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Abstract: Caudal type homeobox 2 (CDX2) is expressed in intestinal epithelial cells and plays a role
in gut development and homeostasis by regulating cell proliferation. However, whether CDX2
cooperates with the mammalian target of rapamycin complex 1 (mTORC1) and Wnt/β-catenin
signaling pathways to stimulate cell proliferation remains unknown. The objective of this
study was to investigate the effect of CDX2 on the proliferation of porcine jejunum epithelial
cells (IPEC-J2) and the correlation between CDX2, the mTORC1 and Wnt/β-catenin signaling
pathways. CDX2 overexpression and knockdown cell culture models were established to explore
the regulation of CDX2 on both pathways. Pathway-specific antagonists were used to verify the
effects. The results showed that CDX2 overexpression increased IPEC-J2 cell proliferation and
activated both the mTORC1 and Wnt/β-catenin pathways, and that CDX2 knockdown decreased
cell proliferation and inhibited both pathways. Furthermore, the mTORC1 and Wnt/β-catenin
pathway-specific antagonist rapamycin and XAV939 (3,5,7,8-tetrahydro-2-[4-(trifluoromethyl)]-4H
–thiopyrano[4,3-d]pyrimidin-4-one) both suppressed the proliferation of IPEC-J2 cells overexpressing
CDX2, and that the combination of rapamycin and XAV939 had an additive effect. Regardless of
whether the cells were treated with rapamycin or XAV939 alone or in combination, both mTORC1
and Wnt/β-catenin pathways were down-regulated, accompanied by a decrease in CDX2 expression.
Taken together, our data indicate that CDX2 stimulates porcine intestinal epithelial cell proliferation
by activating the mTORC1 and Wnt/β-catenin signaling pathways.
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1. Introduction

CDX2, a caudal-related homeobox gene coding for a homeodomain transcription factor,
is an essential regulator of gut development and homeostasis. CDX2 conditional knockout mice
failed to form a mature endoderm in their intestinal epithelia [1] and inactivation of CDX2 in intestinal
stem cells (ISCs) re-specified their identity and fated towards gastric stem cells [2]. By transcriptionally
modulating the expression of relevant target genes, CDX2 plays a crucial role in cell processes including
proliferation, differentiation, migration and apoptosis [3,4].

Differences exist with regard to the effect of CDX2 on cell proliferation in different observations.
Studies on cancer cells, including human colorectal carcinoma cells (HT-29) [5], human colon
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adenocarcinoma cells (Caco-2) [4] and gastric cancer cells (BGC-823) [6], demonstrated that CDX2
inhibits cell proliferation. However, studies on rat intestinal epithelial cells (IEC-6) [7], porcine intestinal
epithelial cells (IPEC-1) [8], blastocysts [9], and mice ISCs [10] produced opposite results, accompanied
by high expression of Heparin-binding epidermal growth factor (EGF) like growth factor and
proliferating cell nuclear antigen (PCNA) [7]. Therefore, it is still unknown how CDX2 plays dual
roles in different types of cells. To address this issue, new models and different angles are needed to
investigate and account for the discrepancy.

The mammalian target of rapamycin complex 1 (mTORC1) signaling pathway is responsible
for translation and in the control of cell growth and metabolism. The Wnt/β-catenin signaling
pathway is indispensable to cell polarity, proliferation, differentiation and migration. Both the
expression level and the level of phosphorylation of the relevant functional proteins in both pathways
are important parameters for measuring the state of cell proliferation [11,12]. Yet, whether the
mTORC1 and Wnt/β-catenin pathways play an antagonistic or stacking role in CDX2-mediated
proliferation is unknown. The comprehensive study of the correlation between CDX2, the mTORC1
and Wnt/β-catenin is deficient [13–15]. Considering the dual roles of CDX2 in cell proliferation, it is
necessary to probe into the function of the mTORC1 and Wnt/β-catenin pathways in CDX2-mediated
normal intestinal epithelial cell proliferation.

To further elucidate the effect of CDX2 in normal intestinal epithelial cell proliferation and the
relationship between CDX2, and the mTORC1 and Wnt/β-catenin pathways, we constructed two
models, an overexpression model and a knockdown model of CDX2 in the porcine jejunum epithelial
cell line, IPEC-J2. Antagonists specific to the mTORC1 or Wnt/β-catenin pathways were used to
validate the results.

2. Results

2.1. Overexpression of CDX2 in IPEC-J2 Cells Increased Cell Proliferation

Immunofluorescence microscopy, real-time PCR and Western blot were performed to assess
CDX2 overexpression in IPEC-J2 cells. Compared with the control group, CDX2 fluorescence signaling
(Figure 1a), mRNA abundance (Figure 1b) and protein levels (Figure 1c) increased in the overexpression
group, showing that the overexpressed cells were stably transfected with CDX2-pcDNA3.1+.

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and cell counting
were used to evaluate the effect of CDX2 overexpression on IPEC-J2 cell proliferation. OD values
(Figure 1d) and cell numbers (Figure 1e) were increased in the overexpression group.

2.2. CDX2 Overexpression Activated Both the mTORC1 and Wnt/β-Catenin Pathways in IPEC-J2 Cells

To measure the effect of CDX2 overexpression on the mTORC1 and Wnt/β-catenin pathways,
Western blot analysis was used. Compared with the control group, levels of p-mTOR (Ser2448),
p-S6K1 (Thr389), p-S6 (Ser235), p-4EBP1 (Thr70) and eIF4E were increased in the overexpression group
(Figure 2a,b). Levels of Axin2 and GSK-3β were decreased, and levels of β-catenin, Cyclin D1 and
c-Myc were increased in the overexpression group (Figure 2c,d).

2.3. CDX2 Knockdown in IPEC-J2 Cells Decreased Cell Proliferation

By measuring CDX2 mRNA abundance at 48 h post-transfection with the three CDX2-siRNA,
we found that siRNA-002 produced an optimal interference effect (Figure 3a). We also found CDX2
mRNA abundance in IPEC-J2 cells to be the lowest at 36 h post-transfection with siRNA-002 (Figure 3b).
Compared with the negative control, Western blot analysis also showed a reduction in CDX2 expression
in the knockdown group (Figure 3c).
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Figure 1. Caudal type homeobox 2 (CDX2) overexpressed in IPEC-J2 cells and increased cell 
proliferation. (a) Representative immunofluorescence images of control and overexpression groups 
48 h after seeding, labeled with DAPI (blue) and CDX2 antibody (red) (200×). Scale bar: 100 μm. (b,c) 
CDX2 mRNA abundance (n = 6) and protein expression (n = 3) in the control and overexpression 
group. AU: arbitrary unit; (d,e) the OD value and cell number were assessed by MTT assay (n = 20) 
and cell counting (n = 6), respectively. Control: control group; Overexpression: CDX2 overexpression 
group. Representative results of three independent experiments are shown as the mean ± SEM; * p < 
0.05. 

Figure 1. Caudal type homeobox 2 (CDX2) overexpressed in IPEC-J2 cells and increased cell proliferation.
(a) Representative immunofluorescence images of control and overexpression groups 48 h after seeding,
labeled with DAPI (blue) and CDX2 antibody (red) (200×). Scale bar: 100 µm. (b,c) CDX2 mRNA
abundance (n = 6) and protein expression (n = 3) in the control and overexpression group. AU: arbitrary
unit; (d,e) the OD value and cell number were assessed by MTT assay (n = 20) and cell counting (n = 6),
respectively. Control: control group; Overexpression: CDX2 overexpression group. Representative results
of three independent experiments are shown as the mean ± SEM; * p < 0.05.
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Figure 2. CDX2 overexpression activated both the mTORC1 and Wnt/β-catenin pathways. (a,b) 
Western blot analysis of the mTORC1 pathway activity after CDX2 overexpressed in IPEC-J2 cells 
with quantification (n = 3); (c,d) western blot of Wnt/β-catenin pathway related proteins after CDX2 
overexpressed with quantification (n = 3). AU: arbitrary unit. Control: control group; Overexpression: 
CDX2 overexpression group. Representative results of three independent experiments are shown. 
Data are expressed as the mean ± SEM; * p < 0.05. 

 
Figure 3. CDX2 knockdown in IPEC-J2 cells reduced cell proliferation. (a) The effect of three siRNAs 
on CDX2 mRNA abundance was measured by real-time PCR 48 h post-transfection. Blank: control 
group; NC: negative control group; siRNA-001: CDX2-siRNA-001 group; siRNA-002: CDX2-siRNA-
002 group; siRNA-003: CDX2-siRNA-003 group; (b) the effect of siRNA-002 transfection time on 
CDX2 mRNA abundance was measured by real-time PCR. Data are expressed as the mean ± SEM (n 
= 6). The bars without same letters indicate a significant difference (p < 0.05); (c) siRNA-002 treatment 
reduced CDX2 protein expression compared with the negative control group. AU: arbitrary unit; (d,e) 
OD values and cell numbers were assessed by MTT assay (n = 20) and cell counting (n = 6), 
respectively. Negative Control: negative control group; Knockdown: CDX2-siRNA-002 group. 
Representative results of three independent experiments are shown. Data are expressed as the mean 
± SEM; * p < 0.05. 

Figure 2. CDX2 overexpression activated both the mTORC1 and Wnt/β-catenin pathways. (a,b) Western
blot analysis of the mTORC1 pathway activity after CDX2 overexpressed in IPEC-J2 cells with
quantification (n = 3); (c,d) western blot of Wnt/β-catenin pathway related proteins after CDX2
overexpressed with quantification (n = 3). AU: arbitrary unit. Control: control group; Overexpression:
CDX2 overexpression group. Representative results of three independent experiments are shown. Data are
expressed as the mean ± SEM; * p < 0.05.
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Figure 3. CDX2 knockdown in IPEC-J2 cells reduced cell proliferation. (a) The effect of three siRNAs on
CDX2 mRNA abundance was measured by real-time PCR 48 h post-transfection. Blank: control group;
NC: negative control group; siRNA-001: CDX2-siRNA-001 group; siRNA-002: CDX2-siRNA-002 group;
siRNA-003: CDX2-siRNA-003 group; (b) the effect of siRNA-002 transfection time on CDX2 mRNA
abundance was measured by real-time PCR. Data are expressed as the mean ± SEM (n = 6). The bars
without same letters indicate a significant difference (p < 0.05); (c) siRNA-002 treatment reduced CDX2
protein expression compared with the negative control group. AU: arbitrary unit; (d,e) OD values and
cell numbers were assessed by MTT assay (n = 20) and cell counting (n = 6), respectively. Negative
Control: negative control group; Knockdown: CDX2-siRNA-002 group. Representative results of three
independent experiments are shown. Data are expressed as the mean ± SEM; * p < 0.05.

The results of the MTT assay and cell counting showed that CDX2 knockdown decreased OD
values (Figure 3d) and cell numbers (Figure 3e), respectively.
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2.4. CDX2 Knockdown Inhibited Both the mTORC1 and Wnt/β-Catenin Pathways in IPEC-J2 Cells

Western blot was used to evaluate the effect of CDX2 knockdown on the mTORC1 and
Wnt/β-catenin pathways. The result showed that levels of p-mTOR (Ser2448), p-S6K1 (Thr389), p-S6
(Ser235), p-4EBP1 (Thr70) and eIF4E were decreased in the knockdown group (Figure 4a,b). Levels of
Axin2 and GSK-3β were increased, and levels of β-catenin, Cyclin D1 and c-Myc were decreased in
the knockdown group (Figure 4c,d).
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proliferation compared with the DMSO group, and the combination of rapamycin and XAV939 
resulted in a synergistic decrease in cell proliferation. Moreover, rapamycin reduced cell proliferation 
more significantly than XAV939, suggesting a more essential role for the mTORC1 pathway in CDX2-
mediated cell proliferation. These data indicated that both the mTORC1 and Wnt/β-catenin pathways 
participated in CDX2-mediated cell proliferation. 

Rapamycin and XAV939, supplemented both individually and in combination, decreased CDX2 
expression (Figure 5c–e). However, no synergistic effect was observed in the combination group. 

Figure 4. CDX2 knockdown inhibited both the mTORC1 and Wnt/β-catenin pathways. (a,b) Western
blot analysis of the mTORC1 pathway activity after CDX2 knockdown in IPEC-J2 cells with
quantification (n = 3); (c,d) western blot of Wnt/β-catenin pathway related proteins after CDX2
knockdown with quantification (n = 3). AU: arbitrary unit. Negative Control: negative control group;
Knockdown: CDX2-siRNA-002 group. Representative results of three independent experiments are
shown. Data are expressed as the mean ± SEM (n = 3); * p < 0.05.

2.5. Specific Antagonists Decreased Cell Proliferation and the Protein Level of CDX2 in CDX2 Overexpressing
IPEC-J2 Cells

To validate the stimulatory effect of CDX2 on cell proliferation, the CDX2 overexpressing IPEC-J2
cells were treated with specific antagonists. The OD values from the MTT assay (Figure 5a) and
cell numbers from the cell counting (Figure 5b) were used to evaluate the effect of the mTORC1
and Wnt/β-catenin pathway-specific antagonist rapamycin and XAV939 on cell proliferation of
CDX2 overexpressing IPEC-J2 cells. The results showed that rapamycin and XAV939 decreased
cell proliferation compared with the DMSO group, and the combination of rapamycin and XAV939
resulted in a synergistic decrease in cell proliferation. Moreover, rapamycin reduced cell proliferation
more significantly than XAV939, suggesting a more essential role for the mTORC1 pathway in
CDX2-mediated cell proliferation. These data indicated that both the mTORC1 and Wnt/β-catenin
pathways participated in CDX2-mediated cell proliferation.

Rapamycin and XAV939, supplemented both individually and in combination, decreased CDX2
expression (Figure 5c–e). However, no synergistic effect was observed in the combination group.
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catenin pathway after treatment with one or both of the drugs. 

Figure 5. Specific antagonists decreased cell proliferation and the protein level of CDX2 in CDX2
overexpressed IPEC-J2 cells. (a,b) OD values and cell numbers were assessed by MTT assay (n = 20)
and cell counting (n = 6), respectively; (c–e) protein levels of CDX2 were measured by Western blot after
treated with rapamycin and XAV939 alone or in combination with quantification (n = 3). AU: arbitrary
unit. DMSO: DMSO treatment group; Rap.: rapamycin treatment group; XAV.: XAV939 treatment
group; Rap. + XAV.: combination of rapamycin and XAV939 treatment group. Representative results of
three independent experiments are shown. Data are expressed as the mean ± SEM; bars without the
same letter indicate a significant difference; * p < 0.05.

2.6. Specific Antagonists Inhibited Both the mTORC1 and Wnt/β-Catenin Pathways in CDX2 Overexpressing
IPEC-J2 Cells

To validate the stimulating effect of CDX2 on mTORC1 and Wnt/β-catenin pathways,
specific antagonists were supplemented. The mTORC1 and Wnt/β-catenin pathway-related proteins
were identified and quantified by Western blot. The results showed that regardless of whether
rapamycin or XAV939 was supplemented alone or in combination, the levels of p-mTOR (Ser2448),
p-S6K1 (Thr389), p-S6 (Ser235), p-4EBP1 (Thr70) and eIF4E decreased. Similarly, the levels of Axin2 and
GSK-3β increased, and the levels of β-catenin, Cyclin D1 and c-Myc decreased (Figure 6a–l) in the
Wnt/β-catenin pathway after treatment with one or both of the drugs.
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Figure 6. Specific antagonists inhibited both the mTORC1 and Wnt/β-catenin pathways in CDX2
overexpressed IPEC-J2 cells. (a–d) Western blot analysis of the mTORC1 and Wnt/β-catenin pathways
activity after treated with rapamycin in CDX2 overexpressed IPEC-J2 cells with quantification (n = 3);
(e–h) western blot of the mTORC1 and Wnt/β-catenin pathways related proteins after treated with
XAV939 in CDX2 overexpressed IPEC-J2 cells with quantification (n = 3); (i–l) protein levels of the
mTORC1 and Wnt/β-catenin pathways were measured by Western blot after treated with rapamycin
and XAV939 in combination with quantification (n = 3). AU: arbitrary unit. As rapamycin and XAV939
were dissolved in DMSO, the DMSO-treated cell strain was the control group. DMSO: DMSO treatment
group; Rap.: rapamycin treatment group; XAV.: XAV939 treatment group; Rap. + XAV.: combination of
rapamycin and XAV939 treatment group. Representative results of three independent experiments are
shown. Data are expressed as the mean ± SEM (n = 3); * p < 0.05.
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3. Discussion

CDX2 acts as a biomarker for gastrointestinal cancer and inhibits the proliferation of different
types of cancer cells [16–18]. However, the functional effects of CDX2 on the proliferation of normal
intestinal epithelial cells are diverse. Studies on normal intestinal epithelial cells such as IEC-6 [7],
IPEC-1 [8], blastocysts [9], and ISCs [10] revealed that CDX2 stimulates cell proliferation. In addition,
porcine milk-derived exosomes increase CDX2 protein expression and IPEC-J2 cell proliferation
simultaneously, suggesting that cell proliferation and CDX2 expression do not conflict [19]. In this
study on IPEC-J2 cells, CDX2 overexpression increased cell proliferation and CDX2 knockdown
decreased cell proliferation. These results collectively demonstrate that CDX2 stimulated proliferation
in IPEC-J2 cells.

How does the conflicting function of CDX2, either stimulating or inhibiting cell proliferation,
exist in different cells? The varied target genes of CDX2 may account for this dual function. The study
on ISCs and villus cells (VCs) demonstrated that CDX2 occupies hundreds of genomic sites in ISCs and
thousands of additional sites in VCs [10]. Moreover, in human intestinal epithelial crypt (HIEC) cells,
DNA microarray analysis revealed 237 genes were modulated by CDX2 [20], and 604 peaks identified
as potential CDX2 binding sites in Caco-2 cells [21]. Additionally, CDX2 behaves as a transactivator in
certain kinds of cells, it may directly activate or repress genes in other cells [10]. Hence, in view of
its roles in ISCs and VCs, and the different target genes in HIEC and Caco-2 cells, the stimulating or
inhibiting effect of CDX2 on cell proliferation is explicable. Further study exploring the regulators of
CDX2 is necessary to account for the different CDX2 occupancy and diverse effects on cell proliferation.

In consideration of the conflicting role of CDX2 on cell proliferation and to obtain further
insight into its stimulating effect, we measured the expression of proteins in the mTORC1 and
Wnt/β-catenin pathways. Firstly, the present study found that phosphorylated proteins in the
mTORC1 pathway were up-regulated in the overexpression group and were down-regulated in
the knockdown group, which suggested that CDX2 might activate the mTORC1 pathway in IPCE-J2
cells. However, few studies have shown that mTORC1 activity may be decreased by CDX2. A study
on CDX2 heterozygous knockout mice demonstrated CDX2 haploinsufficiency led to an increase
in mTOR kinase activity [22] and CDX2 overexpression in gastric cancer cells induced an increase
of mTOR mRNA and protein expression [15]. The mTORC1 pathway is a central regulator of cell
proliferation [12]. Given the dual role of CDX2 in cell proliferation, the activating effect on the mTORC1
pathway in IPEC-J2 cells might be reasonable.

Similarly, no conclusions about the activating or inhibiting effect of CDX2 on the Wnt/β-catenin
pathway can be drawn. In human colon cancer cells, CDX2 limited cell proliferation and the
Wnt/β-catenin signaling pathway by binding β-catenin and disrupting the β-catenin-TCF complex [13].
In contrast, chromatin immunoprecipitation (ChIP) performed on mice embryos demonstrated that
CDX2 binds to the Wnt3a promoter, which acts as an agonist for the Wnt/β-catenin pathway,
suggesting that CDX2 excites the Wnt/β-catenin pathway [14]. Likewise, the conventional
Wnt/β-catenin pathway was activated in the overexpression group and repressed in the knockdown
group in this study. Considering the essential role of the Wnt/β-catenin pathway in cell proliferation,
these results demonstrate that CDX2 might be an activator for the Wnt/β-catenin pathway in
IPEC-J2 cells.

Our results suggest that both the mTORC1 and Wnt/β-catenin pathways play a part in
CDX2-mediated cell proliferation. While it is necessary to investigate which pathway is more important
and if there is a synergistic effect on cell proliferation, it is noteworthy that treatment with rapamycin
alone, XAV939 alone, or with a combination of both caused a significant decrease in the proliferation of
CDX2 overexpressing IPEC-J2 cells, with a synergistic effect in the cells treated with both drugs.
Furthermore, rapamycin treatment led to a more significant reduction in cell proliferation than
the XAV939 treatment. Moreover, CDX2 expression was reduced in each treatment, which is in
agreement with previously published data that identifies CDX2 as a direct Wnt target during hindgut
differentiation [23]. Taken together, these results show that under the regulation of CDX2, the mTORC1
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and Wnt/β-catenin pathways cooperated in stimulating cell proliferation, with the mTORC1 pathway
playing a more critical role. Further, CDX2 expression depended on signal transduction in the mTORC1
and Wnt/β-catenin pathways.

Studies have shown that the mTORC1 and Wnt/β-catenin pathways positively regulate each
other. Inoki et al., (2006) reported that GSK3 (glycogen synthase kinase) participates in the activation of
TSC2 (tuberous sclerosis s) to inhibit mTORC1 activity [24]. β-catenin knockdown in colon cancer cell
lines reduces the mTORC1 level and thereby inhibits mTORC1 signaling [25]. Conversely, kinases such
as active Akt and p70S6K can phosphorylate GSK-3β at Ser9, resulting in the activation of the
Wnt/β-catenin signaling pathway [26]. The level of β-catenin was markedly decreased by the mTORC1
antagonist rapamycin in hepatoma G2 (HepG2) cells and Hep3B cells [27]. The present study shows
that, supplementation with either rapamycin or XAV939 resulted in the simultaneous inhibition of the
mTORC1 and Wnt/β-catenin pathways. Therefore, our result might suggest crosstalk between the
mTORC1 and Wnt/β-catenin pathways in IPEC-J2 cells.

In summary, the present study illustrates the promoting effects of CDX2 on IPEC-J2 cell
proliferation, activating the mTORC1 and Wnt/β-catenin pathways. Moreover, the study uncovers the
mutual regulation among the mTORC1 and Wnt/β-catenin pathways and CDX2 (Figure 7).
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Figure 7. In IPEC-J2 cells, CDX2 promotes cell proliferation via activating the mTORC1 and
Wnt/β-catenin pathways; specific antagonists of the mTORC1 and Wnt/β-catenin pathways,
namely rapamycin or XAV939 respectively, decrease cell proliferation and inhibit both
pathways simultaneously.

4. Materials and Methods

4.1. Cell Culture

IPEC-J2 cells, kindly provided by Dr. Yu-long Yin (University of Chinese Academy of Sciences),
were cultured in DMEM/F12 medium (Thermo, 12400-024, Waltham, MA, USA) supplemented with
5% fetal bovine serum (Gibco, 10099-141, Waltham, MA, USA), 1% penicillin/streptomycin, 5 µg/L
Insulin-Transferrin-Selenium (ScienCell, 0803, Carlsbad, CA, USA) and 5 µg/L epidermal growth
factor (ScienCell, 105-04) at 37 ◦C in 5% CO2. Medium was changed every two days [28]. Treatments
including dimethyl sulfoxide (DMSO, 0.2%, Sigma-Aldrich, St. Louis, MI, USA), rapamycin (20 nm,
53123-88-9, Alexis, Farmingdale, NY, USA), XAV939 (3,5,7,8-tetrahydro-2-[4-(trifluoromethyl)]-4H
–thiopyrano[4,3-d]pyrimidin-4-one, 10 µM, Selleck, Houston, TX, USA) and RNA interference were
performed 24 h after seeding. All experiments were performed on cells at passages 10–20.
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4.2. RNA Interference

Three siRNAs targeting CDX2 and an unrelated negative control siRNA were designed and
synthesized, and then purified via high performance liquid chromatography (RiboBio, Guangzhou,
China) (Table S1). 24 h prior to transfection, cells were plated into a 6-well plate at 30–50% confluence.
siRNAs (50 nM) were transfected into cells according to the manufacturer’s instructions. The unrelated
control siRNA was comprised as the negative control.

4.3. Immunofluorescence Microscopy

pcDNA3.1+ and CDX2-pcDNA3.1+ were stably transfected into cells. Transfected cells were
seeded at 1 × 104 cells/mL into 96-well culture plates (Corning, #3599, New York, NY, USA) and
fixed with 4% paraformaldehyde for 30 min. Cells were then permeabilized with 0.3% Triton X-100
for 15 min and blocked in a protein solution (Dako, Santa Clara, CA, USA) for 20 min. The primary
antibody, anti-CDX2 (1:500 in antibody diluent; Cell Signaling Technology, Danvers, MA, USA),
was incubated with the cells for 2 h at room temperature. Secondary staining was performed
with Cy3-conjugated antibodies (1:200 in antibody diluent; Sangon Biotech, Shanghai, China) and
incubated at room temperature for 1 h. Nuclei were stained with 4’6-diamidino-2-phenylindole
(DAPI, 1:1000 in PBS; Sigma) for 5 min at room temperature. Fluorescence signals were observed with
a fluorescence microscope (NIS-Elements, Nikon, Melville, NY, USA). Three independent experiments
were performed.

4.4. Real-Time PCR

Using a Stratagene Mx3005P qPCR system (Agilent Technologies, Santa Clara, CA, USA) and the
SYBR Green Real-Time PCR Master Mix (Toyobo, Osaka Prefecture, Japan), mRNA expression (n = 6)
was determined. Specific primer pairs used are detailed in Table S2. A melting curve analysis was
conducted to confirm the specificity of each product, and product sizes were verified using ethidium
bromide-stained, 1.5% agarose gels in Tris acetate-EDTA buffer. Quantitative data were obtained using
the 2−∆∆Ct method. The experiment was performed in triplicate.

4.5. MTT Assay

Cells were seeded in 96-well plates at 1 × 104 cells/mL. After incubating the cells in 5 mg/mL
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma) for 4 h, crystals were then
dissolved in DMSO. Optical density (OD) values were evaluated in an ELISA reader (iMark, Bio-Rad,
Hercules, CA, USA) at a wavelength of 490 nm. Three independent experiments with 20 samples per
treatment were conducted to confirm the result.

4.6. Cell Counting Assay

Cells were seeded in 6-well plates at 1 × 105 cells/mL. After washing twice with PBS, cells were
detached with 0.25% trypsin (Sigma) for 5–8 min at 37 ◦C, and then blocked with an equal volume
of growth medium. The number of viable cells was determined using a automate cell counter
(Countstar BioTec, Shanghai, China). Three independent experiments were conducted.

4.7. Western Blot Analysis

Cells were lysed in RIPA buffer, containing 1% Triton-X, 20 mmol/L Tris-HCl (pH = 7.4),
5 mmol/L EDTA and 1 mmol/L phenylmethylsulfonyl fluoride (PMSF), and then followed by
14,000× g centrifugation at 4 ◦C for 15 min. Protein concentrations were determined by a BCA Protein
Assay Reagent Kit (Thermo Fisher Scientific). Proteins (10 µg) were separated on 10% SDS/PAGE
gels, and transferred onto PVDF membranes (Millipore, Burlington, MA, USA). After blocking
with bovine serum albumin (BSA), the membranes were incubated with a primary antibody.
Anti-CDX2 (#12306), anti-mTOR (#2972), anti-phospho-mTOR (Ser2448, #5536), anti-S6K1 (#9202),
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anti-phospho-S6K1 (Thr389, #9205), anti-S6 (#2708), anti-phospho-S6 (Ser235/236, #9234), anti-4EBP1
(#9644), anti-phospho-4EBP1 (Thr70, #2855), and anti-c-Myc (#5605) antibodies were obtained from
Cell Signaling Technology; anti-GSK-3β (sc-9166) and anti-Cyclin D1 (sc-753) were purchased from
Santa Cruz Biotechnology; anti-β-catenin (ab6302), anti-Axin2 (ab109307) and anti-eIF4E antibodies
were obtained from Abcam; and anti-β-actin (AP0060), anti-rabbit IgG (BS13278) and anti-goat IgG
(BS30503) antibodies were obtained from Bioworld Technology. Proteins were visualized using the
Beyo ECL Plus chemiluminescence detection kit (Beyotime Institute of Biotechnology, Shanghai, China).
ECL signals were detected by a FluorChem M imaging system (Protein Simple, San Jose, CA, USA).
Band density was calculated using Image Analysis Software (Tanon, Shanghai, China). Results were
normalized to β-actin or the total level.

4.8. Statistics

Data are expressed as the mean ± SEM. Student’s t-test was conducted to determine the
differences between 2 groups using SAS (version 9.2, SAS Institute Inc., Cary, NC, USA), and Duncan’s
multiple-range test to determine differences among groups. Differences were considered statistically
significant when p < 0.05.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/11/2447/s1.
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CDX2 caudal type homeobox 2
mTORC1 mammalian target of rapamycin complex 1
IPEC-J2 porcine jejunum epithelial cell line
ISCs intestinal stem cells
EGF epidermal growth factor
PCNA proliferation cell nuclear antigen
siRNA small interfering RNA
Axin2 axis inhibition protein 2
GSK-3β glycogen synthase kinase 3β
eIF4E eukaryotic initiation factor 4E
S6K1 ribosomal protein S6 Kinase-1
4EBP1 eukaryotic initiation factor 4E binding protein 1
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