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Abstract: MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally
regulate the translation of messenger RNAs. Given the crucial role of miRNAs in gene expression,
genetic variants within miRNA-related sequences may affect miRNA function and contribute to
disease risk. Osteoporosis is characterized by reduced bone mass, and bone mineral density (BMD)
is a major diagnostic proxy to assess osteoporosis risk. Here, we aimed to identify miRNAs
that are involved in BMD using data from recent genome-wide association studies (GWAS) on
femoral neck, lumbar spine and forearm BMD. Of 242 miRNA-variants available in the GWAS data,
we found rs11614913:C > T in the precursor miR-196a-2 to be significantly associated with femoral
neck-BMD (p-value = 9.9 x 1077, p = —0.038) and lumbar spine-BMD (p-value = 3.2 x 10711,
B = —0.061). Furthermore, our sensitivity analyses using the Rotterdam study data showed
a sex-specific association of 1511614913 with BMD only in women. Subsequently, we highlighted
a number of miR-196a-2 target genes, expressed in bone and associated with BMD, that may mediate
the miRNA function in BMD. Collectively, our results suggest that miR-196a-2 may contribute to
variations in BMD level. Further biological investigations will give more insights into the mechanisms
by which miR-196a-2 control expression of BMD-related genes.
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1. Introduction

Osteoporosis is characterized by reduced bone mass and micro-architectural degradation of bone
tissue, resulting in increased bone fragility, with a consequent increase in fracture susceptibility [1].
This is a common disease affecting one in three women and one in five men worldwide [2].
Incidence and development of osteoporosis increases exponentially with age [3]. The disease is
diagnosed by common imaging modalities, and therefore, might be modifiable to prevent fractures [3,4].
A major diagnostic proxy to assess osteoporosis risk in the clinical field is bone mineral density
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(BMD) measurements, especially in skeletal sites where osteoporotic fractures occur more frequently
(i.e., lumbar spine, hip and forearm) [5]. Genetic studies have estimated that 50-85% of the variance in
BMD can be attributed to genetic factors [6]. A number of protein-coding genes as well as non-coding
genes have been posited to contribute to osteoporosis or decreased BMD [7-10]. Functional genetics
have also demonstrated eight genes that could explain up to 40% of BMD variation in postmenopausal
osteoporosis and involve risk of fracture [11,12].

MicroRNAs (miRNAs) are small non-coding RNAs, approximately ~22 nucleotides long, which
post-transcriptionally regulate gene expression. Together, they are estimated to regulate more than
half of the genes in our genome [13]. miRNAs" mode of action involves imperfect matching of
the “seed region” (nucleotides 2-8 from the 5" end of mature miRNA sequence) with a partially
complementary sequence located at the 3’ UTR of target mRNA, resulting in translational inhibition
and/or mRNA degradation [14]. It has been shown that genetic variants in miRNAs contribute to
disease risk [14-17]. Polymorphisms in miRNA genes are presumed to alter miRNA biogenesis and
consequently change the expression of the miRNA target genes [14,15]. This altered gene expression
might result in phenotypic variation [18]. There are strong indications that miRNAs influence BMD
levels by regulating several genes involved in bone-related pathways [19]. For example, miR-146a
has been shown to regulate TRAF6 and IRAK1 genes involved in apoptosis [20]. In osteoclasts, these
genes mediate IL-13-induced activation of NF-«B signaling, which in turn promotes osteoclast activity
and survival [21,22]. Furthermore, previous candidate gene studies have shown that genetic variants
within miRNA genes (e.g., miR-146, miR-125a, miR-27a, miR-433) are associated with osteoporosis and
bone cell activity, possibly through altering the miRNA expression levels or function [9,23-26].

In the present study, we hypothesized that genetic variants in miRNAs affect miRNA-mediated
regulation of genes involved in BMD. To test this hypothesis, we performed a genome-wide scan
for miRNA variants associated with BMD using data from the recent genome-wide association
studies (GWAS) on femoral neck, lumbar spine and forearm BMD [7]. We found a genetic variant in
pre-miR-196a-2 significantly associated with BMD. Subsequently, we performed in silico analyses to
investigate whether miR-196a-2 and its putative target genes may contribute to BMD variation.

2. Results

2.1. A Variant in miR-196a-2 Associates with BMD

A total of 2340 variants in miRNA-related sequences were collected by combination of a literature
review and miRNASNP database [27]. In parallel, we extracted summary statistics data from the
recent GWAS meta-analysis on three BMD phenotypes, including femoral neck (FN-BMD), lumbar
spine (LS-BMD) and forearm (FA-BMD), provided by Genetic Factors of Osteoporosis (GEFOS)
consortium [7]. Out of 2340 miRNA variants, 90 single-nucleotide polymorphisms (SNPs) were
available in the GWAS data. Using the SNAP Web tool, we extracted the proxy SNPs (R? > 0.8
and distance < 200 kb in 1000 Genomes project) for 152 of the unavailable variants. We studied
the association of these 242 miRNA SNPs with BMD phenotypes. One of the SNPs passed the
Bonferroni significance threshold of 2.1 x 1074 (0.05/242). This includes rs11614913:C > T in miR-196a-2
which is significantly associated with FN-BMD (p-value = 9.9 x 10~7, § = —0.038) and LS-BMD
(p-value = 3.2 x 1071, B = —0.061). This analysis indicated that individuals carrying the rs11614913
minor allele T are more prone to have lower BMD. No significant association was identified between
the miRNA variants and FA-BMD. A simplified scheme of the pipeline used for the identification of
miRNA SNPs associated with the BMD phenotypes is shown in Figure 1.

2.2. The Potential Impact of rs11614913 on the miR-196a-2 Structure and Function

We generated the hairpin structures of hsa-miR-196a-2 containing either the major allele C
or the minor allele T at rs11614913 site using the Vienna RNAfold algorithm [28]. We observed
4.6 kcal/mol difference in the minimum free energy (MFE) of the thermodynamic predicted structure
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of pre-miR-196a-2 with the minor allele T compared to the wild type allele C (Figure 2). The analysis
suggests that the investigated variant may affect the stability of miR-196a-2. In this line, it has
been demonstrated previously that rs11614913-T decreases miR-196a-2 expression in different cell
lines [29,30].

Genetic variants in the GWAS of Extraction of genetic variants in
FN-BMD, L§-BMD and FA-BMD miRNA-related sequences
0= 10,000,000 SNPs n=2,340 SNPs

20 miRNA SNPs +132 proxy high LD with
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Figure 1. A simplified diagram of the pipeline used to identify miRNA genetic variants associated with
BMD. FN-BMD: Femoral neck bone mineral density; LS-BMD: Lumbar spine bone mineral density;
FA-BMD: Forearm bone mineral density; SNP: Single-nucleotide polymorphism; GWAS: Genome-wide
association studies.
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Figure 2. Schematic view of the predicted pre-miR-196a-2 hairpin structure containing the SNP
major allele C or minor allele T. The minimum free energy (MFE) change of the thermodynamic
ensemble (AG) is shown. The red part indicates mature sequence and the blue part shows the rest of
pre-miRNA sequence.
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2.3. Associaton of miR-196a-2 Target Genes with BMD

Through leveraging the GEFOS GWAS data and using a candidate gene approach, we tested
the association of genetic variants in 457 putative target genes of miR-196a-2 with FN-BMD and
LS-BMD. Table 1 shows the top ten target genes of miR-196a-2 with the most significant association
with the BMD phenotypes. Using RNA-seq gene expression data of 86 hip bone (iliac crest) biopsies,
we found evidence for expression of eight out of the ten highlighted target genes of miR-196a-2 in
bone (Figure 3) [12]. Among the bone-expressed targets, JAGI passed the significance threshold,
based on the number of variants in the tested miR-196a-2 target genes (Table 1). This analysis may
suggest that JAGI is more likely to mediate the downstream effect of miR-196a-2 in relation to BMD.
Moreover, a number of genes have been demonstrated experimentally (i.e., by luciferase reporter assay,
Western blot or qPCR) to be regulated by miR-196a-2. As shown in supplementary Table S1 some
of these genes are shown to be involved in either osteogenesis or bone function and may mediate
the miR-196a-2 effect on BMD. We checked the correlation of rs11614913 with expression level of its
surrounding genes as shown by GTEX portal (http://www.gtexportal.org/home/) and found the
association of SNP with expression of HOXC8 and HOXC-AS1 across different tissues.
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Figure 3. Expression of the highlighted miR-196a-2 target genes and positive controls (SP7, MEPE,
RUNX2, SOST and SPP1) in RNA-seq data consisting of 86 hip bone (iliac crest) biopsies. The expression
data are shown in the metric Logl0 FPKM (fragments per kilobase of transcript per million
mapped reads).

Table 1. Putative target genes of miR-196a-2 (3p and 5p) that are associated with FN-BMD and
LS-BMD. Leading SNPs within each target gene associated with BMD in GEFOS GWAS data are shown.
Significantly associated genes, after Bonferroni correction for multiple testing (p-value <7.0 x 1079),
are depicted in bold.

Associated Associated Target ~ p-Value in GWAS

miRNA ID Phenotype Genes Data Top SNP
JAG1 1.8 x 1073 1rs2235811

FN-BMD MACROD?2 2.0 x10°° rs365824

miR-196a-3p SP1 42 %1073 154759334
JAG1 47 x107° rs2235811

LS-BMD ATF7 6.3 x 107° 151078358

MACROD?2 8.1 x 1075 rs6110288

FRMD4B 5.6 x 1074 rs1564757

FN-BMD NEDDA4L 9.6 x 1074 rs533502

miR-196a-5p BIRC6 12 x 1073 rs6737916
COL24A1 2.6 x 1073 51359419

LS-BMD RSPO2 31x1073 rs446454

DIP2A 33 x 1073 rs2330593
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2.4. Sensitivity Analyses for rs11614913 in miR-196a-2 Using the Rotterdam Study Data

Previous studies have reported sex-specific association of genetic variants with BMD [31,32].
Furthermore, some studies have shown difference in sex response to muscoskeletal cell development,
mediated by influence of steroid hormones [33,34]. In order to investigate the potential difference
in association between the miR-196a-2 variants and BMD across sexes, we performed a sensitivity
analysis using the Rotterdam study (RS) data. The baseline characteristics of the RS participants
are shown in Table 2. A total of 6,145 participants (3524 woman and 2621 men) from the three
RS cohorts were eligible for this analysis (individuals with data available for rs11614913 and Dual
X-ray Absorptiometry (DXA) imaging on FN-BMD and LS-BMD). Mixed linear regression analysis
was carried out in sex-stratified data to investigate the association between rs11614913 and the BMD
phenotypes (Table 3). In the basic model (adjusting for age, cohort, weight, waist to hip ratio and height)
there was a significant association between rs11614913 and FN-BMD only in women (p-value = 0.003;
B =0.009; (95%Confidence Interval, CI) = 0.003, 0.014). The association remained significant for women
in the second model (further adjusting for alcohol, smoking status and drugs used for treatment of bone
diseases) (p-value = 0.003; 3 = 0.008; (95%CI) = 0.003, 0.014). We also tested the association between
rs11614913 and LS-BMD and found, again, a clear significance only in women in the basic model
(p-value = 0.023; 3 = 0.010; (95%CTI) = 0.001, 0.019) and the second model (p-value = 0.026; 3 = 0.010;
(95%CI) = 0.001, 0.018) (Table 3). Next, we further adjusted the second model for sex-hormones to see
whether the miRNA variant is linked to sex-hormones (Table 3). The association in females remained
significant after further adjustment for five sex-hormones (Model 3) involved in the steroidogenesis
pathway. These results suggest that there is sex specificity in the association of miR-196a-2 with BMD.

Table 2. Demographic characteristics of the Rotterdam study cohorts. Values are mean (standard
deviation), numbers (percentages) or median (interquartile range (IQR)); used for alcohol only.
FN-BMD: Femoral neck bone mineral density; LS-BMD: Lumbar spine bone mineral density;
WHR: Waist to hip ratio; Bone drugs: drugs used for treatment of bone diseases; DHEA:
dehydroepiandrosterone; DHEAS: dehydroepiandrosterone sulfate.

Variables Men Women

FN-BMD (g/cm?) 0.95 (0.14) 0.87 (0.14)
LS-BMD (g/cm?) 1.20 (0.19) 1.08 (0.19)
Age (years) 65.71 (10.45) 66.29 (10.61)
Weight (kg) 85.55 (12.85) 73.11 (13.09)
WHR 0.95 (0.07) 0.84 (0.07)
Height (cm) 176.41 (7.01) 162.73 (6.50)
Alcohol (g/day) 9.29 (3.57-20.00) 4.29 (0.54-10.00)
DHEA (nmol/L) 11.82(7.32) 12.31 (7.65)
DHEAS (nmol/L) 3200.18 (1757.16) 2099.17 (1337.77)
Androstenedione (nmol/L) 3.24 (1.27) 2.70 (1.29)
Testosterone (nmol/L) 17.53 (5.78) 0.90 (0.45)
Estradiol (pmol/L) 96.93 (33.82) 38.86 (33.18)

never smoker 1125 (42.9%) 2071 (58.8%)
Smoking former smoker 1039 (39.7%) 841 (23.9%)

current smoker 456 (17.4%) 612 (17.4%)

no 2607 (99.5%) 3400 (96.5%)
Bone drugs yes 13 (0.5%) 124 (3.5%)
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Table 3. Association between rs11614913 and BMD phenotypes in participants of the Rotterdam Study.
Model 1 (M1) is adjusted for age, cohort, weight, waist to hip ratio (WHR) and height. Model 2 (M2)
is adjusted for M1 + alcohol, smoking status (current, former and never smoker) and drugs used for
treatment of bone diseases. Model 3 (M3) is adjusted for M2 + estradiol, testosterone, androstenedione,
DHEA, and DHEAS. “Combined” was additionally adjusted for sex.

Men Women Combined
B 95%CI p-Value B 95%CI p-v B 95%CI p-Value

M1 0.004 —0.003, 0.011 0.257 0.009 0.003, 0.014 0.003 0.007 0.003, 0.012 0.002
FN-BMD M2 0.004 —0.003, 0.011 0.267 0.008 0.003, 0.014 0.003 0.007 0.003, 0.012 0.002
M3 0.004 —0.004, 0.011 0.319 0.008 0.003, 0.014 0.003 0.007 0.002, 0.011 0.003

M1 0.005 —0.006, 0.016 0.380 0.010 0.001, 0.019 0.023 0.009 0.002, 0.016 0.011
LS-BMD M2 0.004 —0.007, 0.015 0.423 0.010 0.001, 0.018 0.026 0.009 0.002, 0.016 0.012
M3 0.003 —0.008, 0.014 0.573 0.009 0.001, 0.018 0.038 0.008 0.001, 0.015 0.020

Phenotype Model

3. Discussion

Recent studies have shown that miRNAs are important regulators of genes linked to bone
remodeling and osteoporosis development [35-39]. Different approaches have been used in previous
studies to identify miRNAs involved in osteoporosis, including miRNA expression profiling [38,40]
and candidate gene association studies [41]. In this study, we have conducted a genome-wide scan
investigating the association of miRNA genetic variants with BMD using GWAS data [7]. This method
represents a valuable, extended and complementary approach to previous methods used in the
identification of miRNAs associated with BMD.

Our results showed that rs11614913 in the stem region of pre-miR-196a-2 is significantly associated
with FN-BMD and LS-BMD. Lack of significant association between rs11614913 within pre-miR-196a-2
and forearm BMD could be attributed to the small sample size in GWAS (n = 8143) compared to
FN-BMD (n = 32,735) or LS-BMD (n = 28,498) in the discovery cohorts [7], or differences in bone
remodeling between anatomical sites. It has been shown that loaded and unloaded bone (forearm)
have distinct transcriptional activities [42,43]. The location of rs11614913 in pre-miR-196a-2 is likely to
affect the miRNA processing by enzyme Dicer, and subsequently alter the expression of mature
miR-196a-2 [44,45]. Polymorphisms in pre-miRNA sequences have been shown to cause either
a destabilization of the interaction due to changes in the free binding energy or a change in target
accessibility due to alternations in the miRNA secondary structure [19,46,47]. Our in silico analysis
showed differences in the MFE between the predicted structure of pre-miR-196a-2 mutants and the wild
type, suggesting the variant’s minor allele may diminish the stability of pre-miR-196a-2. In agreement
with this conjecture, previous studies have established the impact of rs11614913 polymorphism
(C/T) on the miR-196a-2 expression levels [29,30,44,45,48]. Zhibin Hu et al., have reported that
rs11614913 wild-type allele (C) is associated with statistically significant increase in mature miR-196a-2
expression, while studying 23 human lung cancer tissue samples [30]. They also showed that
rs11614913 could affect binding of the mature miR-196a-2 to its candidate target mRNA [30].
Furthermore, Zhao Hauanhuan et al., observed the same trend of rs11614913*CC genotype to increase
the mature miR-196a-2 expression in different phenotypes of breast cancer [29]. Likewise, Hoffman et al.,
experimentally demonstrated that rs11614913 mutant allele (T) is associated with statistically significant
decrease in miR-196a-2 expression in breast cancer patients [44]. Another study by Vinci et al., presented
coherent results of rs11614913*TT decreasing miR-196a-2 expression levels in lung cancer patients [48].
In addition, Xu et al., determined that rs11614913 affects the expression of miR-196a-2 and consequently,
expression of its downstream target gene HOXBS [49]. They hypothesized that the variant might have
an impact on miR-196a-HOXBS8-Shh signaling pathway, and therefore, be associated with congenital
heart disease susceptibility [49]. In other studies, the miR-196a-2 polymorphism rs11614913 has
been linked to various phenotypic variations, ranging from several types of cancer [30,44,45,50]
to increased risk for cardiovascular disease [49,51-54]. These data strongly suggest an important
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functional impact of rs11614913 on miR-196a-2 expression and function that in turn might affect the
risk and/or progression of disease.

MiR-196a is shown to be expressed from HOX clusters loci in mammals and HOX genes in turn
are shown to be targets of miR-196a [19,55]. The HOX genes play critical roles in limb development
and skeletal patterning [56,57]. The miRNA has been also shown to play a role in brown adipogenesis
of white fat progenitor cells through targeting HOXCS8 [58]. It has been proven that the miRNA
regulates HOXCS at both mRNA and protein levels [55]. In an independent study, Kim et al., observed
that adding miR-196-a inhibitors to osteoblast cells in culture causes a significant increase in HOXC8
protein levels, with subsequent increased proliferation and decrease in osteogenic differentiation [59].
These data suggest upregulation of HOXCS in the miR-196a-2 variant carriers, of significance for
osteogenic differentiation. Accordingly, Dong-Li Zhu et al., have recently shown that miR-196a-2
is expressed in osteoblasts and experimentally demonstrated that FGF2, previously identified as
a susceptibility gene for osteoporosis in Caucasians [60], is a direct target of miR-196a-2 in the Chinese
population [8]. Their experiments proved that miR-196a-2 had an influence on FGF2 mRNA in hFOB1
cells, which is a human fetal osteoblastic cell line [8].

In addition to previously validated targets of miR-196a-2 involved in osteogenesis, we highlighted
a number of putative target genes associated with BMD with a potential to mediate the miR-196a-2
effect in BMD. Among them, JAGI passed the significant threshold to be associated with BMD
and is expressed in bone. The JAGI gene has been previously reported to be associated with
increased BMD and suggested as a candidate gene for BMD regulation in diverse ethnic groups [61].
Future experimental studies are needed to explore the postulated miR-196a-2-mediated regulation of
the gene in bone tissue or cell lines.

We performed sex-stratified analysis using the Rotterdam study data to get insight into sex
specificity for BMD variation on the miR-196a-2 polymorphism. In the sex-combined analysis,
we observed significant association of rs11614913 with BMD phenotypes. However, sex-stratified
analysis revealed that the association is mainly driven by women. We acknowledge that the observed
association in women may have been driven by a lower number of men (our cohort contains 903
more women than men), however, sample size of 6145 should be sustainable to address sex difference.
Notably, the miR-196a-2 polymorphism rs11614913 with combination of rs3746444 in miR-499a have
been reported previously to be involved in the multiple sclerosis severity, where the association shows
only female sex specificity [62]. Multiple sclerosis and osteoporosis share a surprising number of risk
factors [63-65] and genetics might be one of them, although the interplay of the two miRNA variants
and their impacts on gene interaction should be taken in consideration when interpreting the results
regarding sex specificity. Considering the sexual dimorphism of bone [31,66], these data might indicate
a potential for further clinical and biological investigations regarding the role of miR-196a-2 underlying
BMD variation.

This study has some strengths and limitations that need to be considered in interpretation of the
reported results. The major strength of this study is leveraging genetic data from the recent GWAS of
BMD phenotypes that enabled us legitimate statistical power for detection of miRNA-related variants
associated with BMD. The main limitation that needs to be addressed is lack of experimental studies
in relevant tissues or cell lines. MiRNA-related SNPs might be only utilitarian if the target mRNA is
expressed in the same tissue [67]. Thereby, further biological investigations warrant better insights
into the mechanisms by which miR-196a-2 control expression of genes involved in BMD.

4. Materials and Methods

4.1. Genome-Wide Association Studies on BMD Phenotypes

The summary statistics from the recent GWAS meta-analysis on FN-BMD (n = 32,735), LS-BMD
(n = 28,498) and FA-BMD (n = 8143) provided by GEFOS consortium were extracted [7]. The GEFOS
consortium is a collective effort of numerous research groups combining GWAS data, in order to
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identify osteoporosis susceptibility alleles that regulate BMD and fracture risk [7]. The GEFOS
consortium performed meta-analysis of whole genome sequencing, whole exome sequencing and
deep imputation of genotype data in order to determine low-frequency and rare variants associated
with risk factors for osteoporosis. The collaboration within the GEFOS has resulted in producing files
with summary statistics for approximately 10 million genetics variants (the 1000 Genomes/UK10K
reference panel) in 53,236 individuals [7]. More details on datasets and participants are described in
detail elsewhere [7].

4.2. Identification of Genetic Variants in miRNA-Encoding Sequences

A dataset of single-nucleotide polymorphisms (SNPs) in miRNA-related sequences was created
by combining miRNASNP (http://www.bioguo.org/miRNASNP/) [27] and the literature review
(searching in PubMed for miRNA genetic variants). Precursor miRNA sequences (pre-miRNA)
undergo cleavage by enzyme Dicer, yielding to mature miRNAs [13], therefore we screened all variants
located in human pre-miRNA and mature miRNA sequences. The methodology was explained in
details elsewhere [68]. Variants with minor allele frequency (MAF) >0.01 were included. Variants with
smaller MAF were illegible due to low imputation quality and issue of being underpowered in
further studies. In total, 2340 miRNA variants were extracted. Of these, 242 variants were available
in the GEFOS GWAS data and were therefore investigated further for their associations with
BMD phenotypes.

4.3. miRNA Target Genes Associated with BMD Phenotypes

Once a miRNA variant was found to be significantly associated with BMD phenotypes,
we searched for the miRNA target genes. We postulated that some of the miRNA target genes
may mediate the downstream effect of miRNA in relation to BMD phenotypes. In order to identify
target genes of miRNAs, putative target genes were extracted from combining TargetScan v7.1
(http:/ /www.targetscan.org/vert_71/) and miRDB (http://mirdb.org/) database [69]. Target genes
present in both databases were selected for further investigation. Any supplementary information,
such as miRNA conservation between species, host genes, miRNA sequences was collected from
TargetScan (v7.1). Both context score and conserved target sites were used to rank the miRNA target
genes. In addition, the online database, miRTarBase (http://mirtarbase.mbc.nctu.edu.tw /) provides
information on various functional experiments, such as microarrays, western blot, and reported assays
performed between miRNAs and their target genes [70]. We used miRTarBase to search for functional
experiment confirming the putative interaction between miRNAs of interest and their target genes.
A candidate gene approach was performed by leveraging the GWAS data on BMD phenotypes [7]
and to investigate the association between genetic variants in the miRNA target genes and BMD.
In addition, we evaluated the expression of selected target genes in the bone tissue. Dataset used for
gene expression was created out of 86 iliac biopsies [12].

4.4. The Variant Effect on the Pre-miRNA Structure

The secondary structure of pre-miRNA is critical for the miRNA production. The Vienna RNAfold
algorithm (ViennaRNA package 2.0) was used to predict the impact of miRNA variants on the hairpin
stem-loop structure of pre-miRNAs [28]. The ViennaRNA package 2.0 is available to the public domain
and relies on numerous algorithms for prediction and analysis of RNA secondary structures [71].
The program calculates the shift in minimum free energy (MFE) of the thermodynamic ensemble in
the hairpin structure of miRNA (wild type and mutant) [72]. The shift in MFE is likely to be related to
the function, as it can result in instability of miRNA.

4.5. The Rotterdam Study Data

The Rotterdam study (RS) is a population-based cohort study, with main goal of identifying
chronic disabling conditions of the middle aged and elderly people [73]. Participants were interviewed
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at home and went through an extensive set of examinations, including bone mineral densitometry,
sample collections for in-depth molecular and genetic analysis [73]. The RS includes three sub-cohorts.
We used the data from the baseline, second and third cohort (RS-I-4, RS-1I-2, and RS-III-1). For all
participants, DXA-based BMD measurements were collected for FN-BMD and LS-BMD. The RS does
not include data on FA-BMD since this site is used for prediction of osteoporosis only when data is not
available for FN-BMD or LS-BMD due to numerous reasons (e.g., patients either being obese, men
with hyperparathyroidism or receiving androgen-deprivation therapy (ADT) for prostate cancer) [74].
Furthermore, determinants were assessed either by physical examinations, collection of blood samples,
or by questionnaires. Participants were included if they had FN-BMD or LS-BMD measurements,
which resulted in combination of three cohorts (RS-I-4, RS-II-2, and RS-III-1). We used multiple
linear regression in sex-stratified dataset to examine the association between the candidate miRNA
variant and BMD phenotypes (separately). Our analysis was adjusted for all potential confounders in
three models.

5. Conclusions

The results of this study suggest that miR-196a-2 polymorphism (rs11614913:C > T) is associated
with reduced FN-BMD and LS-BMD. We highlighted a number of target genes that may mediate
miR-196a-2 function in influencing BMD. The identified miR-196a-2 might have a future implication
in the clinical field related to diagnosis and treatment of osteoporosis. Future biological studies will
give insight into the mechanisms by which miR-196a-2 may control expression of bone-related genes.
Collectively, our study provides further understanding of the miRNA-mediated regulation of BMD.
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