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Abstract: Akt1 is known to promote non-homologous end-joining (NHEJ)-mediated DNA
double-strand break (DSB) repair by stimulation of DNA-PKcs. In the present study, we investigated
the effect of Akt1 on homologous recombination (HR)-dependent repair of radiation-induced DSBs in
non-small cell lung cancer (NSCLC) cells A549 and H460. Akt1-knockdown (Akt1-KD) significantly
reduced Rad51 protein level, Rad51 foci formation and its colocalization with γH2AX foci after
irradiation. Moreover, Akt1-KD decreased clonogenicity after treatment with Mitomycin C and HR
repair, as tested by an HR-reporter assay. Double knockdown of Akt1 and Rad51 did not lead to
a further decrease in HR compared to the single knockdown of Rad51. Consequently, Akt1-KD
significantly increased the number of residual DSBs after irradiation partially independent of the
kinase activity of DNA-PKcs. Likewise, the number of residual BRCA1 foci, indicating unsuccessful
HR events, also significantly increased in the irradiated cells after Akt1-KD. Together, the results
of the study indicate that Akt1 seems to be a regulatory component in the HR repair of DSBs in a
Rad51-dependent manner. Thus, based on this novel role of Akt1 in HR and the previously described
role of Akt1 in NHEJ, we propose that targeting Akt1 could be an effective approach to selectively
improve the killing of tumor cells by DSB-inducing cytotoxic agents, such as ionizing radiation.

Keywords: homologous recombination; Akt1; Rad51; DNA double-strand break repair; non-small cell
lung cancer

1. Introduction

Non-small cell lung cancer (NSCLC) accounts for the largest subgroup of lung cancers, resulting in
the highest portion of cancer-related mortality worldwide [1–4]. Chemo-/radiotherapy represents the
standard treatment for locally advanced NSCLC. However, treatment resistance can occur, resulting
in 3-year survival rates of 15–20% [5,6]. The PI3K/Akt pathway is frequently hyperactivated in
NSCLC [7–9]. The serine/threonine kinase Akt, also known as protein kinase B (PKB), exists in
three isoforms, namely, Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ [10,11]. A high level of activated
Akt1 in tumor specimens is a prognostic factor for poor outcomes in NSCLC [12]. In addition to
stimulating tumor cell proliferation, growth and survival [7], Akt, especially Akt1, promotes DNA
double-strand break (DSB) repair and clonogenic survival after irradiation [13–16]. Various Akt
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inhibitors are currently being tested in clinical studies, demonstrating overall tolerable toxicities and
promising anti-tumor activities [17–19].

DSBs are the most severe form of irradiation-induced DNA lesions, which can lead to cell
death [20]. γH2AX foci are clusters of histones, which get phosphorylated adjacent to DSBs and,
thus, serve as DSB markers [21,22]. Cells are capable of DSB repair, a process, which is usually
completed within 24 h after DSB induction [23]. γH2AX histones strongly promote recruitment of
DSB repair proteins and are crucial for efficient repair [24–26]. The main pathways for the repair of
irradiation-induced DSBs are non-homologous end-joining (NHEJ) and homologous recombination
(HR) [27,28]. Akt1 has been shown to promote NHEJ via interaction with and stimulation of
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in various cell lines including NSCLC
cells A549 and H460 [13–15,29–31].

HR is a major repair pathway for irradiation-induced DSBs in late S and G2 phases [32–36].
In addition, HR is critical for the repair of broken replication forks and DNA interstrand
crosslinks [32,37]. HR-mediated repair uses a homologous DNA sequence, usually the sister chromatid,
as the repair template resulting in high-fidelity repairs. The first step of HR repair is end resection
of DSBs to obtain 3′ single-stranded DNA (ssDNA) overhangs. After that, the 3′ ssDNA overhang
invades a homologous double-stranded DNA (dsDNA) sequence. The invading 3′ ssDNA is elongated
by DNA synthesis, and the triple helix structure is resolved [38,39]. DSB end resection is facilitated
by a protein complex that includes BRCA1. Invasion of the ssDNA overhang into the homologous
dsDNA sequence is dependent on the recombinase Rad51. Accordingly, decreased Rad51/BRCA1
foci formation at the DSB is an indicator for impaired recruitment and decreased HR-dependent
repair [40–44]. Conversely, an elevated number of residual Rad51/BRCA1 foci suggests reduced foci
resolution and impaired HR repair [39,45].

So far, only a few studies have investigated the possible role of Akt1 in the regulation of
HR-dependent DSB repair. Akt1 has been reported to impair the nuclear localization and foci formation
of BRCA1/Rad51 as well as HR repair in normal tissue and breast cancer cells [46–48]. However, Rad51
foci formation has been demonstrated to be independent of Akt activity in HEK cells following
etoposide treatment [49]. Conversely, Akt has been shown to stimulate Rad51 protein expression in
several NSCLC cell lines including A549 cells [50–52]. Nonetheless, so far it is not known whether the
promotive effect of Akt on Rad51 protein level influences HR-mediated DSB repair in NSCLC cells.

In this study, we investigated the effect of Akt1 on HR-dependent DSB repair and the possible
underlying mechanism primarily in NSCLC cells A549 as well as in H460 cells. Moreover, we sought
to elucidate whether the modulation of HR repair by Akt1 affects clonogenicity after irradiation.
We demonstrated that Akt1 stimulates HR-mediated DSB repair in a Rad51-dependent manner.
This contributes to the stimulatory effect of Akt1 on DSB repair following irradiation. Thus, our
data provide further insights into the role of Akt1 in DSB repair.

2. Results

2.1. Akt1 Promotes HR-Dependent DSB Repair

We analyzed the effect of Akt1 on HR in NSCLC cells using A549 and H460 cells, in which Akt1
was knocked down by siRNA. Akt1-knockdown (Akt1-KD) did not affect the protein level of Akt2,
although it slightly reduced Akt3 protein expression in A549 cells but not in H460 cells (Figure 1A).
The influence of Akt1-KD on Rad51 foci formation was tested in non-irradiated cells as well as in cells
8 and 24 h post irradiation with 4 Gy. These time points were chosen based on the time-course of
Rad51 foci formation in A549 cells, which shows a peak between 4 and 8 h after irradiation (Figure S1).
Furthermore, compared to 4 h post-irradiation, the Rad51 foci appeared brighter and more distinct at
the 8 h time point. As shown in Figure 1B, irradiation significantly increased Rad51 foci number as
compared to non-irradiated cells at 8 h after irradiation in A549 and H460 cells (p < 0.001). In A549 cells,
Akt1-KD subtly, yet significantly reduced Rad51 foci number in comparison to con-siRNA transfected
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cells at 8 h post-irradiation. In the non-irradiated A549 cells or in cells at 24 h after irradiation,
the number of Rad51 foci was not influenced by the depletion of Akt1. In H460 cells, Akt1-KD
significantly reduced the number of Rad51 foci in the non-irradiated cells. Moreover, Akt1 depletion
significantly decreased the number of Rad51 foci in the cells at 8 and 24 h post-irradiation. Based on
the same data sets, we determined the fraction of cells with at least 2 Rad51 foci/nucleus in A549 and
H460 cells 8 h after irradiation. The threshold of 2 foci was chosen based on the basal foci number in
non-irradiated cells. In both cell lines, the proportion of cells with 2 Rad51 foci or more than 2 foci was
reduced by about 50% after Akt1-KD. Conversely, Akt1-KD has been reported to increase BRCA1 foci
formation in MCF-7 breast cancer cells at 12 h after irradiation [47]. Interestingly, we also observed
that Akt1-KD significantly increases the number of radiation-induced Rad51 foci in MCF-7 cells at 12 h
after irradiation (Figure S2).

To further investigate the effect of Akt1 on HR in NSCLC cells, we examined the influence of
Akt1 depletion on the colocalization of γH2AX and Rad51 foci in A549 and H460 cells at 8 h after
4 Gy irradiation. As shown in Figure 1C, the proportion of γH2AX foci that were colocalized with
Rad51 foci significantly decreased by more than half in A549 cells following Akt1-KD. Likewise, Akt1
depletion significantly reduced the fraction of γH2AX foci colocalized with Rad51 foci by about half in
H460 cells.

Mitomycin C (MMC) treatment leads to DSBs that are primarily repaired via HR [37,53].
Therefore, we examined the influence of Akt1-KD on clonogenic survival following MMC treatment.
Since colony formation assay takes 10 days, we already confirmed the stability of Akt1-KD over a period
of 7 days, the time required for reaching majority of colonies to 50 cells or more [31]. As demonstrated
in Figure 1D, Akt1 depletion significantly reduced the clonogenic survival of A549 and H460 cells after
MMC administration.

The effect of Akt1-KD was also tested using HR-reporter assays in A549 cells. The data shown in
Figure 1E and Figure S3 demonstrate that Akt1-KD significantly decreased the relative proportion of
GFP-positive cells, which indicates the inhibition of HR. Furthermore, treatment with the specific Akt
inhibitor MK2206 also significantly reduced HR repair in A549 cells. Raw values of GFP expressing cells
are stated in the figure legend. H460 cells could not be used for the HR-reporter assay due to massive
cell death after plasmid transfection. Thus, we focused on the A549 cell line for further analyses.
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Figure 1. Akt1 promotes HR-dependent DSB repair. A549 and H460 cells were transfected with
AKT1-siRNA or con-siRNA. (A) The protein levels of Akt1, Akt2 and Akt3 were analyzed by Western
blotting. β-Actin was used as the loading control. The protein levels were normalized to those in
the con-siRNA transfected cells. The data represent the mean ± SEM of the indicated number of
independent experiments; (B) the Rad51 foci assay was performed as described in the Methods section
at the indicated time points after irradiation. The bars represent the mean number of foci/cell ± SEM
from at least 3 independent experiments. At least 276 nuclei per condition were evaluated. Bars showing
the percentage of cells with at least 2 Rad51 foci/nucleus are based on data for the 8 h time point.
Akt1-KD significantly decreased Rad51 foci formation (* p < 0.05, ** p < 0.01, *** p < 0.001, Student’s
t-test); (C) 8 h after irradiation, the fraction of γH2AX foci colocalized with Rad51 foci was examined.
The results are based on the mean number of foci from two independent experiments, a total of at
least 175 nuclei per condition for A549 cells, and 2 independent experiments, a total of at least 197
counted nuclei for H460 cells (p < 0.001, Student’s t-test); (D) clonogenic survival after MMC treatment
was analyzed (A549, n = 4, 12 data points; H460, n = 1, 3 data points; * p < 0.05, Student’s t-test);
(E) HR-reporter assay was performed. A549 cells were treated with the indicated siRNAs or MK2206
(10 µM)/DMSO. The fraction of con-siRNA transfected cells, which were GFP-positive, equaled
0.56 ± 0.11%, the proportion of Akt1-KD cells equaled 0.40 ± 0.07%. The proportion of DMSO control
cells, which were GFP-positive, equaled 1.52 ± 0.18%. The portion of GFP-positive MK2206 treated
cells equaled 0.86 ± 0.10% (raw data). The raw values of GFP-positive cells were normalized to those
in the con-siRNA/DMSO treated cells. Akt1-KD significantly reduced the fraction of GFP-positive
cells (n = 3, 9 data points; ** p < 0.01, Student’s t-test). MK2206 treatment also significantly reduced the
fraction of GFP-positive cells (n = 2, 3 data points; ** p < 0.01, Student’s t-test). PE: Plating Efficiency.

2.2. Stimulation of HR Repair by Akt1 is Dependent on Rad51

To test whether Akt1-KD impairs HR repair through the inhibition of Rad51, we performed
HR-reporter assays in A549 cells after single and double knockdown of Akt1 and Rad51.
The depletion of Akt1 or Rad51 alone significantly inhibited HR as shown by reduced GFP expression.
Likewise, the relative proportion of GFP-positive cells was significantly decreased after the concurrent
depletion of Akt1 and Rad51. However, no further inhibition of HR was achieved after double
knockdown of Akt1 and Rad51 compared to the single knockdown of Rad51. Raw values of GFP
expressing cells are given in the figure legend (Figure 2A and Figure S4).

Next, we examined the effect of Akt1-KD on Rad51 protein levels in the cytoplasmic and nuclear
fractions of non-irradiated A549 cells and in cells 8 h post 4 Gy irradiation. Knockdown of Akt1 did
not affect the Rad51 protein level in the cytoplasmic fraction of non-irradiated cells. However, the
amount of Rad51 protein slightly decreased in the nuclear fraction of non-irradiated cells and in the
cytoplasmic fraction of irradiated cells following Akt1-KD. Importantly, Akt1 depletion significantly
reduced the amount of Rad51 protein in the nuclear fraction following irradiation (Figure 2B).

It is known that HR-mediated repair is active in late S phase and G2 phase [32–36]. We analyzed
the cell cycle distribution in non-irradiated A549 cells as well as in cells 8 and 24 h after 4 Gy irradiation
following Akt1-KD. As shown in Figure 2C, Akt1 depletion did not significantly affect the proportion
of cells in the different phases of the cell cycle.

2.3. Akt1 Promotes DSB Repair after Irradiation Partially by Stimulation of HR Repair

We analyzed the effect of Akt1-KD on γH2AX foci formation in A549 cells after single dose
irradiation with 4 Gy (after 8 and 24 h). Akt1-KD significantly increased the number of γH2AX foci at
8 and 24 h following irradiation (Figure 3A).

It is known that Akt1 stimulates NHEJ-mediated repair by interacting with DNA-PKcs [14,15,29].
Therefore, as a parameter of DSB repair efficacy, we examined the number of residual γH2AX foci in
A549-Akt1-KD cells 24 h after 4 Gy irradiation and concurrent inhibition of DNA-PKcs by NU7026.
Akt1 depletion alone significantly increased the number of residual γH2AX foci. Moreover, the number
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of γH2AX foci significantly increased after NU7026 treatment when the A549-Akt1-KD cells were
compared to the non-transfected A549 cells (Figure 3B).

Figure 2. Stimulation of HR repair by Akt1 is dependent on Rad51. (A) HR-reporter assay was
performed in A549 cells after transfection with the indicated siRNAs. The fraction of con-siRNA
transfected cells, which were GFP-positive, equaled 0.46 ± 0.10%, for Akt1-KD 0.33 ± 0.05%, for
Rad51-KD 0.24 ± 0.05%, for Akt1-KD+Rad51-KD 0.20 ± 0.03% (raw data). The raw values of
GFP-positive cells were normalized to con-siRNA transfected cells. Asterisks indicate significant
reduction of GFP-positive cells by Akt1-KD and Rad51-KD (n = 4, at least 8 data points; * p < 0.05,
*** p < 0.001); (B) following transfection with AKT1-siRNA, A549 cells were irradiated, and 8 h later,
the cytoplasmic and nuclear fractions were prepared. Rad51 protein levels were determined by
Western blotting. GAPDH and Lamin A/C were used as cytoplasmic and nuclear markers, respectively.
Densitometry is based on the mean ± SEM of 3 independent experiments. Akt1-KD significantly
reduced Rad51 protein level (* p < 0.05); (C) A549 cells were treated with AKT1-siRNA, harvested
at the indicated time points post irradiation, and cell cycle distribution was examined (n = 3, 6 data
points). n.s., not significant.

Furthermore, the comparison of the number of BRCA1 foci revealed that knockdown of Akt1 did
not alter the formation of BRCA1 foci in the irradiated or non-irradiated cells. However, we observed
that the number of residual BRCA1 foci 24 h post-irradiation, indicative of unsuccessful HR events,
significantly increased in the Akt1-KD cells (Figure 3C).
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Figure 3. Akt1 promotes DSB repair after irradiation partially by stimulation of HR repair. A549 cells
were transfected with AKT1-siRNA or con-siRNA. (A) The number of γH2AX foci was analyzed at the
indicated time points post irradiation. The results at 8 h after irradiation represent the mean ± SEM of
2 independent experiments and a total of at least 158 evaluated nuclei per condition. The data for the
non-irradiated cells and the cells at 24 h post irradiation are based on the mean± SEM of 3 independent
experiments and a total of at least 275 nuclei per condition. The number of γH2AX foci/nucleus was
significantly increased after Akt1-KD (*** p < 0.001, Student’s t-test); (B) following treatment with the
DNA-PKcs inhibitor NU7026 (10 µM) and irradiation, γH2AX foci assay was performed. The data
represent the mean± SEM of 3 independent experiments and a total of at least 320 evaluated nuclei per
condition. Akt1-KD significantly increased the number of residual γH2AX foci/nucleus (** p < 0.01,
*** p < 0.001, Student’s t-test); (C) the number of BRCA1 foci was determined at the indicated time
points after irradiation. The results are based on the mean ± SEM of 3 independent experiments and
a total of at least 287 nuclei per condition. Asterisks indicate a significant increase in the number of
residual BRCA1 foci/nucleus following Akt1-KD (*** p < 0.001, Student’s t-test).



Int. J. Mol. Sci. 2017, 18, 2473 8 of 17

2.4. Akt1-Mediated HR Repair Plays a Minor Role in Post-Irradiation Clonogenic Survival

HR repair is available in late S phase and G2 phase of the cell cycle [32–36]. To elucidate the
contribution of HR repair on the Akt1-mediated improvement in post-irradiation clonogenic survival,
we used non-synchronized and S/G2 phase synchronized cells. The synchronization of cells in S/G2
phase by aphidicolin led to a ~2-fold increase in the proportion of cells in S phase and a marked
increase in the proportion of cells in G2/M phase (Table 1).

Table 1. Cell cycle distribution after S/G2 phase synchronization. A549 cells were treated with the indicated
siRNA and synchronized in S/G2 phase using aphidicolin (5 µg/mL). In parallel to the clonogenic assays,
the cell cycle distribution was determined by flow cytometry (n = 3, at least 8 data points).

% of Cells ± SEM
Con-si Akt1-si

Non-Synch. S/G2-Synch Non-Synch. S/G2-Synch

G1 53.7 ± 1.3 20.9 ± 0.4 56.3 ± 0.8 33.6 ± 1.9
S 11.2 ± 0.6 23.0 ± 1.6 8.1 ± 0.6 16.7 ± 1.2

G2 32.3 ± 1.4 52.1 ± 2.1 33.9 ± 0.8 47.3 ± 2.7
subG1 2.7 ± 0.9 4.0 ± 1.0 1.7 ± 0.2 2.5 ± 0.3

The non-synchronized Akt1-KD cells displayed a significantly reduced post-irradiation clonogenic
survival when compared to the control cells (D37Control: 2.3 ± 0.3 vs. D37Akt1-KD: 1.8 ± 0.1).
However, the post-irradiation clonogenic survival of log-phase S/G2 synchronized cells was only
slightly reduced following Akt1-KD (D37Control: 1.5 ± 0.1 vs. D37Akt1-KD: 1.4 ± 0.1) (Figure 4A).
In addition, we examined the post-irradiation clonogenicity of A549 cells after Akt1-KD and concurrent
DNA-PKcs inhibition by NU7026. As shown in Figure 4B, Akt1 depletion alone significantly reduced
the clonogenic fraction after irradiation. However, Akt1-KD did not reduce the clonogenic survival in
cells following DNA-PKcs inhibition.

Figure 4. Akt1 increases post-irradiation clonogenic survival via NHEJ repair. A549 cells were treated
with AKT1-siRNA or con-siRNA. (A) Cells were synchronized in S/G2 phase or kept non-synchronized.
After irradiation with the indicated doses, clonogenic assays were performed by immediate plating
(PE non-synch/con: 0.35, PE non-synch/Akt1-KD: 0.32, PE synch/con 0.16, PE synch/Akt1-KD: 0.23).
Akt1-KD significantly decreased the post-irradiation clonogenic survival (n = 3, 36 data points;
*** p < 0.001, Student’s t-test); (B) Cells were treated with the DNA-PKcs inhibitor NU7026 (10 µM) and
irradiated with 2 Gy. Six hours after irradiation, clonogenic assays were performed by delayed plating
(PE DMSO/con: 0.26, PE DMSO/Akt1-KD: 0.29, PE NU7026/con 0.25, PE NU7026/Akt1-KD: 0.25).
Asterisks indicate significant reduction in clonogenic survival after Akt1-KD (n = 3, 9 data points;
** p < 0.01, Student’s t-test). SF: surviving fraction; SF2: surviving fraction after irradiation with 2 Gy;
PE: Plating Efficiency.
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3. Discussion

The data from the Akt1-KD experiments presented here indicate that Akt1 plays a regulatory
role not only for NHEJ repair, as has been reported earlier [14,15,29,30], but also for HR repair in a
Rad51-dependent manner.

To this aim, the results of Rad51 protein expression and foci formation together with the data from
the HR-reporter assays strongly suggest that Akt1 stimulates HR-dependent DSB repair. The overall
higher number of radiation-induced Rad51 foci in H460 cells as compared to A549 cells is in line
with an earlier report describing cell line-dependent differences in the extent of radiation-induced
Rad51 foci formation [54]. Both, A549 and H460 cells are EGFR and TP53 wildtype, but harbor an
activating KRAS mutation. In contrast to A549 cells, the H460 cell line shows an activating mutation
of PIK3CA coding for PI3K, which acts upstream of Akt1 [55,56]. This might underlie the enhanced
phosphorylation level of Akt1 (S473, T308) in H460 cells as compared to A549 cells, which has been
reported previously [57]. The higher phosphorylation level, i.e., Akt1 activation, might explain the
herein observed more pronounced effect of Akt1-KD on Rad51 foci number in H460 cells compared to
A549 cells. Furthermore, Rad51 foci formation is influenced by several other factors such as recruitment
of RPA and BRCA2 as well as other repair proteins like Rad52 [58,59]. It is possible that these factors
are differentially activated in both cell lines, which might also account for the different extent of
reduced Rad51 foci number in A549 and H460 cells after Akt1-KD. Another possible explanation
might be the strongly increased amount of γH2AX foci in A549-Akt1-KD cells at 8 h after irradiation.
In contrast, we reported previously [31] that in H460 cells Akt1 depletion significantly enhances the
number of residual γH2AX foci 24 h after irradiation, but does not affect the number of γH2AX
foci at the time point 8 h post-irradiation. It is well known that H2AX phosphorylation is crucial
for the recruitment of DSB repair proteins like Rad51 to the damage site [24–26]. Thus, it seems
plausible that the increased number of γH2AX foci promotes recruitment of Rad51 to the damage site
in A549-Akt1-KD cells, while at the same time Akt1-KD reduces Rad51 protein level and consequently
foci formation. This interpretation is supported by the observation that Akt1 depletion decreased the
fraction of γH2AX foci, colocalized with Rad51 foci, by more than half in A549 cells and approximately
half in H460 cells. Contrary to individual data for γH2AX foci and Rad51 foci, looking at colocalization
of γH2AX with Rad51 foci allows adjusting for the above-mentioned stimulatory effect of γH2AX foci
on recruitment of Rad51. The reason why Akt1-KD affected the number of γH2AX foci more strongly
in A549 cells than H460 cells at 8 h after irradiation is speculative, but might indicate that Akt1 exerts a
more pronounced effect on early DSB repair in A549 cells compared to H460 cells.

In addition to foci experiments, the reduced clonogenic survival after MMC treatment further
indicates that Akt1 promotes HR in A549 and H460 cells. We already tested the stability of Akt1-KD
over a period of 7 d in a previous publication showing excellent stability [31]. Evaluation of Akt1-KD
by Western blotting over a period of 10 d (in accordance with duration of clonogenic assay) was
not possible due to technical reasons, i.e., cells could not be grown in a monolayer without media
change for 10 days. Anyhow, knockdown stability during the first days of clonogenic assay is
most important, since the first 24 h after DNA damage induction are most crucial for repair of
DSBs, which manifests after several days as clonogenic cell death [21,23]. DSBs, which result from
MMC treatment, are primarily and accurately repaired via the HR repair pathway [37]. Misrepair
of MMC-mediated DSBs by NHEJ increases MMC-induced cytotoxicity. Consequently, inhibition of
the NHEJ pathway has been shown to partially rescue clonogenicity after MMC treatment [37,60].
Thus, the observed modest Akt1-KD-mediated sensitization to MMC is in accordance with the
stimulatory role of Akt1 in both HR- and NHEJ-dependent repair.

The stimulation of HR repair by Akt1 seems to be in contrast to reports by Plo et al. [47,48] and
Jia et al. [46]. These authors have reported an inhibitory effect of Akt1 overexpression on Rad51 foci
formation and HR repair using an HR-reporter assay in normal tissue and breast cancer cells [46–48].
In line with this report, we observed an increase in the number of Rad51 foci in the breast cancer
cell line MCF-7 after Akt1-KD. On the other hand, the data using the two NSCLC cell lines (A549
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and H460) presented here are in accordance with the report by Ko et al., who demonstrated that
Akt inhibition reduced the clonogenicity of NSCLC cells A549 and H1703 after MMC treatment [51].
The differential effect of Akt1 reported in earlier studies [46–48] and our current study might indicate
a cell line-dependent role of Akt1 in HR.

With respect to the mechanism underlying the stimulatory function of Akt1 in HR repair, our data
indicate that Akt1 increases Rad51 protein level, especially in the nucleus after irradiation and as a
result enhances Rad51 foci formation at the DSB. Lack of a significant difference in HR repair between
the cells with single knockdown of Rad51 and those with Akt1/Rad51 double knockdown implies that
Akt1 reduces HR repair in a Rad51-dependent manner. These results are supported by results from
other studies reporting that inhibition of Akt reduces Rad51 protein levels in different NSCLC cell lines
including A549 cells [50–52,61]. Moreover, Ko et al. demonstrated that sensitization of NSCLC cells to
MMC after Akt1 inhibition is partially rescued by Rad51 overexpression [51]. This implies that Akt1
inhibition, which is known to reduce NHEJ [14,15,29,30], also impairs HR in a direct manner but does
not lead to a passive switch from NHEJ to HR in NSCLC cells. Even though Rad51 protein level [62–64]
and HR repair capacity [32–36] are known to be highest during S/G2 phase, interference with the cell
cycle does not seem to underlie the effect of Akt1 on Rad51, since cycle distribution of Akt1-KD cells
was not significantly affected. In contrast, earlier reports suggest that Akt increases Rad51 protein
level by stimulating Rad51 mRNA and protein stability via reduction of Rad51 ubiquitination and
proteasomal degradation [50,51].

The data from the γH2AX and BRCA1 foci assays presented here support the conclusion that Akt1
not only promotes NHEJ-mediated repair of radiation-induced DSBs but also exerts a stimulatory role
on HR repair. The increased number of γH2AX foci represents non-repaired DSBs [21,22], most likely a
consequence of both impaired HR- and NHEJ-mediated DSB repair after Akt1-KD. However, Akt1-KD
led to an even more pronounced increase in the number of γH2AX foci in A549 cells when it was
combined with a DNA-PKcs inhibitor in comparison with that in cells with unhampered NHEJ.
Hence, the increase in the number of γH2AX foci after DNA-PKcs inhibition plus Akt1-KD is at
least partly due to the inhibition of DSB repair independent of the effect of Akt1 on DNA-PKcs
activity, in other words, it is most likely due to the influence of Akt1 on HR. The number of residual
Rad51/BRCA1 foci (24 h after irradiation) is a common indicator for the removal of the repair protein
after successful repair and thus forms a marker of non-repaired DSBs as a result of hampered HR
repair [39,45]. In contrast, the number of Rad51/BRCA1 foci at closer time points after DSB induction
(~4–12 h after irradiation) indicates the assembly of the protein at the DSB [39,47]. Thus, our results
suggest that Akt1 stimulates the recruitment of Rad51 to the damage site, whereas BRCA1 recruitment
does not seem to be affected. As a consequence of decreased Rad51 protein assembly at the DSB,
HR repair cannot be completed and the BRCA1 protein, which was recruited to the damage before
Rad51, cannot be removed from the damage leading to the increased number of residual BRCA1 foci.
Thus, this further supports the hypothesis that Akt1 enhances repair of radiation-induced DSBs partly
by HR. Interestingly, we observed that the Akt1-KD-mediated impairment of DSB repair was weaker
after treatment with DMSO as solvent control in A549 cells. The reason for this is speculative but
might be attributed to the stimulatory effect of DMSO on NHEJ [65]. Nonetheless, the data presented
here are in accordance with several studies, showing impaired DSB repair after irradiation following
AKT1-siRNA or the pharmacological inhibition of Akt [13–16]. However, in a previous report, Akt1
depletion did not increase the number of residual γH2AX foci in A549 cells when NHEJ was impaired
by DNA-PKcs-KD [14]. Yet, this experiment was carried out using cells in stationary phase, whereas
we used cells in log-phase for the present study. Accordingly, our result is in line with the role of the
HR pathway in DSB repair in late S and G2 phases, but not in the G1 phase.

Conversely, the data from colony formation assays indicate that HR plays a minor role in the
Akt1-mediated stimulation of clonogenic survival after irradiation. The reduction in clonogenic
survival after Akt1-KD and irradiation is in line with previous studies, showing radiosensitization by
Akt inhibition or AKT1-siRNA [14–16]. The strong radiosensitization of non-synchronized cells but
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only slight radiosensitization of S/G2 phase synchronized cells following Akt1-KD fits the pattern
of NHEJ-deficient but not HR-deficient cells [66]. Furthermore, the lack of effect of Akt1-KD on
clonogenicity after DNA-PKcs inhibition and irradiation is supported by a previous study, showing
that Akt1-KD does not induce radiosensitization in DNA-PKcs-deficient cells [15]. Thus, our results
imply that Akt1-KD-mediated reduction of HR decreases clonogenic survival after MMC treatment
but does not affect clonogenicity after irradiation. This finding is supported by previous studies, which
show that impairment of HR increases sensitivity to MMC to a greater degree than to irradiation [67,68].
It is known that HR is a predominant factor for survival after MMC [37,53], whereas clonogenic survival
after irradiation is influenced by several DNA repair pathways [69–71] and additional factors such as
autophagy [72–74] which might shadow the effect of reduced HR on post-irradiation clonogenicity.
Nonetheless, the reason behind why decreased HR repair after Akt1-KD reduces DSB repair following
irradiation but does not affect clonogenic survival is speculative. The lack of correlation between DSB
repair and clonogenic survival might be explained by other influences, such as autophagy. Several
publications have shown that autophagy increases radioresistance [72–74]. Moreover, Akt1-KD as
well as the inhibition of HR proteins such as BRCA1 is known to induce autophagy and subsequently,
increase tumor cell survival [75–78]. Thus, Akt1-KD-mediated HR inhibition might lead to enhanced
autophagy, which could be sufficient to counteract the radiosensitizing effect of Akt1-KD through
impaired HR-mediated DSB repair.

In conclusion, Akt1 promotes HR repair in a Rad51-dependent manner in NSCLC cells A549 and
H460. Thus, our data provide further insights into the Akt-mediated resistance of NSCLC to chemo-
and radiotherapy. Although further analyses are necessary to investigate the functional interaction
between Akt1 and Rad51 in stimulating DSB repair, the present study offers new aspects for the
development of novel strategies for selective targeting of NSCLC cells.

4. Materials and Methods

4.1. Cell Culture

A549 cells (ATCC® CCL-185™) and MCF-7 (ATCC® HTB-22™) were grown in Dulbecco’s
Modified Eagle’s Medium (DMEM, Thermo Fisher Scientific, Darmstadt, Germany). H460 (ATCC®

HTB-177™) cells were cultured in RPMI medium (Thermo Fisher Scientific). Media were
supplemented with 10% fetal calf serum and 1% penicillin/streptomycin in a humidified atmosphere
of 93% air/7% CO2 at 37◦ C. All experiments were carried out using log-phase cells at the time
of irradiation.

4.2. Antibodies and Reagents

The anti-Akt1 antibody (Cat#610877) was a product of BD Biosciences (Heidelberg, Germany).
The antibodies against Akt2 (Cat#2964), Akt3 (Cat#8018), BRCA1 (Cat#9010) and GAPDH (Cat#2118)
were obtained from Cell Signaling (Frankfurt, Germany). The anti-β-Actin antibody (Cat#A2066)
was purchased from Sigma-Aldrich (Taufkirchen, Germany). The antibodies against Lamin A/C
(Cat#40567) and Rad51 (Cat#88572) were provided by abcam (Cambridge, UK). The anti-P-H2AX
(S139) antibody (Cat#05-636) was a product of Merck Millipore (Darmstadt, Germany). Alexa Fluor 488
goat anti-mouse (Cat#A11001) and goat anti-rabbit antibodies (Cat#A11008) as well as Lipofectamine
2000 (Cat#11668027) were purchased from Thermo Fisher Scientific. The Cy3 donkey anti-rabbit
antibody (Cat#711-165-152) was a product of Jackson ImmunoResearch (Suffolk, UK). The siRNAs
against Akt1 (Cat#M-003000-03-0005) and Rad51 (Cat#L-003530-00-0005) as well as the non-targeting
siRNA (Cat#D-001810-10-20) were purchased from Dharmacon (Bonn, Germany), USA). Mitomycin
C (approval#394.01.00) was obtained from Medac (Wedel, Germany). The DNA-PKcs inhibitor
NU7026 (Cat#S2893) and the Akt inhibitor MK2206 (Cat#S1078) were purchased from Selleckchem
(Munich, Germany). The plasmids pGC and pI-SceI were provided by Dr. Wael Mansour (Laboratory
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of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf,
Germany). Development of plasmids pGC and pI-SceI has been described previously [27].

4.3. siRNA Transfection

Cells were transiently transfected with 50 nM of a pool of 4 different siRNAs against Akt1 and/or
25 nM of a pool of 4 different siRNAs against Rad51 or an equal concentration of the non-targeting
siRNA using Lipofectamine 2000. Whole cell lysates were prepared 48 h and 72 h after transfection to
analyze the knockdown efficiency by Western blotting.

4.4. Rad51, γH2AX and BRCA1 Foci Assays

Two days after siRNA transfection, cells were irradiated with 4 Gy. For the inhibition of
DNA-PKcs, the cells were treated with the DNA-PKcs inhibitor NU7026 (10 µM) or DMSO 2 h
before irradiation. At 8 or 24 h post-irradiation, Rad51, γH2AX and BRCA1 foci assays were performed
as described previously [13]. The primary antibodies were used at a concentration of 1:200 for Rad51
and 1:300 for P-H2AX (S139) as well as BRCA1. We included all cells for our analysis independent of
their cycle phase in order to reflect the contribution of HR on overall repair capacity in a tumor where
cells are in different cell cycle phases.

4.5. HR-Reporter Assay

Cells were treated with siRNA and 24 h later transiently transfected with 1 µg plasmid pGC and
1 µg plasmid pI-SceI using Lipofectamine 2000. In case of MK2206 treatment, cells were treated with
10 µM of the inhibitor or an equal volume of DMSO 24 h after plasmid transfection. The plasmids
were not integrated into the genome. Plasmid pGC contains two nonfunctional green fluorescent
protein (GFP) coding sequences. A recognition site for the endonuclease I-Scel disrupts one of the GFP
sequences. The other GFP sequence carries deletions at the ends. Transfection with plasmid pI-Scel
induces a DSB at the I-SecI recognition site. This DSB is repaired by HR using the uncut GFP sequence
as template, thereby producing a functional GFP coding sequence (Figure 1C). Forty-eight hours after
plasmid transfection, the cells were harvested and the percentage of GFP-positive cells was analyzed
by flow cytometry (FACSCalibur, BD Biosciences).

4.6. Subcellular Fractionation and Western Blotting

Two days after transfection with the indicated siRNA, cells were irradiated with a single dose of
4 Gy. After 8 h, subcellular fractions were prepared as described earlier [79,80]. Preparation of whole
cell lysates and Western blotting were conducted as described previously [13]. Densitometry was
performed using software Image Studio Light Ver 5.2 (LI-COR Biosciences, Homburg, Germany).

4.7. Cell Cycle Analysis

Two days after siRNA transfection, cells were irradiated with a single dose of 4 Gy. Eight and
twenty-four hours after irradiation, the attached cells were harvested by trypsinization in addition to
the floating cells in the media, and the cells were centrifuged and fixed in 70% ethanol. After washing
with phosphate-buffered saline (PBS), the cells were incubated with RNase (100 µg/mL in PBS) for
10 min. Then, the cells were washed with PBS and stained with propidium iodide (10 µg/mL in PBS).
Cell cycle distribution was analyzed by flow cytometry.

4.8. Synchronization of Cells in S/G2 Phase

Twenty-four hours after siRNA transfection, cells were treated with 5 µg/mL aphidicolin or
DMSO for 16 h. Subsequently, the cells were washed with PBS, and fresh media was added to allow
the cells to proceed to S and G2 phases. Ten hours after media change, the cells were irradiated and
subjected to cell cycle analysis or colony formation assay.
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4.9. Colony Formation Assay

Cells were treated with siRNA, synchronized in S/G2 phase or kept non-synchronized.
For DNA-PKcs inhibition, the cells were treated with the DNA-PKcs inhibitor NU7026 (10 µM)
or DMSO 2 h before irradiation. After irradiation with single doses of 0–4 Gy, cells were immediately
plated into 6-well plates at a density of 250 cells/well for clonogenic assay. For delayed plating,
cells were plated into 10 cm-dishes at a density of 1000 cells/dish 6 h after irradiation. To analyze
clonogenicity after MMC administration, cells were treated with MMC (0.5 µM) 2 days after siRNA
transfection. Three hours after MMC application, the cells were washed thrice with PBS and
plated into 10 cm-dishes at a density of 1000 cells/dish. The cells were incubated for 10 days to
allow colony formation. After staining with crystal violet, colonies of at least 50 cells were scored
as survivors. The survival fractions were calculated by normalizing the plating efficiency of the
irradiated/MMC-treated cells to the plating efficiency of the non-irradiated/untreated cells.

4.10. Statistics

Unequal Student’s t-test was performed to compare the data between groups. p-values less than
0.05 were used to define significant difference.

Supplementary Materials: The following are available online at www.mdpi.com/1422-0067/18/11/2473/s1.
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