the overproduction of cortisol [1]. 

11β-hydroxysteroid dehydrogenase type 1 (HSD11B1) is a nicotinamide adenine dinucleotide 
phosphate (NADPH)-dependent enzyme located within the lumen of the endoplasmic reticulum (ER) 
[2] that is highly expressed in metabolic tissue including that of the liver, adipose tissue, and the 
central nervous system [3]. HSD11B1 acts as a reductase, converting cortisone into cortisol [4,5]. In 
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the early fasting state, cortisol causes gluconeogenesis or glycogenolysis in liver and muscle, and 
activates anti-stress and anti-inflammatory pathways. Cortisol also stimulates the activation of 
glycogen phosphorylase, which is necessary for epinephrine to have an effect on glycogenolysis [6]. 
Hsd11b1-transgenic (TG) mice show abdominal obesity, hyperglycemia, insulin resistance, 
hyperphagia, hyperleptinemia and increased intra-adipose and portal levels, but not systemic 
corticosterone levels [7]. 

In our study, HSD11B1-TG male pigs were generated as a disease model for metabolic syndrome 
by somatic cell nuclear transfer (SCNT) using recloned fibroblasts. Recloned fibroblasts were primary 
cultured cells obtained from the first male pig generated via SCNT using transgenic porcine 
fibroblasts that had been established in our laboratory in 2013 [7]. Since HSD11B1 has been associated 
with several metabolic disorders, it has been investigated as a novel target for potential therapeutic 
drugs [8]. Thus, HSD11B1-TG hepatocytes will be useful for studying metabolic diseases such as 
hyperglycemia and fatty liver disease. However, establishment of a HSD11B1-TG hepatic cell line has 
not been reported to date. In this study, hepatocytes obtained from HSD11B1-TG male pigs were 
cultured. These primary hepatocytes could be maintained for several days and until 10 passages; 
however, their proliferation rate decreases, and eventually stops with morphological change [9]. 

This blockage of cell proliferation can be overcome by SV40 oncogene large T antigen (SV40LT), 
which inactivates both p53 and retinoblastoma [10]. Cell immortalization is accomplished through a 
two-stage process. Specifically, cells expressing SV40LT escape senescence but continue to lose 
telomeric repeats during their extended life span. Eventually, terminal telomere shortening causes 
the cells to reach a second non-proliferative stage termed “crisis” [11]. Escape from crisis is a very 
rare event accompanied by the reactivation of telomerase [12].  

In this study, we introduced SV40LT into primary HSD11B1-TG (Pri11βTG) hepatocytes to 
establish immortalized cells in vitro. Since SV40LT-HSD11B1-TG (SV11βTG) hepatocytes contain 
oncogenes, these cells proliferate well under in vitro conditions. We then investigated whether the 
SV11βTG hepatic cell line kept the original characteristics of hepatocytes and if the morphology of 
immortalized hepatocytes was recovered. 

2. Results 

2.1. Confirmation of Altered Morphology and Genomic Hybridization of SV40LT in SV11βTG Hepatocytes  

Pri11βTG hepatocytes were isolated from the liver of HSD11B1-TG male pigs and immortalized 
through SV40LT transduction. One day after the cell isolation, the hepatocyte was weakly adherent 
and showed a small round shape (Figure 1A). After 4 days, the cells were strongly adhered and 
started to grow (Figure 1B). Morphology of Pri11βTG hepatocytes became larger and longer as the 
passage progressed (Figure 1C). On the other hand, SV11βTG hepatocytes became smaller as passage 
progressed, and were similar to primary hepatocytes with passage 0–2 (Figure 1B,E). Immortalized 
SV11βTG hepatocytes have recovered hepatic morphology and size at approximately passage 35 
(Figure 1D–F). PCR was then performed using primer sets specific for the vector to confirm the 
chromosomal integration of the targeting vector (Table 1). The SV40LT gene was only observed in 
genomic DNA of immortalized SV11βTG hepatocytes (Figure 1G). The HSD11B1 cassette and 
selection cassette were confirmed in genomic DNA of both Pri11βTG and SV11βTG hepatocytes 
(Figure 1H,I). Both Pri11βTG and SV11βTG hepatocytes express EGFP due to the selection cassette 
with the EGFP gene (Figure 1F). 

2.2. Expression of SV40LT mRNA and Increase of Cell Proliferation Rate in SV11βTG Hepatocytes 

To confirm that mRNA of SV40LT is stably expressed, reverse transcription using total RNA and 
PCR was performed. Expression of SV40LT mRNA was only observed in SV11βTG hepatocytes 
(Figure 2A). After immortalization by SV40LT, SV11βTG hepatocytes grew more rapidly and showed 
greater proliferation than Pri11βTG hepatocytes. A CCK-8 assay was carried out to assess the 
difference in proliferation rate (Figure 2B). The line slope for absorbance to time (h) is 0.0062 in 
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Pri11βTG hepatocytes, while it is 0.0095 in SV11βTG hepatocytes. The proliferation rates of SV11βTG 
hepatocytes were significantly (1.53 times) faster than those of Pri11βTG hepatocytes 

Table 1. Primer sequences used in polymerase chain reaction (PCR). 

Primer  Genebank ID Sequences (5′ to 3′)

HSD11B1 NM_214248 
F CAACGTGTCAATCACGCTCT 
R TTCCTGGATTTTCCAACAGG 

H6PD XM_005674044 
F CAGGCTGGAGGAGTTCTTTG 
R AGGTCTCGCGGATGTTCTT 

G6PT GU207843 
F CTGTCTCCTGCTCATCCACA 
R AGAACTGGCCCCAGTCAGTA 

G6PC EU717834 
F AAGTTGTTGCTGGGGTCTTG 
R CCTTCGCTTGGCTTTCTCTA 

PCK1 NM_001123158
F GAGCACAAGGGCAAAGTGATTAT 
R GAGCCAGTGGGCCAGGTATT 

GR NM_001008481
F AGCATGCCGCTACAGAAAGT 
R GACTTCCAGCAGTGACACCA 

ALB NM_001005208
F TGTCTTCCTGGGCACGTTTT 
R TAGGCTCATCCACAAGAGGC 

AFP NM_214317 
F TGCTTTCAAACAAAGGCAGCA 
R ACTCCAGCACGTTTCCTCTG 

SERPINA1 NM_214395 
F ACCCAAGTTCTGCCAATCTACA 
R GTGGCCTCTGTCCCTTTCTC 

RN18S NR_046261 
F CGCGGTTCTATTTTGTTGGT 
R AGTCGGCATCGTTTATGGTC 

Primers to Confirm Genomic Integration

HSD11B1 cassette F CCATGATAATAAGCCTGCTCTACTCCA 
R GGAAGTCATGAAGGCCTGGGTGATG 

Selection cassette F CATGAAGCAGCACGACTTCT 
R CCTAGGAATGCTCGTCAAGA 

SV40LT NC_001669  
F CTGACTTTGGAGGCTTCTGG 
R GGAAAGTCCTTGGGGTCTTC 

Primers to Detect miR-122 and RNU43

miR-122 F TGGAGTGTGACAATGGTGTTTG 
R AACGCCATTATCACACTAAATA 

RNU43 [13] F GTGAACTTATTGACGGGCG 
R GTGCAGGGTCCGAGGT 

2.3. Overexpression of HSD11B1 mRNA but No Significant Changes of H6PD and G6PT mRNA in 
SV11βTG Hepatocytes 

It has been reported that cortisol production is catalyzed via the triad system, which consists of 
glucose-6-phosphate transporter (G6PT or SLC37A4), hexose-6-phosphate dehydrogenase (H6PD) 
and HSD11B1 in ER of hepatocytes, and that the reductase activity of HSD11B1 was activated by 
NADPH generated via H6PD [2,14]. HSD11B1 showed more expression in SV11βTG than Pri11βTG 
hepatocytes (Figure 2C). Although HSD11B1 increased significantly, the expression level of H6PD 
and G6PT did not change significantly (Figure 2D,E). These results indicate that the overexpression 
of HSD11B1 does not directly affect the expression of H6PD and G6PT.  

2.4. Verification of Functional Hepatocytes through Expression of Gluconeogenic Markers 

Cortisol converted by HSD11B1 facilitates hepatic gluconeogenesis. To identify the effects of 
HSD11B1 overexpression on gluconeogenic genes including glucose-6 phosphatase catalytic subunit 
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(G6PC, Figure 3A) and phosphoenolpyruvate carboxykinase 1 (PCK1, Figure 3B), we measured 
mRNA levels by real-time PCR and PCK1 protein levels by Western blotting (Figure 3D). The mRNA 
expression of G6PC and PCK1 increased significantly in response to treatment with cortisone, the 
substrate of HSD11B1, in both Pri11βTG and SV11βTG hepatocytes (Figure 3A,B), while no difference 
in expression of either gene was observed in dimethyl sulfoxide (DMSO) treated cells, as vehicle 
control. Similar to the mRNA level, expression of HSD11B1 protein in SV11βTG hepatocytes was 
greater than in Pri11βTG hepatocytes (Figure 3D,F). Moreover, expression of PCK1 protein increased 
slightly under cortisone treatment (Figure 3D,E). Also, we examined whether overexpression of 
HSD11B1 induces the expression of glucocorticoid receptor (GR, Figure 3C), which binds to cortisol 
or other glucocorticoids and acts as a effector in the cortisol-mediated response [15,16]. The level of 
GR mRNA was meaningfully increased in cortisone-treated condition of SV11βTG hepatocytes, 
similar to increasing pattern of HSD11B1 mRNA and protein. These findings suggest that transgenic 
HSD11B1 acts as a functional reductase, is not affected by the immortalization process, and that 
SV11βTG hepatocytes retain the traits of Pri11βTG hepatocytes. 

 

Figure 1. Morphological change and PCR-based confirmation of genomic integration in immortalized 
SV11βTG hepatocytes. (A–C) Accordance with the progression of passages (one day after cell 
isolation (A), the zero passage (B), and the fourth passage (C)), morphology of Pri11βTG hepatocytes 
became longer and fibroblast-like, and the size of hepatocytes increased; (D–F) Morphology and size 
of the SV11βTG hepatocytes, which were immortalized by SV40 large T antigen, recovered similar to 
Pri11βTG ones at the first passage in high density (D) and low density (E); EGFP expression (F) was 
confirmed in 11βTG hepatocytes due to the selection cassette including EGFP and neomycin 
resistance gene (Neor) [7] (Scale bar, 100 µm); (G–I) Chromosomal insertion was confirmed by PCR 
using primers flanking the target cDNA in SV40LT sequences (G) for immortalization, in HSD11B1 
expression cassette (H) and in selection cassette (I). (NC, negative control without template; Non, non-
transgenic hepatocytes; Pri, Pri11βTG hepatocytes; SV40, SV11βTG hepatocytes; SV40LT, SV40 large 
T antigen). 
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Figure 2. Cell-proliferation rate in SV11βTG hepatocytes expressing SV40LT and effect of HSD11B1 
overexpression on H6PD and G6PT mRNA in hepatic G6PT-H6PD-HSD11B1 triad system. (A) The 
mRNA expression of SV4LT was observed in immortalized SV11βTG hepatocytes by PCR; (B) The 
proliferation rate of Pri11βTG (▲) and SV11βTG (●) hepatocytes for three days was measured by 
CCK-8 assay. The rate was significantly elevated in SV11βTG hepatocytes. Each group was prepared 
to half-dozen wells, and this experiment was performed twice; (C) Expression of HSD11B1 was highly 
increased; (D,E) Expression of H6PD (D) and G6PT (E) was insignificantly changed by transduction 
of HSD11B1 gene and immortalization using SV40LT antigen. Relative expression levels of mRNA 
were investigated by qPCR and normalized to RN18S. These experiments were performed in triplicate 
and independently three times. Number signs and asterisks indicate significant difference comparing 
to PriNonTG (#### p < 0.0001) and Pri11βTG (* p < 0.05, **** p < 0.0001) hepatocytes, respectively. White, 
gray and black bars represent PriNonTG, Pri11βTG and SV11βTG hepatocytes, respectively. 

 

Figure 3. Induction of gluconeogenic markers by cortisone treatment. (A,B). The mRNA levels of 
gluconeogenesis-related genes such as G6PC (A) and PCK1 (B) were significantly increased in 
cortisone-treated group of both Pri11βTG and SV11βTG hepatocytes; (C) The mRNA level of GR 
binding to cortisol was more increased in SV11βTG hepatocytes than Pri11βTG ones. Relative level 
of these mRNAs was normalized to RN18S; (D) protein level of PCK1 and HSD11B1 was examined 
by Western blotting method; (E,F) Relative expression of these protein was quantified by ImageJ 
program and normalized to α-tubulin. Both PCK1 and HSD11B1 proteins levels meaningfully 
increased in cortisone-treated condition of SV11βTG hepatocytes. Asterisks and number signs 
respectively mean significant increase comparing to vehicle-treated group of Pri11βTG (* p < 0.05,  
*** p < 0.001 and **** p < 0.0001) and SV11βTG (# p < 0.05, ## p < 0.01 and #### p < 0.0001) hepatocytes. All 
experiments were performed independently at least three times. White bars represent vehicle and 
black bars represent cortisone-treated group. (Ve, vehicle; Cort, cortisone) 
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2.5. Confirmation of Hepatic Character Using Liver Markers 

To identify the hepatic traits of cultured hepatocytes, we measured mRNA levels of liver specific 
genes such as albumin (ALB, Figure 4A), α-fetoprotein (AFP, Figure 4B) and serpin peptidase 
inhibitor α1-antitrypsin member 1 (SERPINA1, Figure 4C), and confirmed expression of ALB protein 
(Figure 4D). Expression of ALB protein as well as ALB and SERPINA1 mRNA was identified in 
SV11βTG cells and, increased significantly than in Pri11βTG cells (Figure 4A,C,D). It means that 
immortalized SV11βTG cells should be hepatocytes. Moreover, mRNA levels of AFP and SERPINA1 
were up-regulated in both Pri11βTG and SV11βTG hepatocytes by treatment with 10 µM cortisone 
(Figure 4B,C). The liver-enriched microRNA-122 (miR-122) level in SV11βTG hepatocytes was similar 
to one in HepG2, and was more expressed than in Pri11βTG hepatocytes (Figure 4E). These results 
suggest that SV11βTG hepatocytes recover, or retain the characteristics of hepatocytes and are useful 
for the functional hepatocytes. 

 

Figure 4. Identification of hepatic markers. (A–C) Whether Pri11βTG and SV11βTG hepatocytes keep 
hepatic traits was examined by qPCR using primer to hepatic markers including ALB (A), AFP (B), 
and SERPINA1 (C), (A,C); The mRNA levels of ALB and SERPINA1 was significantly elevated in 
SV11βTG hepatocytes; (B,C) AFP and SERPINA1 mRNA levels were meaningfully increased in 
cortisone-treated group. Asterisks and number signs mean significant increase comparing to vehicle-
treated group of Pri11βTG (*** p < 0.001) and SV11βTG (## p < 0.01 and #### p < 0.0001) hepatocytes 
respectively. Relative mRNA level was normalized to RN18S. These experiments were repeated 
independently three times. White bars represent vehicle and black bars represent cortisone-treated 
group; (D,E) Hepatic markers including ALB protein (D) and miR-122 (E) was identified and 
increased in SV11βTG hepatocytes. A549, a lung cancer cell line, was used as a negative control. 
Daggers indicate significant difference comparing to A549 cell line ((†† p < 0.01 and †††† p < 0.0001). The 
relative miRNA level was normalized to RNU43. These experiments were repeated twice in triplicate. 

3. Discussion 

Since pigs are mono-gastric omnivores and have anatomical and physiological characteristics 
highly comparable to those of humans, porcine models are suitable for investigating and 
understanding the biological pathways related to human metabolic diseases [17]. In this study, we 
established immortalized porcine HSD11B1-TG (SV11βTG) hepatocytes, which are useful for 
investigation of metabolic disorders, through transduction of SV40LT antigen. In these immortalized 
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cells, we confirmed integration of the HSD11B1 gene cassette, selection cassette with the Neor and 
GFP genes, and the SV40LT gene.  

HSD11B1 mRNA and protein were overexpressed in SV11βTG hepatocytes; hence, the expression 
of G6PT and H6PD, which act as triads with HSD11B1 in ER, has no significant effect on mRNA level. 
These results may have been attributed to different basal expression levels of the three genes. The 
expression level of H6PD was 50–60 times higher than HSD11B1 and that of G6PT was 7–9 times higher 
than HSD11B1. G6PT enzyme is a transmembrane protein consisting of three transporting subunits 
(G6PT1, G6PT2 and G6PT3) that provides a selective channel and transports glucose-6-phosphate 
produced in the terminal reactions of both glycogenolysis and gluconeogenesis from the cytosol into 
the lumen of the ER. During this process, H6PD produces the cofactor NADPH for HSD11B1 activation 
[2]. Activated HSD11B1 converts inactive cortisone into active cortisol, which increases the glucose level 
in blood through gluconeogenesis and is involved in the metabolism of fat, protein, and carbohydrates 
[6]. Increased level of GR mRNA may indicate the increase in cortisol converted by HSD11B1 in 
SV11βTG hepatocytes. 

In a study using db/db mice, it has been reported that increased expression of GR and HSD11B1 
in hepatocytes is an important component in the development of type 2 diabetes [18]. Also, hepatic 
GR deficiency by delivering an adenovirus expressing GR-specific shRNA improves hepatic steatosis 
in livers of db/db mice [19]. The GR has been characterized as a crucial regulator of glucose 
homeostasis [19], belongs to nuclear receptor subfamily 3, group C, member1 (NR3C1) and binds to 
cortisol [14]. Complex consisting of GR and cortisol regulates transcription of genes related to the 
development, metabolism and immune response [16]. In this study, this complex has induced the 
expression of gluconeogenic and downstream genes such as G6PC and PCK1. However, 
overexpression of HSD11B1 did not induce the increase of G6PT and H6PD expression in the hepatic 
G6PT-H6PD-HSD11B1 triad system.  

To verify the hepatic traits of SV11βTG hepatocytes, we examined the expression of liver 
markers including ALB, AFP, SERPINA1, and miR-122. Most of these markers increased in 
immortalized hepatocytes. ALB protein is made specifically in the liver [20]. Primary cultured cells 
lost the inherent properties and morphology of original tissue in accordance with the progression of 
passages. Increased expression of ALB protein in SV11βTG hepatocytes indicates that SV11βTG 
hepatocytes had recovered from the loss of tissue specificity. It is also supported by the fact that miR-
122, which is necessary for the regulation of liver development, differentiation and metabolic function 
[21], has been further increased in SV11βTG hepatocytes than in Pri11βTG hepatocytes. The temporal 
regulation of miR-122 has been reported to promote hepatobiliary segregation with the acquisition 
and maintenance of hepatocyte phenotype, and to be involved in the regulation of cholesterol and 
fatty acid metabolism [21]. In some murine studies, genetic deletion of miR-122 showed severe 
dysfunction on lipid metabolism, and micro-steatosis, fibrosis and inflammation in the liver [22,23].  

AFP was relatively highly expressed in the fetal liver [24], and AFP level in the serum decreased 
in the weeks and months after birth [25]. As shown in Figure 4, AFP level did not differ between 
Pri11βTG and SV11βTG, but increased in response to treatment with cortisone. Some studies have 
reported that temporary treatment of cortisol or dexamethasone in hepatic tumor reduces AFP 
[26,27]. However, in a 10-year-old boy with pancreatic acinar cell tumor, Cushing’s syndrome, which 
was diagnosed with high serum adrenocorticotropic hormone and cortisol levels, was identified with 
the tumor, and excessive AFP level in serum was observed [28]. This clinical result differs from other 
studies in that it is continuously exposed to cortisol, and HSD11B1 is expected to be highly expressed 
in the patient, considering the increase of AFP expression in cortisone treatment in our 11βTG 
hepatocytes. Also, an elevated AFP concentration in the serum of adults was primarily observed in 
patients with hepatocellular carcinoma, chronic hepatitis, and acute liver failure [29]. Considering 
the influence of cortisol on hepatic metabolism, these findings suggest that cortisol can affect AFP 
levels during metabolic stress responses.  

Since SERPINA1 is expressed in the liver [30], it was used to confirm hepatic traits. SERPINA1 
is one of the most abundant serine protease inhibitors belonging to the serpin superfamily and is 
known by other names such as α1-antitrypsin (A1AT) and α1 protease inhibitor (A1PI) because of its 
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ability to inhibit various proteases [31]. SERPINA1 is capable of increasing greatly upon acute 
inflammation. SERPINA1 plays a key role in protection of tissues from protease of inflammatory 
cells, especially neutrophil elastase [32]. Deficiency and mutation of SERPINA1 can cause pulmonary 
emphysema via uncontrolled elastase activity and liver cirrhosis through accumulation of misfolded 
proteins and impaired secretion [33]. Therefore, the use of three SERPINA1 products obtained from 
human plasma, Prolastin, Zemaira, and Aralast, was approved by the United States Food and Drug 
Administration [34]. It has been reported that treatment with SERPINA1 products significantly 
reduced neutrophils, TNF-α, and neutrophil chemokine KC (CXCL1) [35]. Hence, it was reported that 
cortisol, a steroid hormone, suppresses the immune system by preventing production of IL12, IFNγ, 
IFNα and TNFα via antigen presenting cells and T helper cells [36]. As shown in Figure 4, the levels 
of SERPINA1 increased in immortalized SV11βTG hepatocytes and were significantly elevated in 
response to treatment with cortisone. These findings suggest that cortisol increases the expression of 
SERPINA1, and hepatic traits in SV11βTG hepatocytes had been restored.  

In conclusion, we used the SV40LT system for immortalization. Although human liver 
sinusoidal endothelial cells have previously been immortalized using the hTERT gene [37], previous 
studies have never reported immortalization of porcine HSD11B1-TG hepatocytes by introduction of 
SV40LT in vitro. Furthermore, these cells have a tendency to maintain their original characteristics, 
such as response to cortisone and gluconeogenesis. Overexpression or dysregulation of HSD11B1 has 
been associated with metabolic disorders eliciting abdominal obesity, hyperglycemia, hyperphagia, 
hyperleptinemia, and insulin resistance. Recently, HSD11B1 has been investigated as a novel target 
of potential therapeutic drugs for metabolic syndrome, including Cushing syndrome. Thus, our 
immortalized SV11βTG hepatocytes may be useful for investigating traits and potential therapeutic 
drugs for metabolic disorders. 

4. Materials and Methods  

4.1. Animals and Primary Porcine Hepatocytes Culture 

The pig experiments were performed in strict accordance with the recommendations in the 
Guide for the Care and Use of Laboratory Animals of the National Veterinary and Quarantine 
Service, and this study was approved by the animal ethics committee of Sooam Biotech Research 
Foundation (P-15-01) and the Committee on the Ethics of Animal Experiments of the Chungbuk 
National University (CBNUA-871-15-01). All efforts were made to minimize animal suffering. 

4.2. Isolation of Primary Porcine Hepatocytes  

Liver was removed from Yucatan male pig, washed in cold PBS, chopped on cold petri dish, and 
dispersed with 0.05% trypsin at 37 °C for 15 min. Supernatant was mixed to the same volume of basal 
medium (Dulbecco Modified Eagle Medium (DMEM) with 25 mM glucose, 3.7 g/L sodium 
bicarbonate (pH 7.4), 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL streptomycin, 
and 5 µg/mL plasmocin) and centrifuged (1200 rpm for 5 min). The pellet was resuspended in 4mL 
of basal medium and layered over a percoll gradient in phosphate-buffered saline (PBS) containing 
70 to 5% percoll (vol/vol). After centrifugation for 20 min at 3600 rpm, the middle layer among three 
regions was collected. The collected cell was cultured in basal media and in a humidified 5% CO2 

atmosphere at 37 °C.  

4.3. Cell Treatments 

Pri11βTG or SV11βTG hepatocytes (1 × 105 cells per well) were attached for one day, then starved 
in starvation medium (DMEM with 5 mM glucose without FBS and phenol-red) for one day before 
being treated with 0.1% DMSO or 10 µM cortisone in starvation medium containing 10% charcoal-
dextran treated FBS for two days.  
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4.4. Immortalization of Primary Hepatocytes 

To introduce SV40LT into primary cell, retroviral vector pLXIN-SV40T was stably transfected 
into the recombinant retrovirus packaging cell line, PT67 cells (Takara, Shiga, Japan). Retrovirus-
containing medium was collected, and transferred onto Pri11βTG hepatocytes [38].  

4.5. Genomic DNA Extraction and Confirmation of SV40T Integration 

Genomic DNA was isolated with a G-DEX™ IIc Genomic DNA Extraction kit (iNtRON, 
Gyeonggi-do, South Korea). 100 ng of genomic DNA was amplified in a 20 µL PCR reaction 
containing 1 U i-Start Taq polymerase (iNtRON), 2 mM dNTPs (Takara) and 10 pmol of each specific 
primer listed in Table 1. Amplicons were separated on 1% or 1.5% agarose gel, stained with ethidium 
bromide, photographed under UV illumination, and scanned using GelDoc EQ (Bio-Rad, Hercules, 
CA, USA).  

4.6. Cell Counting Kit-8 (CCK-8) Assay 

The number of cells on 96 well-plate was seeded to 4 × 103 cells per well. The cell was maintained 
in basal medium and cultured for 10 h, 28 h, 48 h, and 72 h. These cells were incubated with CCK-8 
solution (Dojindo, Rockville, MD, USA) for 2 h. Absorbance of each well was measured at 450 nm.  

4.7. RNA Isolation and Gene Expression Analysis by RT-PCR and qPCR 

Total RNA was extracted using TRI Reagent (Thermo Fisher Scientific, Carlsbad, CA, USA) 
according to the manufacturer’s instructions. cDNA was synthesized using MMLV reverse 
transcriptase (Thermo Fisher Scientific) and random primers (TaKaRa; 9-mers) or stem-loop RT 
primer (miR-122, GTTGGCTCTGGTGCAGGGTCCGAG GTATTCGCACCAGAGCCAACAACGCC 
[39]; RNU43, GTTGGCTCTGGTGCAGGGTCCGAGGT ATTCGCACCAGAGCCAACAATCAG 
[13]). Prime Q-master mix (GeNet Bio, Daejeon, South Korea) was used for quantitative PCR (qPCR). 
Primer sequences of target genes are described in the Table1. Relative expression mRNA and miRNA 
was calculated using the equation R = 2−Δ(ΔCtTarget – ΔCtInternal control) normalized by RN18S and RNU43, 
respectively. RNU43, which called the small-nucleolar RNA, C/D Box 43 (SNORD43), belongs to the 
large C/D box family and function in 2′-O-ribose methylation in ribosome biogenesis. 

4.8. Protein Expression Analysis by Western Blotting 

Lysates were extracted in RIPA buffer (50 mM Tris, pH 7.4, 150 mM sodium chloride (NaCl), 1% 
Triton X-100, 0.5% sodium deoxycholate, 1 mM EDTA and 1 mM PMSF) containing protease inhibitor 
cocktail (Roche, Basel, Switzerland) by vortex. 70 µg of denatured protein was used in Western 
blotting and treated with the primary antibodies (HSD11B1 (Novusbio, Littleton, CO, USA; NBP1-
69644, 1:1000), PCK1 (Cayman, Ann Arbor, MI, USA; 10004943, 1:1000), ALB (Dako, Glostrup, 
Denmark; A0001, 1:1000) and α-tubulin (Cell signaling, Danvers, MA, USA; #2144, 1:1000) and 
horseradish peroxidase (HRP)-conjugated rabbit secondary antibodies. After washing, the blots were 
exposed to enhanced chemiluminescence (ECL) reagent (Santa Cruz Biotech, Dallas, TX, USA) and 
then were developed. 

4.9. Statistical Analysis 

Data are presented as means ± standard deviation (SD) and were analyzed by one-way or two-
way ANOVA (GraphPad Prism Software, Inc., San Diego, CA, USA). p < 0.05 was considered to 
indicate a statistically significant difference. 
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Abbreviations 

HSD11B1 11β-hydroxysteroid dehydrogenase type 1 
TG Transgenic 
ER Endoplasmic reticulum 
SCNT Somatic cell nuclear transfer 
SV40LT SV40 oncogene large T antigen 
Pri11βTG primary HSD11B1-TG 
SV11βTG SV40LT HSD11B1-TG 
G6PT Glucose-6-phosphate transporter 
H6PD Hexose-6-phosphate dehydrogenase 
G6PC Glucose-6 phosphatase catalytic subunit 
PCK1 Phosphoenolpyruvate carboxykinase 1 
GR Glucocorticoid receptor 
ALB Albumin 
AFP α-fetoprotein 
SERPINA1 Serpin peptidase inhibitor α1-antitrypsin member 1 
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