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Abstract: The recruitment of leukocytes, mediated by endothelium bound chemokine gradients,
is a vital process in inflammation. The highly negatively charged, unbranched polysaccharide family
of glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate mediate chemokine
immobilization. Specifically the binding of CXCL8 (interleukin 8) to GAGs on endothelial cell
surfaces is known to regulate neutrophil recruitment. Currently, it is not clear if binding of CXCL8 to
GAGs leads to endothelial downstream signaling in addition to the typical CXCR1/CXCR2 (C-X-C
motif chemokine receptor 1 and 2)-mediated signaling which activates neutrophils. Here we have
investigated the changes in protein expression of human microvascular endothelial cells induced by
CXCL8. Tumor necrosis factor alpha (TNFα) stimulation was used to mimic an inflammatory state
which allowed us to identify syndecan-4 (SDC4) as the potential proteoglycan co-receptor of CXCL8
by gene array, real-time PCR and flow cytometry experiments. Enzymatic GAG depolymerization
via heparinase III and chondroitinase ABC was used to emulate the effect of glycocalyx remodeling
on CXCL8-induced endothelial downstream signaling. Proteomic analyses showed changes in the
expression pattern of a number of endothelial proteins such as Zyxin and Caldesmon involved in
cytoskeletal organization, cell adhesion and cell mobility. These results demonstrate for the first time
a potential role of GAG-mediated endothelial downstream signaling in addition to the well-known
CXCL8-CXCR1/CXCR2 signaling pathways in neutrophils.
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1. Introduction

The interaction between leukocytes and the endothelial cell surface is a key event in inflammatory
processes. Glycosaminoglycans (GAG) at the endothelial cell surface are crucial mediators of this
interaction [1]. This family of unbranched polysaccharides is found on all human cells as well as
in the extracellular matrix and it consists of six different members, heparin (HP), heparan sulfate
(HS), chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS) and hyaluronic acid (HA),
which differ in their disaccharide building blocks. The most prevalent GAGs on the cellular surface
are HS and CS. HS consists of repeating units of -D-GlcA-β-(1→4)-D-GlcNAc-α-(1→4)- with a variable
degree of N-deacetylation/N-sulfation, O-sulfation and C5-epimerization; CS is made of is made of
repeating -D-GlcA-β-(1→3)-D-GalNAc-β-(1→4)- units that can be modified by 2-O, 4-O, 6-O-sulfations
and epimerization. The unique structural design, which in turn determines specific protein binding
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properties, is generated during biosynthesis by the concerted action of a complex set of enzymes [2,3].
During chain elongation, the nascent GAG chain is modified by an epimerase, converting GlcA into
IdoA, and several sulfotransferases adding sulfate groups to distinct positions. Chain elongation and
modification require an array of distinct enzymes for the HS and the CS pathway. The mature HS
chain can also be edited by the action of endosulfatases and heparanase. Especially, the enzymes
involved in the generation of the sulfation pattern exist in several isoforms with divergent activities,
substrate specificities and tissue distribution. Modulation in GAG structure is therefore likely to be
achieved, at least to some extent, by the differential regulation of expression of a certain repertoire of
modifying enzymes.

Both GAG classes, HS and CS, are found covalently attached (O-linked) to core proteins,
forming so called proteoglycans (PGs) of the syndecan (SDC) and glypican (GPC) family [4,5].
While the GPCs are linked to the membrane via C-terminal glycosylphosphatidylinositol anchors,
the SDCs are the only transmembrane HS proteoglycans [6,7]. In mammals, four SDC isoforms
are expressed (SDC 1 through 4) in a cell type, tissue and disease specific manner [8–10]. All SDC
extracellular domains bear at least three HS chains close to their N-terminus, but to some extent also
CS is attached at sites closer to the cell membrane [6,11,12]. The protein core components of PGs
are synthesized in ribosomes to be then translocated to the rough ER where a xylosyltransferase
initiates the synthesis of the linker tetrasacharide by adding a xylose to a serine residue of the
protein core. Two galactose residues are subsequently added in the cis or medial Golgi to the Xyl
by galactosyltransferase I and galactosyltransferase II. The fourth residue, completing the linker
tetrassacharide, is a GlcA added by glucuronyltransferase I and occurs in the trans-Golgi, the final
location for all subsequent reactions. The addition of the fifth saccharide determines whether
the GAG chain becomes chondroitin sulfate (CS)/DS or HS/heparin. GAG type, length of the
chain(s), conformational flexibility and particularly the specific GAG sequence/structure determine
the biological function of the glycan part of the PG.

The structural features of these GAG chains enable SDCs to interact with a variety of soluble
and insoluble molecules including growth factors [13,14], chemokines [15–17], extracellular matrix
molecules [18,19], clotting factors [20,21] and proteins involved in lipid metabolism [22–24]. It is
estimated that GAGs can bind to several hundred proteins [25–27]. GAG-protein interaction can lead
to protection against proteolysis [28,29], mediation and changes in protein–protein interactions [30–33]
and protein presentation on the endothelial cell surface [34,35]. Given their interaction with a vast
number of proteins, as well as their multiple effects on these proteins, it comes as no surprise that
GAGs are involved in a great number of physiologic events and malignancies.

CXCL8 is a member of the chemokine protein family, which encompasses small, generally
basic chemotactic proteins. This chemokine is involved in numerous pathophysiological conditions
including cancer [36], chronic obstructive pulmonary disease (COPD) [37] and rheumatoid diseases [38].
It is a well-known GAG-binding protein that is responsible for the recruitment of neutrophils to the
site of inflammation by activating the chemokine receptors CXCR1 and CXCR2 [39]. Activation of
these G protein coupled receptors leads to MAPK mediated cell activation mechanisms, such as cell
migration, cell attachment and degranulation [40]. GAGs such as HS, which are integral part of cell
surface proteoglycans (HSPGs), facilitate the formation of solid phase CXCL-8 gradients on endothelial
surfaces, which is of central relevance in the multi-step process of leukocyte adhesion and endothelial
transmigration [41–43]. In addition to CXCR1 and CXCR2, CXCL8 binds to DARC, a non-signaling
chemokine receptor [44,45].

So far, it has not been investigated if CXCL8 binding to cell-surface HSPGs leads to intracellular
signaling in endothelial cells of inflamed tissues. We have tested this hypothesis by investigating
firstly the differential HSPG gene expression following TNFα stimulation, and secondly by
proteomic analyses of protein expression following CXCL8 incubation of TNFα pre-stimulated
human microvascular endothelial cells. Reshaping of the glycocalyx due to proteoglycan ectodomain
shedding [46–48] and heparanase activity [49,50], which play an important role in vivo, were simulated
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by treatment with chondroitinase ABC and heparinase III. We found evidence that CXCL8-induced
signaling via GAGs occurs in endothelial cells and that this influences the expression of proteins that
are involved in cell adhesion and cell mobility.

2. Results and Discussion

2.1. Effect of TNFα on Proteoglycan Transcription and Expression in HMVECs

TNFα was added to the cell culture medium in order to screen for overall TNFα induced
changes and changes in chemokine GAG co-receptor expression. RNA microarray screening revealed
that changes in syndecan expression occurred, but that glypican expression remained unchanged
(see Table S1 for a complete list of all changes). As an important internal control, the expression of
CXCL8 was found to be 33-fold up-regulated following TNFα stimulation [51]. This corresponds
to previous findings, see for example Reference [52]. RT-qPCR using SDC primers was applied to
quantitate changes in SDC gene expression. For this means, human microvascular endothelial cells
(HMVECs) were again stimulated with TNFα 50 ng/mL for four hours to induce an inflammatory
response in vitro and to enable investigation of HS proteoglycan expression under inflammatory
conditions. TNFα treatment resulted in a 2.7-fold increase in SDC4 transcription, while SDC2
expression was decreased 5.8-fold (see Figure 1). These findings were in accordance with the gene
array measurements (see Table S1). On the protein level, SDC2 and SDC4 expression was examined by
flow cytometry (see Figure 2). By this means, the expression level of SDC2 was found to be unchanged,
whereas SDC4 expression was found to be 1.7-fold increased following TNFα stimulation. HS and/or
CS chains of SDC4 are therefore highly likely to be the co-receptors of CXCL8 on endothelial cells in
inflammatory conditions.
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Figure 2. Flow cytometry analyses of endothelial SDC2 and SDC4 expression following TNFα
stimulation. Shown are absolute expression values (A) and fold changes (B) compared to untreated
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2.2. Effect of CXCL8 Treatment of Preinflamed HMVECs on Protein Expression

To investigate CXCL8 mediated downstream signaling, the chemokine was added to the cell
culture medium (final conc. 50 nM) and changes in protein expression were detected. Exogeneous
CXCL8 has been added to reach chemokine levels comparable to the in vivo situation. The amount
of CXCL8 released by TNFα-stimulated endothelial cells alone is commonly much lower than the
significantly higher concentrations of CXCL8 observed in inflammatory tissues, in which the chemokine
is released also by other cells (mainly neutrophils, see Reference [53]). As internal controls, antibodies
against CXCR1 and CXCR2 were added to rule out potential chemokine signaling via GPC receptors.
On the protein expression level, differential expression via CXCR1- and CXCR2-independent signaling
pathways included vimentin, a regulator of cell-adhesion and migration [54,55], and transgelin-2,
both of which were significantly up-regulated (see Table 1). These changes in protein expression
levels were the first hint towards specific signaling evoked by CXCL8 via GAGs in inflammatory
settings (see Table S1 for a complete list of all expression level changes). Bioinformatic analyses
showed four enriched protein clusters with rather unspecific annotations. For example annotation
cluster 1 contained the GO terms poly(A)RNA binding with five proteins (cytoskeleton associated
protein 4, heterogeneous nuclear ribonucleoprotein K, histone cluster 4 H4, ribosomal protein S18 and
ribosomal protein S25) and RNA binding with three proteins (heterogeneous nuclear ribonucleoprotein
K, ribosomal protein S18, ribosomal protein S25). Functional expression of adhesion molecules on
TNFα-pre-inflamed endothelial cells was shown recently in flow chamber experiments using CXCL8
to recruit and adhere neutrophils [56].

Table 1. Differentially expressed proteins in CXCL-8 treated, pre-inflamed HMVECs.

Master No. t-Test Av. Ratio Identified Protein UniProtKB MW (Da)

292 0.16 −1.59 Prelamin-A/C P02545 74,380

373 0.086 −1.58 Alpha-2-HS-glycoprotein P02765 40,098

389 0.25 −1.61
Cytoskeleton-associated protein 4 or Q07065 66,097

Heterogeneous nuclear ribonucleoprotein K P61978 51,230

723 0.44 1.53 Vimentin P08670 53,676

1020 0.003 1.59 * Vimentin P08670 53,676

1176 0.039 1.56 * Transgelin-2 P37802 22,548

1194 0.063 1.73 40S ribosomal protein S18 P62269 17,708

1233 0.028 1.50 *
40S ribosomal protein S25/ P62851 13,791

Prefoldin subunit 2 Q9UHV9 16,695

1294 - 1.76 Histone 4 P62805 11,360

* p-value < 0.05.
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2.3. Effect of CXCL8 Treatment on Protein Expression Levels of TNFα-Preinflamed, Chondroitinase-
and Heparinase-Treated HMVECs

Heparinase and chondroitinase were used to simulate glycocalyx reshaping of HS and CS and
their respective proteoglycan core protein shedding that occur in vivo (for a list of endothelial proteins
affected by chondroitinase and heparinase treatment alone see Table S1). CXCL8 stimulation of
preinflamed, heparinase- and chondroitinase-treated HMVECs evoked a broader response in cellular
proteome changes than in HMVECs without enzyme pre-treatment (see Table 2). Especially differential
regulation of proteins directly involved in cell adhesion and/or cytoskeleton-associated proteins
were observed under these conditions. Zyxin, caldesmon and cytoplasmic actin 1 expression were
up-regulated, ICAM-1, cytoskeleton-associated protein 1 and prolyl 4-hydroxylase subunit alpha-1
expression were down-regulated (see Figure 3). Particularly proteins that are directly involved in
actin assembly were found to be differently expressed. Zyxin, heat shock protein beta-1 (Hsp27),
heterogenous ribonucleoprotein K (hnRNP K) mediate actin filament assembly [57–59]. Protein
disulfide-isomerase A3 (PDIA3), Far upstream element binding-protein 2 (KSRP) and caldesmon are
well known actin binding partners [60–62]. This suggests activation of a pathway influencing actin
function. In Figure 4, potential GAG-mediated CXCL-8 downstream signaling pathways are presented.
SDC4 that was found to be up-regulated after TNFα stimulus by qPCR is a proteoglycan known to
affect the assembly of focal adhesions and actin stress fibers [63]. CXCL8 binding to SDC4 GAGs could
influence this action, e.g., by mediating protein proteoglycan oligomerization. PKCa is a well-known
regulator of actin function [64] that is functionally influenced by SDC4 [65]. SDC4 may affect PKCa
action on actin in combination PKC substrate that was found to be up-regulated after CXCL8 binding
to GAGs. Additionally, SDC4 acts on actin in a cooperative mode with integrins [66]. Zyxin contains
an Ena/VASP binding domain that is crucial for actin dynamics [67]. Together with caldesmon this
protein influences integrin mediated actrin stress fiber formation [68]. Taken together, GAG mediated
downstream signaling could take effect directly via SDC4, an SDC4-integrin- or SDC4-PKCa-axis.

Table 2. Differentially expressed proteins in CXCL-8 treated, preinflamed, heparinase III and
chondroitinase ABC treated HMVEC identified by proteomics.

Master No. t-Test Av. Ratio Identified Protein UniProtKB MW (Da)

253 0.41 1.75 Zyxin Q15942 62,463

254 0.43 1.61 Caldesmon Q05682 93,251

257 - 1.81 Caldesmon Q05682 93,251

259 0.040 1.64 * Far upstream element binding-protein 2 Q92945 73,355

331 0.1 −2.46 Intercellular adhesion molecule 1 P05362 58,587

361 - 1.62 Protein kinase C and casein kinase substrate in
neurons protein 2 Q9UNF0 56,046

374 0.15 −2.06 WAS protein family homolog 1 A8K0Z3 50,354

378 0.13 −1.88 Protein disulfide-isomerase A3 P30101 57,146

386 0.086 −1.56 Cytoskeleton-associated protein 4 Q07065 66,097

387 0.077 −1.62 Cytoskeleton-associated protein 4 Q07065 66,097

388 0.050 −1.77 Cytoskeleton-associated protein 4 Q07065 66,097

392 0.55 −1.87 Heterogenous ribonucleoprotein K P61978 51,230

414 0.14 −2.09 Prolyl 4-hydroxylase subunit alpha-1 P13674 61,296

552 0.21 1.57 S-adenosylmethionine synthase isoform type-2 P31153 43,975

671 0.39 1.52 Actin, cytoplasmic 1/Nestin P60709 42,052
P48681 177,439

694 0.28 2.17 Actin, cytoplasmic 1 P60709 42,052

695 - 1.88 COP9 signalosome complex subunit 4 Q9BT78 46,525

1012 0.27 1.53 Heat shock protein beta-1 P04792 22,826

1208 - −1.86 40S ribosomal protein S15 P62841 17,029

* p-value < 0.05.
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Functional annotation clustering of all differentially regulated proteins using DAVID Functional
Annotation Tool (v8.6, see Section 3. Materials and Methods) underlines these findings. Six clusters
were revealed of which five contained related GO terms, such as focal adhesion, cytoskeleton, cell–cell
adhesion, cell junction and plasma membrane. For example annotation cluster 1 contained the
eight proteins actin beta, heat shock protein beta-1, heterogenous nuclear ribonucleoprotein K,
intercellular adhesion molecule 1, protein disulfide isomerase A3, protein kinase C and casein
substrate in neurons, ribosomal protein S15 and zyxin. This cluster was annotated with GO terms
focal adhesion, extracellular exosome and the sequence feature sequence variant. Together with
abovementioned data from the literature, these findings show a clear involvement of the differentially
expressed proteins in cellular structure and cell adhesion. Especially leukocyte migration requires
dynamic cytoskeletal rearrangements at the endothelium. The observed proteomic changes imply
a CXCL8 signaling that leads to reorganization of the cytoskeleton, a process crucially involved in
the regulation of endothelial permeability in inflammation. Interestingly, expression of intracellular
adhesion molecule 1 (ICAM-1), a major mediator of leukocyte adhesion that usually displays increased
expression through inflammatory cytokines, was decreased, which adds further to the complexity of
the GAG-chemokine interplay in inflammation. The fact that enzymatic reshaping of the glycocalyx
led to an increased CXCL8 mediated signal underlines the mediatory function of GAGs at the cell
surface. See Supplemental Material for a complete list of all changes.

3. Materials and Methods

3.1. Cell Culture

Human lung microvascular endothelial cells (HMVEC-l, Lonza, Basel, Switzerland) in the fourth
passage were grown to 80% confluence in T75 flasks (Greiner Bio-One, Kremsmünster, Austria)
containing 10 mL endothelial basal medium and growth supplements (Lonza). Where required,
recombinant TNFα (Sigma-Aldrich, St. Louis, MO, USA) was added to a final concentration of
50 ng/mL and incubated for 10 h at 37 ◦C and 5% pCO2. TNFα incubation times and dosage have been
optimized recently in our labs [69]. Where required, heparinase III (0.1 mU/mL, Iduron, Alderley, UK)
and chondroitinase ABC (0.5 mU/mL, Sigma-Aldrich) were added to the culture medium after 30 min
of incubation with TNFα. To rule out CXCL-8 signaling through CXCR1 and CXCR2 and binding to
DARC/D6, 0.5 µg/mL of each anti-CXCR1, anti-CXCR2 and anti-DARC/D6 antibody (Santa Cruz,
Dallas, TX, USA) were added to the medium. After incubation for 90 min, recombinant CXCL-8
(Antagonis Biotherapeutics GesmbH, Graz, Austria) was added to the medium at a final concentration
of 50 nM. After incubation for 8 h, cells were washed with PBS twice, scraped into 2 mL PBS/EDTA
and centrifuged in a 2 mL Eppendorf tube at 500× g. Residual cells in the plate were collected with
2 mL PBS/EDTA, added to the cell pellet and centrifuged again at 500× g. The supernatants were
discarded and the cell pellets were stored at −80 ◦C until further use.

3.2. Whole Cell RNA Isolation

Total RNA was isolated from the cells using the total RNA isolation Kit (Sigma-Aldrich) according
the manufacturer’s protocol. Quality and quantity of the isolated RNA was determined photometrically
at 260 and 280 nm and by Bioanalyzer testing.

3.3. Gene Expression Analysis

Gene expression was investigated using the GeneChip® Gene 1.0 ST Array System (Affymetrix,
Santa Clara, CA, USA). cDNA synthesis from whole RNA, fragmentation and labelling was performed
according to the Affymetrix® GeneChip® Whole Transcript (WT) Sense Target Labeling Assay Rev 5
protocol. For hybridization, the GeneChip® Hybridization, Wash and Stain Kit was used according to
the manufacturer’s protocol on a Fluidics Station 450. For scanning, the Affymetrix GCS3000 Scanner
and the AGCC Command Console Software AGCC_3_1_1 was used. The Affymetrix Geneexpression
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Console v.1.1. was used for quality assessment. Data processing and filtering was done with the
Partek Software v 6.4. For robust multi-chip analysis, background correction, quantile normalization
across all chips in the experiment, log2 transformation and median polish summarization was done.
Differentially expressed genes were identified by paired t-test using a p-value of 0.05 and a fold change
threshold of 1.3.

3.4. Protein Isolation and Labeling

Cell pellets (approx. 6 × 106 cells) were lysed in 75 to 100 µL of 30 mM Tris-HCl, 9 M urea,
4% CHAPS (w/v), pH 8.5. Solubilization was enhanced by two short incubations in a sonication
bath for about 20 s each with intermittent cooling of the sample to 5 ◦C and one freeze-thaw cycle.
Protein content was determined by a Coomassie G-250 protein-binding assay. 25 µg protein aliquots
were labeled in triplicates with 200 pmol of CyDyes minimal dyes (GE Healthcare Life Sciences,
Little Chalfont, UK) according to manufacturer’s protocol. Reverse labeling with Cy3 and Cy5 was
performed for all samples in order to eliminate preferential labeling. Cy2 was used for the internal
standard (a pool of all samples within one experiment), which was included on all gels.

3.5. 2D Electrophoresis

Classical 2D electrophoresis was performed as previously published [70]. Samples were applied
anodically to rehydrated laboratory made nonlinear IPGs pH 4 to 10 of 12 cm length and run on
a Multiphor system (GE Healthcare, Little Chalfont, UK) for 20 kV/h. After 1D separation, strips were
frozen until further use. For the second dimension, the strips were equilibrated and transferred to an
SDS-PAGE gel (T = 10 to 15% linear gradient, C = 2.7%) according to Laemmli in a Hoefer SE 600 vertical
electrophoresis chamber (Hoefer Scientific Instruments, Holliston, MA, USA). After 2DE, gels were
scanned on a Typhoon 9400 imager and evaluated with DeCyder Software V5.02 (both GE Healthcare).
The ratios between volumes of single spots in the samples and the corresponding spots in the internal
standard were calculated. Statistic features in DeCyder were used for evaluation of 2-DE gels. Protein
spots differentially expressed between samples were extracted from separate silver stained gels,
using volume ratios of 1.5 as selection criteria. A modified silver staining protocol according to
Heukeshoven [68] was used for detection. Gels were scanned with a Sharp JX-330 flatbed scanner.
Differentially regulated spots were excised for mass spectrometry.

3.6. Mass Spectrometry

In-gel tryptic digestion, peptide extraction and nano-HPLC MS2 were performed as previously
described [71]. Analysis of MS2 spectra with respect to peptide identity was routinely performed by
applying both the GPM (Global Proteome Machine Organisation) and the SEQUEST (Thermo Finnigan,
Waltham, MA, USA) search engines. In general a peptide was reliably identified only if the individual
peptide scores XCorr were ≥2 for singly charged, ≥2.5 for doubly charged and ≥3.5 for triply charged
peptides for SEQUEST, and if logE was ≤−2.5 for GPM. Peptides with logE scores between −1.5 and
−2.5 were included only if the b and y ion series of the corresponding fragment showed at least 80%
completeness. Only proteins identified with both search engines were considered. All peptides were
blasted against the UniProt Knowledgebase.

3.7. RT-qPCR

2 µg of isolated whole cell RNA was reverse transcribed to cDNA using the High Capacity cDNA
Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s
protocol. For the qPCR reaction, the Power SYBR Green PCR MasterMix was used according to
the manufacturer’s protocol. Glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH) was chosen
as house-keeping reference gene. Following syndecan primers were used: Syndecan-1 (5′-AGG
ATGGAACTGCCAATCAG; 3′-ATCCGGTACAGCATGAAAGC), Syndecan-2 (5′-TCTGAGGCAG
AAGAGAAGCTG; 3′-AGGATGAGGAAAATGGCAAA), Syndecan-3 (5′-ATACTGGAGCGGAAGG
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AGGT; 3′-TTTCTGGTACGTGACGCTTG), Syndecan-4 (5′-AACCACATCCCTGAGAATGC; 3′-AGG
AAAACGGCAAAGAGGAT). The thermo-cycle and signal-detection was performed on an Applied
Biosystems 7300 Real Time PCR System. The thermo-cycle consisted of an initial denaturation step
(10 min at 95 ◦C), followed by 40 cycles of denaturation (15 s at 95 ◦C), primer annealing (30 s at 60 ◦C)
and elongation (1 min at 72 ◦C). At the end, one final dissociation step (system default) was added.
For data visualization and analysis, the 7000 system SDS software (Applied Biosystems, V 1.2.3) was
used. Automatic Ct threshold and auto-baseline correction was chosen.

3.8. Flow Cytometry

Syndecan expression on the cell surface was determined using flow cytometry. HMVEC (Lonza).
Cells were plated in 6-well plates (GBO, Kremsmünster, Austria), left untreated or stimulated with
50 ng/mL TNFα (PeproTech, Rocky Hill, NJ, USA) for 4 h at 37 ◦C/5% CO2, washed with PBS,
detached using PBS/5mM EDTA for 20 min at 37 ◦C/5% CO2 and transferred to a FACS tube (Becton
Dickinson, Franklin Lakes, NJ, USA).

Samples were then incubated with 0.25 µg/mL of the respective fluorophore-coupled antibody
(monoclonal anti-human syndecan-4-allophycocyanin) from R&D Systems (Minneapolis, MN, USA) for
30 min at 4 ◦C. Isotype control was performed using 0.25 µg/mL APC Rat IgG2a IC (Becton Dickinson)
antibody at the same labeling conditions. After incubation, samples were washed and fixed using BD
Cellfix Buffer™ (Becton Dickinson). Data were acquired using a FACS Calibur (Becton Dickinson) with
the software CellQuest™ (Becton Dickinson). Analysis was performed using FlowJo v7.6.5 (Treestar,
Ashland, OR, USA).

3.9. Functional Annotation Clustering

DAVID Functional Annotation Tool v6.8 [1] was used to determine common protein characteristics.
The tool carries out GO term annotation, protein functions, protein locations etc. calculates statistical
significances by and clusters proteins in significantly groups. UniProt accessions of the differentially
expressed proteins were entered and functional annotation clustering was performed against the
Homo sapiens gene background using default parameters. The top five significant clusters were
analyzed further. See Supplemental Material for the complete annotation and clustering data.

4. Conclusions

The obtained data revealed that the CXCL8-GAG-interactions are more complex than generally
assumed. Transmembrane proteoglycans, which partly showed increased expression in inflammation,
seem not only to facilitate a chemotactic gradient, but also to transduce CXCL8 mediated signals into
the target cells. CXCL8 mediated reorganization of the actin cytoskeleton independent of conventional
CXCR1 and CXCR2 pathways could be of relevance in the complex process of inflammation. We found
that treatment of TNFα inflamed HMVEC with exogenous CXCL8 was associated with a rearrangement
in the expression of cytoskeletal proteins, especially after treatment with heparinase and chondroitinase
ABC. Reshaping of HS and CS with these enzymes in the glycocalyx lead to an amplification of
changes in protein expression. This underlines findings that GAGs play a vital role in chemokine
signaling, e.g., by binding proteins to the cellular surface and mediating chemokine interactions with
other proteins. Modification of the GAG layer on the endothelial cell surface is thought to be an
important mechanism in inflammatory processes in vivo. Usually GAG chains protrude further into
the extracellular surroundings than common neutrophil adhesion receptors do. Common inflammation
triggers like TNFα and IL-1 are known to regulate the expression of MMPs involved in glycocalyx
reshaping and also in SDC ectodomain shedding. Additionally, heparanase is known for modifying the
GAG composition on the cell surface and therefore their interaction with extracellular ligands. Thus,
our results showed that remodeling of the GAG surface may lead to an enhanced direct chemokine
exposure to receptors at the cell surface by decreasing the length of the GAG chains and capturing
ligands more closely to different receptors. By ruling out conventional CXCR1 and CXCR2 signaling
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via antibody blockage, this leads to the conclusion that there might be a previously unknown GAG
dependent CXCL8 signaling pathway that might control endothelial structure and permeability in
inflammation via actin and actin binding proteins. We suggest that in inflammation an altered GAG
profile determines the amount and type of chemokine interactions at the endothelial cell surface.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/12/2605/s1.
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