
 International Journal of

Molecular Sciences

Article

UltraPse: A Universal and Extensible Software
Platform for Representing Biological Sequences

Pu-Feng Du 1 ID , Wei Zhao 1, Yang-Yang Miao 1,2, Le-Yi Wei 1 ID and Likun Wang 3,*
1 School of Computer Science and Technology, Tianjin University, Tianjin 300350, China;

PufengDu@gmail.com (P.-F.D.); wzhao_cstju@yeah.net (W.Z.); miaoyangyang1998@163.com (Y.-Y.M.);
weileyi@tju.edu.cn (L.-Y.W.)

2 School of Chemical Engineering, Tianjin University, Tianjin 300350, China
3 Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Department of

Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
* Correspondence: wanglk@hsc.pku.edu.cn; Tel.: +86-10-8280-5807

Received: 10 October 2017; Accepted: 3 November 2017; Published: 14 November 2017

Abstract: With the avalanche of biological sequences in public databases, one of the most challenging
problems in computational biology is to predict their biological functions and cellular attributes.
Most of the existing prediction algorithms can only handle fixed-length numerical vectors. Therefore,
it is important to be able to represent biological sequences with various lengths using fixed-length
numerical vectors. Although several algorithms, as well as software implementations, have been
developed to address this problem, these existing programs can only provide a fixed number of
representation modes. Every time a new sequence representation mode is developed, a new program
will be needed. In this paper, we propose the UltraPse as a universal software platform for this
problem. The function of the UltraPse is not only to generate various existing sequence representation
modes, but also to simplify all future programming works in developing novel representation
modes. The extensibility of UltraPse is particularly enhanced. It allows the users to define their own
representation mode, their own physicochemical properties, or even their own types of biological
sequences. Moreover, UltraPse is also the fastest software of its kind. The source code package,
as well as the executables for both Linux and Windows platforms, can be downloaded from the
GitHub repository.

Keywords: pseudo-amino acid compositions; pseudo-k nucleotide compositions; extensible software

1. Introduction

Over the last two decades, huge numbers of biological sequences have been deposited in public
databases. Until today, the number of these sequences is still increasing exponentially. However,
the cellular and functional attributes of these sequences, no matter whether they are nucleotide
sequences or protein sequences, remain largely unknown. It is a very important task for computational
biology to predict the functional and cellular attributes of these sequences.

In the view of machine learning, most of these prediction tasks can be formulated as pattern
classification problems. As elaborated in a series of publications [1–8], one of the most challenging parts
is to represent a biological sequence with a fixed-length numerical vector, yet still keep a considerable
amount of the sequence-order information. This is because almost every existing algorithm for these
tasks can only handle fixed-length vectors, but not the sequences.

For protein and peptide sequences, Chou proposed pseudo-amino acid compositions (PseAAC) [9]
and amphiphilic pseudo-amino acid compositions (AmPseAAC) [10]. Ever since the concepts of
pseudo-factors were introduced, they have rapidly penetrated into almost every area of computational
proteomics [11–20]. As elaborated in a review article, the form of classic pseudo-amino acid

Int. J. Mol. Sci. 2017, 18, 2400; doi:10.3390/ijms18112400 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-9897-3932
https://orcid.org/0000-0003-1444-190X
http://dx.doi.org/10.3390/ijms18112400
http://www.mdpi.com/journal/ijms

Int. J. Mol. Sci. 2017, 18, 2400 2 of 12

compositions has been generalized to contain various types of information [21], which is known
as the general-form pseudo-amino acid compositions. The applications of PseAAC concepts have been
summarized in the review papers [22,23].

Recently, the concept of PseAAC has been extended to represent nucleotide sequences [24].
Chen et al. developed pseudo-dinucleotide compositions (PseDNC) to predict DNA recombination
hostspots [25]. This formulation was then extended as pseudo-k nucleotide compositions (PseKNC),
which have been applied in predicting splicing sites [26], predicting translation initiation sites [27],
predicting nucleosome positions [28], predicting promoters [29], predicting DNA methylation sites [30],
predicting microRNA precursors [31] and many others [32–41].

In the early days of pseudo-amino acid compositions, every study had to implement
PseAAC independently. Although the algorithms in every implementation are identical, different
implementations may introduce computational discrepancies due to technical details. For example,
different implementations may give results with different precisions. This kind of differences may be
amplified by machine-learning based predictors, which may eventually produce different prediction
results. For another example, different implementations may have very different computational
efficiencies. This means one implementation may only use a second to process a dataset, while
another program may require over an hour to achieve the same results on the same dataset with the
same parameters.

To solve these problems, a universal implementation of the algorithm should be provided. Many
efforts have been made for this purpose [42–52]. The first program focus on the PseAAC formulation is
the PseAAC server [43], which was brought online in the year 2008. The PseAAC server can compute
Type-I and Type-II PseAAC using six different kinds of physicochemical properties of amino acids.
The PseAAC server has a friendly user interface, which is convenient and efficient for small datasets.
However, for large datasets and the repeatedly parameter scanning process, the computational
efficiency of the PseAAC server is not ideal. The PseAAC-Builder [45], which was released in the year
2012, is dedicated to improving the efficiency. Unlike the PseAAC server, the PseAAC-Builder is a
stand-alone program that can be executed locally. It has a simple graphical user interface (GUI) for
the users’ convenience. It can also be executed in a command line environment. The computational
efficiency of PseAAC-Builder is much higher than the PseAAC server, especially in the command line
environment. Although the PseAAC-Builder includes over 500 different types of physicochemical
properties, it did not provide the ability to compute general form PseAAC. PseAAC-General [46], which
is a major upgrade to the PseAAC-Builder, was developed to solve this problem. PseAAC-General
provides the ability to compute several commonly used general forms of PseAAC, such as the GO
mode, the functional domain mode and the evolutionary mode. The users of PseAAC-General can
slightly extend its ability by using Lua scripts.

After Chen et al. proposed the PseKNC representations for nucleotide sequences, similar software
and services were needed for DNA and RNA sequences. Chen et al. released the PseKNC [48] and
PseKNC-General [49] packages for converting DNA/RNA sequences into its PseKNC or general form
of PseKNC representations. Liu et al. developed the repDNA [50], repRNA [51], and Pse-In-One [52]
services for more types of descriptors. The Pse-In-One service attempts to be a universal online service
that can be applied on both protein and nucleotide sequences.

However, all existing software packages and online services suffer from three problems. (1) Lack of
extensibility. Most of the existing software can only be used to produce existing modes of representation.
The users cannot extend the software to handle their own novel representation modes. Although
PseAAC-General can be extended by using Lua script, it can only be used for protein sequences;
(2) Lack of flexibility. Most of the existing software can only handle one type of biological sequences,
either nucleotide sequences or protein sequences. Pse-In-One is the only existing service that can handle
protein sequence as well as nucleotide sequences. However, no program can handle user-defined
sequence types. For example, when studying the protein phosphorylation sites, the modified residues
should have different notations of sequences, which are not in the standard 20 letters. The users

Int. J. Mol. Sci. 2017, 18, 2400 3 of 12

need to define the extra letters to represent the modified residues. As far as we know, no program
can handle this kind of sequence; (3) Lack of computational efficiency on large datasets. Most of the
existing programs are not designed to handle large datasets. They may need many minutes to process
a million sequences. If a user needs to repeatedly scan parameters of a representation, the processing
time may be days or even weeks.

In this paper, we proposed the UltraPse program, which is a universal and extensible software
platform for all possible sequence representation modes. The UltraPse program unified the processing
of nucleotide and protein sequence in one program, as well as the user-defined sequence types.
UltraPse supports two forms of extension modules, the BSOs (Binary Shared Objects) and the Lua
scripts, which are called the TDFs (Task Definition Files) in UltraPse. The users can develop their own
modes by just writing several lines of Lua scripts. UltraPse has very high computational efficiency. It is
even faster than the PseAAC-General, which used to be the fastest program of its kind. For the users’
convenience, we have integrated many existing modes within the UltraPse. We expect that the UltraPse
program can be a useful platform which simplifies all future programming works in developing novel
sequence representation modes. All source codes of UltraPse, including some extension modules can
be downloaded freely under the term of GNU GPL (GNU General Public License) v3 from the GitHub
repository: https://github.com/pufengdu/UltraPse.

2. Results and Discussion

2.1. Computational Efficiency Analysis

We compared the computational efficiency of UltraPse to that of PseAAC-General and Pse-In-One
under the same conditions. As in Figure 1, the UltraPse can process over 120 thousand sequences per
second, while PseAAC-General can process about 85 thousand sequences per second. Unfortunately,
the Pse-In-One can process only less than one thousand sequences per second. According to these
results, the computational efficiency of UltraPse is roughly 1.5 times of the PseAAC-General, and about
185 times of Pse-In-One. Since the algorithms of the three programs are essentially the same, the reason
for the efficiency differences resides in the technical details of the implementations.

Int. J. Mol. Sci. 2017, 18, 2400 3 of 12

not in the standard 20 letters. The users need to define the extra letters to represent the modified
residues. As far as we know, no program can handle this kind of sequence. (3) Lack of computational
efficiency on large datasets. Most of the existing programs are not designed to handle large datasets.
They may need many minutes to process a million sequences. If a user needs to repeatedly scan
parameters of a representation, the processing time may be days or even weeks.

In this paper, we proposed the UltraPse program, which is a universal and extensible software
platform for all possible sequence representation modes. The UltraPse program unified the
processing of nucleotide and protein sequence in one program, as well as the user-defined sequence
types. UltraPse supports two forms of extension modules, the BSOs (Binary Shared Objects) and the
Lua scripts, which are called the TDFs (Task Definition Files) in UltraPse. The users can develop their
own modes by just writing several lines of Lua scripts. UltraPse has very high computational
efficiency. It is even faster than the PseAAC-General, which used to be the fastest program of its kind.
For the users’ convenience, we have integrated many existing modes within the UltraPse. We expect
that the UltraPse program can be a useful platform which simplifies all future programming works
in developing novel sequence representation modes. All source codes of UltraPse, including some
extension modules can be downloaded freely under the term of GNU GPL (GNU General Public
License) v3 from the GitHub repository: https://github.com/pufengdu/UltraPse.

2. Results and Discussions

2.1. Computational Efficiency Analysis

We compared the computational efficiency of UltraPse to that of PseAAC-General and Pse-In-
One under the same conditions. As in Figure 1, the UltraPse can process over 120 thousand sequences
per second, while PseAAC-General can process about 85 thousand sequences per second.
Unfortunately, the Pse-In-One can process only less than one thousand sequences per second.
According to these results, the computational efficiency of UltraPse is roughly 1.5 times of the
PseAAC-General, and about 185 times of Pse-In-One. Since the algorithms of the three programs are
essentially the same, the reason for the efficiency differences resides in the technical details of the
implementations.

Figure 1. Computational efficiency comparisons. Three programs are compared. The comparison was
carried out by letting the three programs compute amino acid compositions on the same dataset on
the same machine. Every program was executed with the same parameters for three times. The
average execution time was applied in calculating the computational efficiency. The computational
efficiency is measured by the average number of sequences that are processed every second. Pse-In-
One: A program in literature [52]; PseAAC-General: A program in literature [46]; UltraPse: A program
of this work.

Figure 1. Computational efficiency comparisons. Three programs are compared. The comparison was
carried out by letting the three programs compute amino acid compositions on the same dataset on the
same machine. Every program was executed with the same parameters for three times. The average
execution time was applied in calculating the computational efficiency. The computational efficiency is
measured by the average number of sequences that are processed every second. Pse-In-One: A program
in literature [52]; PseAAC-General: A program in literature [46]; UltraPse: A program of this work.

https://github.com/pufengdu/UltraPse

Int. J. Mol. Sci. 2017, 18, 2400 4 of 12

2.2. Flexibility and Extensibility

We integrated 35 sequence representation modes within the UltraPse. The representation modes
can be organized hierarchically as in Figure 2. The integrated modes can be used to represent protein,
as well as DNA and RNA sequences. The modes cover most of the representation modes that can be
generated by PseAAC-General, PseKNC-General, and Pse-In-One. Moreover, UltraPse can generate
even more modes, for example, the commonly used one-hot encoding mode [53–55]. The sequence
representation modes of UltraPse can be extended by using BSOs and TDFs. According to our
own works, using UltraPse in developing novel representation modes can save over half of the
programing labor.

1

Figure 2. Hierarchical organization of integrated sequence representation modes. UltraPse integrated
the sequence representation modes in its distribution package. Most of these modes can also be
applied in user-defined sequence types, as long as the users provide proper definitions of the
physicochemical properties.

Besides the user-defined representation modes of protein and nucleotide sequences, the users
of UltraPse can define their own sequence types using TDFs. They are allowed to choose a set of
letters other than the standard ones to represent additional information. For example, a user can
use C for cytidines on a DNA sequence, and M for methylated cytidines. The choice of the letter M
totally depends on the users. Even more, the users of UltraPse can define their own physicochemical
properties with TDFs.

The TDFs of UltraPse is written using Lua language, which is a simple, powerful and extensible
programming language which has been applied in bioinformatics software previously [56]. We provide
over 20 UltraPse specific functions and interfaces. Users can access and modify UltraPse internal data
structures using these functions in TDFs. We compared the flexibility and the extensibility of different
software in Table 1.

Int. J. Mol. Sci. 2017, 18, 2400 5 of 12

Table 1. Software function comparison in terms of flexibility and extensibility.

Software Functions Sequence Types Extensibility

UltraPse DNA, RNA, Protein,
User-defined types

Users can define their own sequence
types, representation modes and

physicochemical properties

PseAAC-General [46] Protein Users can define their own
representation modes

PseAAC-Builder [45] Protein No extensibility

Pse-In-One [52] DNA, RNA, Protein Users can define their own
physicochemical properties

PseKNC [48] DNA, RNA Users can define their own
physicochemical properties

PseKNC-General [49] DNA, RNA Users can define their own
physicochemical properties

2.3. Compatibility and Robustness

UltraPse can recognize FASTA format files that are directly downloaded from one of the following
five databases: GenBank, UniProt, EMBL, DDBJ, and RefSeq. The sequence identifiers and comments
in these public databases can be automatically recognized. For FASTA file that are not from these
public databases, UltraPse can also recognize them as long as the comment line of every sequence is
unique in the FASTA file. Besides the FASTA format requirements, there is no additional restriction on
input data format. As indicated in Table 2, this is a unique advantage of UltraPse.

According to Chou’s five step rule [12,21,57–60], before converting biological sequences into
numerical vectors, a high-quality benchmark dataset must be constructed. The construction of a
dataset usually includes a step to filter out the sequences containing non-standard letters. For example,
B, J, or X appear in protein sequences in the UniProt database. However, the sequences containing
these letters are hardly suitable for further analysis in many cases. As indicated in Table 2, UltraPse
provides a user-controllable data fault tolerant ability. According to users’ choice, when one of
these sequences is encountered, UltraPse can automatically skip the sequence or abort all further
computations. This function is useful in adopting third-party datasets in practical works, because
filtering out the sequences usually requires tedious programming work.

Table 2. Software function comparison in terms of data processing ability.

Software Output Formats Input Formats Data Fault Tolerant a

UltraPse SVM b, TSV c, CSV d
Multi-line FASTA (Automatic ID

recognition for UniProt, GenBank,
EMBL, DDBJ and RefSeq)

User-controllable behavior
on data faults

PseAAC-General [46] SVM, TSV, CSV Single-line FASTA (With
restrictions on comment line) e

Automatically ignore and
report data faults

PseAAC-Builder [45] SVM, TSV, CSV Single-line FASTA (With
restrictions on comment line)

Automatically ignore and
report data faults

Pse-In-One [52] SVM, TSV, CSV Mutlti-line FASTA Abort processing on
data faults

PseKNC [48] SVM, TSV, CSV Mutlti-line FASTA Abort processing on
data faults

PseKNC-General [49] SVM, TSV, CSV Mutlti-line FASTA Abort processing on
data faults

a Data fault tolerant: The behavior of a software when it encounters some invalid data records. Here, the invalid
data records include the sequences with non-standard letter and the sequence without sufficient length; b SVM:
data format for libSVM [61]; c TSV: tab separated vector; d CSV: comma separated vector; e Single-line FASTA:
the sequence of a record in the file must not spread to multiple lines. Both PseAAC-General and PseAAC-Builder
have the same restrictions.

Int. J. Mol. Sci. 2017, 18, 2400 6 of 12

2.4. Technical Detail Comparison

Most state-of-the art software is written in Python, while PseAAC-General and UltraPse are
written in C++. This difference eventually made the difference in computational efficiency. Since the
computational efficiencies of PseAAC-General and UltraPse are comparable, we can compare several
technical details of them.

PseAAC-General is a program that can be extended by using Binary Extension Modules (BEMs).
However, it should be noted that, the BEMs of PseAAC-General are completely different to the BSOs
in UltraPse. A BEM of PseAAC-General is just a compressed data block. However, how this data
block should be used, was still implemented by the PseAAC-General main program. In the UltraPse,
a BSO is actually a dynamically loaded library, which contains all the information and instructions for
constructing one or more sequence representation modes. Therefore, the BSOs of UltraPse are much
more flexible than the BEMs of PseAAC-General.

We have seen that UltraPse has roughly 1.5 times the efficiency of PseAAC-General. This
advantage is achieved by an internal representation scheme and a pre-computing mechanism of
UltraPse. In PseAAC-General, the sequences are converted to a series of physicochemical properties.
The sequence descriptors are then computed according to the corresponding algorithms. However,
this intuitive implementation requires repeatedly computing dot-product or Euclidean distance
between physicochemical vectors of different amino acids. Since the combination of two different
amino acids is limited, we pre-compute the dot-product and Euclidean distance for all possible
combinations in UltraPse. The sequences in UltraPse are not converted into a series of physicochemical
properties. They are converted into UltraPse internal indices, which can be used to quickly find
correct values that have been pre-computed. When computing only the amino acids compositions,
the implementations of PseAAC-General and UltraPse are similar. However, UltraPse still benefits
from converting all sequences into internal indices first. Because, the amino acids counting procedure
becomes simpler, this allows the compiler to do more optimization for speed. This is why UltraPse is
faster than PseAAC-General.

2.5. Future Works in Plan

Besides the practical application of UltraPse program in research projects, there is still much work
to do in terms of software development. The work at first priority is to add an automated unit-testing
facility in the source code of UltraPse. Unit-testing is good practice in software engineering to ensure
robustness of large scale software. It will be very important for the future versions of UltraPse. The next
work in plan is to enable UltraPse support more data formats as input files. As far as we can tell,
no existing program in representing biological sequences can handle file formats other than FASTA. We
will make the next version of UltraPse handle FASTA, FASTQ, and several other formats of input file.

2.6. Availability

The UltraPse software is provided as source codes and binary packages. All the source codes
can be downloaded from the GitHub repository (Available online: https://github.com/pufengdu/
UltraPse). The binary distribution packages can also be downloaded from the Release sub-directory
in the GitHub repository. Currently, there are binary packages for Windows and Linux platforms.
The Windows binary program can be executed directly. The Linux binary package has been tested on a
freshly installed Ubuntu Linux Server 16.04.3.

3. Methods

3.1. Efficiency Comparison Protocols

We performed computational efficiency comparisons on a server with an Intel Xeon X3470
processor and 32 GB memory. To perform a fair comparison, we installed Pse-In-One locally on the
server. We also locally compiled and installed PseAAC-General and UltraPse on the same server.

https://github.com/pufengdu/UltraPse
https://github.com/pufengdu/UltraPse

Int. J. Mol. Sci. 2017, 18, 2400 7 of 12

The testing dataset is the “huge” testing dataset that can be obtained from the official website of
PseAAC-General. This dataset contains 516,081 protein sequences. Since the Pse-In-One keeps
complaining about non-standard letters and too short sequences in the dataset, we excluded all
the sequences that have non-standard letters. The remaining 513,536 protein sequences were fed
into three programs independently. All three programs are configured to compute only amino acid
compositions. The computational times are measured by the “real” time value of the standard
Linux time command. To eliminate random errors, every program was executed consecutively with
exactly the same configuration three times. The average computational time was used in calculating
computational efficiency.

3.2. Abstracted Software Design

We illustrate the internal structure and the data-flows of UltraPse in Figure 3. There are four
major parts within UltraPse. They are the FASTA parser, sequence preprocessor, computing engine,
and the result writer. The FASTA parser is responsible for loading FASTA format sequences into the
memory from a hard drive. It also organizes the sequences according to their identifiers and their
sequence types. These sequences are then sent to the sequence preprocessor, where the sequences
are converted to UltraPse internal indices according to the sequence type definitions. The computing
engine is composed of several mode modules, which are configured according to user requirements.
The internal indices go through all mode modules. Eventually, sequence descriptors are generated.
The result writer exports these descriptors on the hard drive according to the format requirements.

Int. J. Mol. Sci. 2017, 18, 2400 7 of 12

testing dataset is the “huge” testing dataset that can be obtained from the official website of PseAAC-
General. This dataset contains 516,081 protein sequences. Since the Pse-In-One keeps complaining
about non-standard letters and too short sequences in the dataset, we excluded all the sequences that
have non-standard letters. The remaining 513,536 protein sequences were fed into three programs
independently. All three programs are configured to compute only amino acid compositions. The
computational times are measured by the “real” time value of the standard Linux time command. To
eliminate random errors, every program was executed consecutively with exactly the same
configuration three times. The average computational time was used in calculating computational
efficiency.

3.2. Abstracted Software Design

We illustrate the internal structure and the data-flows of UltraPse in Figure 3. There are four
major parts within UltraPse. They are the FASTA parser, sequence preprocessor, computing engine,
and the result writer. The FASTA parser is responsible for loading FASTA format sequences into the
memory from a hard drive. It also organizes the sequences according to their identifiers and their
sequence types. These sequences are then sent to the sequence preprocessor, where the sequences are
converted to UltraPse internal indices according to the sequence type definitions. The computing
engine is composed of several mode modules, which are configured according to user requirements.
The internal indices go through all mode modules. Eventually, sequence descriptors are generated.
The result writer exports these descriptors on the hard drive according to the format requirements.

Figure 3. The abstracted software design and data flow chart of UltraPse.

3.3. Implementation Technology

The UltraPse main program is written using standard C++ language, following C++14 standard.
The destination hardware architecture is x86-64. The dependencies of the UltraPse main program
include GNU standard C library and the embedded interpreter of Lua scripting language. The BSOs
of UltraPse are also written using C++, following the same rules as the main program.

On the Linux platform, the compiler for producing binary executables is the GNU g++ version
7.2. The users should first install Lua scripting language. The configuration and compilation of
UltraPse need the library provided by the Lua package. On the Windows platform, the MinGW64
version g++ compiler is applied. Several independent libraries are required to compile the codes. For

Figure 3. The abstracted software design and data flow chart of UltraPse.

3.3. Implementation Technology

The UltraPse main program is written using standard C++ language, following C++14 standard.
The destination hardware architecture is x86-64. The dependencies of the UltraPse main program
include GNU standard C library and the embedded interpreter of Lua scripting language. The BSOs of
UltraPse are also written using C++, following the same rules as the main program.

On the Linux platform, the compiler for producing binary executables is the GNU g++ version 7.2.
The users should first install Lua scripting language. The configuration and compilation of UltraPse

Int. J. Mol. Sci. 2017, 18, 2400 8 of 12

need the library provided by the Lua package. On the Windows platform, the MinGW64 version
g++ compiler is applied. Several independent libraries are required to compile the codes. For the
convenience of Windows users, we provide a binary executable package for the Windows platform.

The TDFs are provided as platform-independent Lua scripts, which can be viewed, edited,
and loaded as their original form. The internal data structures of UltraPse can be accessed by Lua
scripts using UltraPse specific functions and interfaces. The details on how to write TDFs can be found
in the software manual.

3.4. A Practical Example

Figure 4 demonstrate a practical example. The classic pseudo-amino acid composition modes,
including type-I and type-II, are implemented using a TDF in UltraPse. The TDF for classic
pseudo-amino acid compositions can be found in the “tdfs” subdirectory of UltraPse. The right
part of Figure 4 is a part of this TDF. With this TDF, the users only need to specify some parameters on
the command line. For example, the “–l 10 –w 0.05” on the command line indicate the value of λ and
ω in the PseAAC formulations. Unlike PseAAC-General, where the meanings of all command line
options are fixed, the meanings of command line options can be altered by the TDFs in the UltraPse.
This is to simplify the development of novel sequence representation modes, where parameters are
required to perform correct and efficient computations.

Int. J. Mol. Sci. 2017, 18, 2400 8 of 12

the convenience of Windows users, we provide a binary executable package for the Windows
platform.

The TDFs are provided as platform-independent Lua scripts, which can be viewed, edited, and
loaded as their original form. The internal data structures of UltraPse can be accessed by Lua scripts
using UltraPse specific functions and interfaces. The details on how to write TDFs can be found in
the software manual.

3.4. A Practical Example

Figure 4 demonstrate a practical example. The classic pseudo-amino acid composition modes,
including type-I and type-II, are implemented using a TDF in UltraPse. The TDF for classic pseudo-
amino acid compositions can be found in the “tdfs” subdirectory of UltraPse. The right part of Figure
4 is a part of this TDF. With this TDF, the users only need to specify some parameters on the command
line. For example, the “–l 10 –w 0.05” on the command line indicate the value of λ and ω in the
PseAAC formulations. Unlike PseAAC-General, where the meanings of all command line options are
fixed, the meanings of command line options can be altered by the TDFs in the UltraPse. This is to
simplify the development of novel sequence representation modes, where parameters are required
to perform correct and efficient computations.

Figure 4. An example on using UltraPse. UltraPse was used to implement classic pseudo-amino acid
compositions. A TDF: classic-pseaac.lua, was applied. The FASTA format sequences are stored in the
demo.fas file. The command options indicate that the Type 2 PseAAC will be computed with
parameters: λ = 10 and ω = 0.05. The output format is compatible to libSVM.

4. Conclusions

In this paper, we described our new software, the UltraPse (Available online:
https://github.com/pufengdu/UltraPse). UltraPse is a universal and extensible software platform for
generating biological sequence representations. Since many programs have already been released for
various sequence representations, UltraPse has no intention to be a new competitor on the same
playground. We expect that UltraPse can work side-by-side with other existing programs, such as
PseAAC-General, PseAAC-Builder and Pse-In-One, to accelerate the process of generating sequence
representations under various working environments.

Although we have integrated many existing sequence modes within the UltraPse, it should be
noted that the major advantage of UltraPse is its flexibility and extensibility. It was designed to be a
software platform rather than a program with specific functions. It aims at simplifying all future
programming works in developing novel sequence representations.

Web servers have already been proved to be a good method in releasing software. However,
presenting UltraPse with a web server will severely damage its computational efficiency. Therefore,
we do not provide an online web server for UltraPse. We would rather provide it as a local program.

Figure 4. An example on using UltraPse. UltraPse was used to implement classic pseudo-amino acid
compositions. A TDF: classic-pseaac.lua, was applied. The FASTA format sequences are stored in
the demo.fas file. The command options indicate that the Type 2 PseAAC will be computed with
parameters: λ = 10 andω = 0.05. The output format is compatible to libSVM.

4. Conclusions

In this paper, we described our new software, the UltraPse (Available online:
https://github.com/pufengdu/UltraPse). UltraPse is a universal and extensible software
platform for generating biological sequence representations. Since many programs have already been
released for various sequence representations, UltraPse has no intention to be a new competitor on
the same playground. We expect that UltraPse can work side-by-side with other existing programs,
such as PseAAC-General, PseAAC-Builder and Pse-In-One, to accelerate the process of generating
sequence representations under various working environments.

Although we have integrated many existing sequence modes within the UltraPse, it should be
noted that the major advantage of UltraPse is its flexibility and extensibility. It was designed to be

https://github.com/pufengdu/UltraPse

Int. J. Mol. Sci. 2017, 18, 2400 9 of 12

a software platform rather than a program with specific functions. It aims at simplifying all future
programming works in developing novel sequence representations.

Web servers have already been proved to be a good method in releasing software. However,
presenting UltraPse with a web server will severely damage its computational efficiency. Therefore,
we do not provide an online web server for UltraPse. We would rather provide it as a local program.
The users need to compile and install it on their own servers. The graphical user interfaces (GUI) is
useful on platforms like Microsoft Windows. We will develop a GUI for UltraPse on the Windows
platform in future.

Acknowledgments: This work is funded by the National Natural Science Foundation of China (NSFC
31401132); National Natural Science Foundation of China (NSFC 61005041); Tianjin Natural Science Foundation
(No. 12JCQNJC02300).

Author Contributions: Pu-Feng Du designed the software, wrote most of the codes and the paper in part.
Wei Zhao partially wrote the codes and in part tested the software. Yang-Yang Miao partially tested the software
and in part wrote the paper. Le-Yi Wei partially wrote the paper. Likun Wang provided technical discussions,
and in part wrote the code and the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AmPseAAC Amphiphilic pseudo amino acid composition
BEM Binary extension module
BSO Binary shared objects
GPL General public license
GUI Graphical user interfaces
PseAAC Pseudo-amino acid composition
PseDNC Pseudo-dinucleotide composition
PseKNC Pseudo-k nucleotide composition
TDF Task definition file

References

1. Jiao, Y.-S.; Du, P.-F. Predicting Golgi-resident protein types using pseudo amino acid compositions:
Approaches with positional specific physicochemical properties. J. Theor. Biol. 2016, 391, 35–42. [CrossRef]
[PubMed]

2. Jiao, Y.-S.; Du, P.-F. Predicting protein submitochondrial locations by incorporating the positional-specific
physicochemical properties into Chou’s general pseudo-amino acid compositions. J. Theor. Biol. 2017, 416,
81–87. [CrossRef] [PubMed]

3. Nanni, L.; Brahnam, S.; Lumini, A. High performance set of PseAAC and sequence based descriptors for
protein classification. J. Theor. Biol. 2010, 266, 1–10. [CrossRef] [PubMed]

4. Nanni, L.; Brahnam, S.; Lumini, A. Prediction of protein structure classes by incorporating different protein
descriptors into general Chou’s pseudo amino acid composition. J. Theor. Biol. 2014, 360, 109–116. [CrossRef]
[PubMed]

5. Li, L.; Yu, S.; Xiao, W.; Li, Y.; Hu, W.; Huang, L.; Zheng, X.; Zhou, S.; Yang, H. Protein submitochondrial
localization from integrated sequence representation and SVM-based backward feature extraction.
Mol. Biosyst. 2014, 11, 170–177. [CrossRef] [PubMed]

6. Lin, H.; Chen, W.; Yuan, L.-F.; Li, Z.-Q.; Ding, H. Using Over-Represented Tetrapeptides to Predict Protein
Submitochondria Locations. Acta Biotheor 2013, 61, 259–268. [CrossRef] [PubMed]

7. Zuo, Y.-C.; Peng, Y.; Liu, L.; Chen, W.; Yang, L.; Fan, G.-L. Predicting peroxidase subcellular location by
hybridizing different descriptors of Chou’ pseudo amino acid patterns. Anal. Biochem. 2014, 458, 14–19.
[CrossRef] [PubMed]

8. Nanni, L.; Lumini, A.; Gupta, D.; Garg, A. Identifying Bacterial Virulent Proteins by Fusing a Set of Classifiers
Based on Variants of Chou’s Pseudo Amino Acid Composition and on Evolutionary Information. IEEE-ACM
Trans. Comput. Biol. Bioinform. 2012, 9, 467–475. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jtbi.2015.11.009
http://www.ncbi.nlm.nih.gov/pubmed/26702543
http://dx.doi.org/10.1016/j.jtbi.2016.12.026
http://www.ncbi.nlm.nih.gov/pubmed/28077336
http://dx.doi.org/10.1016/j.jtbi.2010.06.006
http://www.ncbi.nlm.nih.gov/pubmed/20558184
http://dx.doi.org/10.1016/j.jtbi.2014.07.003
http://www.ncbi.nlm.nih.gov/pubmed/25026218
http://dx.doi.org/10.1039/C4MB00340C
http://www.ncbi.nlm.nih.gov/pubmed/25335193
http://dx.doi.org/10.1007/s10441-013-9181-9
http://www.ncbi.nlm.nih.gov/pubmed/23475502
http://dx.doi.org/10.1016/j.ab.2014.04.032
http://www.ncbi.nlm.nih.gov/pubmed/24802134
http://dx.doi.org/10.1109/TCBB.2011.117
http://www.ncbi.nlm.nih.gov/pubmed/21860064

Int. J. Mol. Sci. 2017, 18, 2400 10 of 12

9. Chou, K.-C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 2001, 43,
246–255. [CrossRef] [PubMed]

10. Chou, K.-C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes.
Bioinformatics 2005, 21, 10–19. [CrossRef] [PubMed]

11. Chou, K.-C. Pseudo Amino Acid Composition and its Applications in Bioinformatics, Proteomics and System
Biology. Curr. Proteom. 2009, 6, 262–274. [CrossRef]

12. Qiu, W.-R.; Sun, B.-Q.; Xiao, X.; Xu, Z.-C.; Chou, K.-C. iHyd-PseCp: Identify hydroxyproline and
hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget
2016, 7, 44310–44321. [CrossRef] [PubMed]

13. Xu, Y.; Ding, Y.-X.; Ding, J.; Wu, L.-Y.; Deng, N.-Y. Phogly–PseAAC: Prediction of lysine phosphoglycerylation
in proteins incorporating with position-specific propensity. J. Theor. Biol. 2015, 379, 10–15. [CrossRef]
[PubMed]

14. Jia, J.; Zhang, L.; Liu, Z.; Xiao, X.; Chou, K.-C. pSumo-CD: Predicting sumoylation sites in proteins
with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC.
Bioinformatics 2016, 32, 3133–3141. [CrossRef] [PubMed]

15. Ahmad, K.; Waris, M.; Hayat, M. Prediction of Protein Submitochondrial Locations by Incorporating
Dipeptide Composition into Chou’s General Pseudo Amino Acid Composition. J. Membr. Biol. 2016, 249,
293–304. [CrossRef] [PubMed]

16. Feng, P.-M.; Chen, W.; Lin, H.; Chou, K.-C. iHSP-PseRAAAC: Identifying the heat shock protein families
using pseudo reduced amino acid alphabet composition. Anal. Biochem. 2013, 442, 118–125. [CrossRef]
[PubMed]

17. Lin, W.-Z.; Fang, J.-A.; Xiao, X.; Chou, K.-C. iLoc-Animal: A multi-label learning classifier for predicting
subcellular localization of animal proteins. Mol. Biosyst. 2013, 9, 634–644. [CrossRef] [PubMed]

18. Mohabatkar, H.; Mohammad Beigi, M.; Esmaeili, A. Prediction of GABAA receptor proteins using the
concept of Chou’s pseudo-amino acid composition and support vector machine. J. Theor. Biol. 2011, 281,
18–23. [CrossRef] [PubMed]

19. Jiao, Y.-S.; Du, P.-F. Prediction of Golgi-resident protein types using general form of Chou’s pseudo-amino
acid compositions: Approaches with minimal redundancy maximal relevance feature selection. J. Theor. Biol.
2016, 402, 38–44. [CrossRef] [PubMed]

20. Du, P.; Wang, L. Predicting human protein subcellular locations by the ensemble of multiple predictors via
protein-protein interaction network with edge clustering coefficients. PLoS ONE 2014, 9, e86879. [CrossRef]
[PubMed]

21. Chou, K.-C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol.
2011, 273, 236–247. [CrossRef] [PubMed]

22. Chou, K.-C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst. 2013, 9,
1092–1100. [CrossRef] [PubMed]

23. Chou, K.-C. Impacts of bioinformatics to medicinal chemistry. Med. Chem. 2015, 11, 218–234. [CrossRef]
[PubMed]

24. Chen, W.; Lin, H.; Chou, K.-C. Pseudo nucleotide composition or PseKNC: An effective formulation for
analyzing genomic sequences. Mol. Biosyst. 2015, 11, 2620–2634. [CrossRef] [PubMed]

25. Chen, W.; Feng, P.-M.; Lin, H.; Chou, K.-C. iRSpot-PseDNC: Identify recombination spots with pseudo
dinucleotide composition. Nucleic. Acids Res. 2013, 41, e68. [CrossRef] [PubMed]

26. Chen, W.; Feng, P.-M.; Lin, H.; Chou, K.-C. iSS-PseDNC: Identifying splicing sites using pseudo dinucleotide
composition. Biomed. Res. Int. 2014, 2014, 623149. [CrossRef] [PubMed]

27. Chen, W.; Feng, P.-M.; Deng, E.-Z.; Lin, H.; Chou, K.-C. iTIS-PseTNC: A sequence-based predictor for
identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal. Biochem.
2014, 462, 76–83. [CrossRef] [PubMed]

28. Guo, S.-H.; Deng, E.-Z.; Xu, L.-Q.; Ding, H.; Lin, H.; Chen, W.; Chou, K.-C. iNuc-PseKNC: A sequence-based
predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition.
Bioinformatics 2014, 30, 1522–1529. [CrossRef] [PubMed]

29. Lin, H.; Deng, E.-Z.; Ding, H.; Chen, W.; Chou, K.-C. iPro54-PseKNC: A sequence-based predictor for
identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids
Res. 2014, 42, 12961–12972. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/prot.1035
http://www.ncbi.nlm.nih.gov/pubmed/11288174
http://dx.doi.org/10.1093/bioinformatics/bth466
http://www.ncbi.nlm.nih.gov/pubmed/15308540
http://dx.doi.org/10.2174/157016409789973707
http://dx.doi.org/10.18632/oncotarget.10027
http://www.ncbi.nlm.nih.gov/pubmed/27322424
http://dx.doi.org/10.1016/j.jtbi.2015.04.016
http://www.ncbi.nlm.nih.gov/pubmed/25913879
http://dx.doi.org/10.1093/bioinformatics/btw387
http://www.ncbi.nlm.nih.gov/pubmed/27354696
http://dx.doi.org/10.1007/s00232-015-9868-8
http://www.ncbi.nlm.nih.gov/pubmed/26746980
http://dx.doi.org/10.1016/j.ab.2013.05.024
http://www.ncbi.nlm.nih.gov/pubmed/23756733
http://dx.doi.org/10.1039/c3mb25466f
http://www.ncbi.nlm.nih.gov/pubmed/23370050
http://dx.doi.org/10.1016/j.jtbi.2011.04.017
http://www.ncbi.nlm.nih.gov/pubmed/21536049
http://dx.doi.org/10.1016/j.jtbi.2016.04.032
http://www.ncbi.nlm.nih.gov/pubmed/27155042
http://dx.doi.org/10.1371/journal.pone.0086879
http://www.ncbi.nlm.nih.gov/pubmed/24466278
http://dx.doi.org/10.1016/j.jtbi.2010.12.024
http://www.ncbi.nlm.nih.gov/pubmed/21168420
http://dx.doi.org/10.1039/c3mb25555g
http://www.ncbi.nlm.nih.gov/pubmed/23536215
http://dx.doi.org/10.2174/1573406411666141229162834
http://www.ncbi.nlm.nih.gov/pubmed/25548930
http://dx.doi.org/10.1039/C5MB00155B
http://www.ncbi.nlm.nih.gov/pubmed/26099739
http://dx.doi.org/10.1093/nar/gks1450
http://www.ncbi.nlm.nih.gov/pubmed/23303794
http://dx.doi.org/10.1155/2014/623149
http://www.ncbi.nlm.nih.gov/pubmed/24967386
http://dx.doi.org/10.1016/j.ab.2014.06.022
http://www.ncbi.nlm.nih.gov/pubmed/25016190
http://dx.doi.org/10.1093/bioinformatics/btu083
http://www.ncbi.nlm.nih.gov/pubmed/24504871
http://dx.doi.org/10.1093/nar/gku1019
http://www.ncbi.nlm.nih.gov/pubmed/25361964

Int. J. Mol. Sci. 2017, 18, 2400 11 of 12

30. Chang, C.-C.; Lin, C.-J.; Chen, W.; Feng, P.; Ding, H.; Lin, H.; Chou, K.-C. iRNA-Methyl: Identifying
N6-methyladenosine sites using pseudo nucleotide composition. Anal. Biochem. 2015, 490, 26–33. [CrossRef]

31. Liu, B.; Fang, L.; Liu, F.; Wang, X.; Chou, K.-C. iMiRNA-PseDPC: MicroRNA precursor identification with a
pseudo distance-pair composition approach. J. Biomol. Struct. Dyn. 2016, 34, 223–235. [CrossRef] [PubMed]

32. Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.-C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol. Ther.
Nucleic Acids 2016, 5, e332. [CrossRef] [PubMed]

33. Liu, B.; Long, R.; Chou, K.-C. iDHS-EL: Identifying DNase I hypersensitive sites by fusing three different
modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics 2016, 32,
2411–2418. [CrossRef] [PubMed]

34. Liu, B.; Yang, F.; Huang, D.-S.; Chou, K.-C. iPromoter-2L: A two-layer predictor for identifying promoters
and their types by multi-window-based PseKNC. Bioinformatics 2017. [CrossRef] [PubMed]

35. Iqbal, M.; Hayat, M. “iSS-Hyb-mRMR”: Identification of splicing sites using hybrid space of pseudo
trinucleotide and pseudo tetranucleotide composition. Comput. Methods Programs Biomed. 2016, 128, 1–11.
[CrossRef] [PubMed]

36. Kabir, M.; Iqbal, M.; Ahmad, S.; Hayat, M. iTIS-PseKNC: Identification of Translation Initiation Site in human
genes using pseudo k-tuple nucleotides composition. Comput. Biol. Med. 2015, 66, 252–257. [CrossRef]
[PubMed]

37. Zhang, M.; Sun, J.-W.; Liu, Z.; Ren, M.-W.; Shen, H.-B.; Yu, D.-J. Improving N(6)-methyladenosine site
prediction with heuristic selection of nucleotide physical-chemical properties. Anal. Biochem. 2016, 508,
104–113. [CrossRef] [PubMed]

38. Dong, C.; Yuan, Y.-Z.; Zhang, F.-Z.; Hua, H.-L.; Ye, Y.-N.; Labena, A.A.; Lin, H.; Chen, W.; Guo, F.-B.
Combining pseudo dinucleotide composition with the Z curve method to improve the accuracy of predicting
DNA elements: A case study in recombination spots. Mol. Biosyst. 2016, 12, 2893–2900. [CrossRef] [PubMed]

39. Liu, B.; Liu, Y.; Huang, D. Recombination Hotspot/Coldspot Identification Combining Three Different
Pseudocomponents via an Ensemble Learning Approach. Biomed. Res. Int. 2016, 2016, 8527435. [CrossRef]
[PubMed]

40. Qiu, W.-R.; Jiang, S.-Y.; Xu, Z.-C.; Xiao, X.; Chou, K.-C. iRNAm5C-PseDNC: Identifying RNA
5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition.
Oncotarget 2017, 8, 41178–41188. [CrossRef] [PubMed]

41. Xu, Z.-C.; Wang, P.; Qiu, W.-R.; Xiao, X. iSS-PC: Identifying Splicing Sites via Physical-Chemical Properties
Using Deep Sparse Auto-Encoder. Sci. Rep. 2017, 7, 8222. [CrossRef] [PubMed]

42. Li, Z.R.; Lin, H.H.; Han, L.Y.; Jiang, L.; Chen, X.; Chen, Y.Z. PROFEAT: A web server for computing structural
and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res. 2006,
34, W32–W37. [CrossRef] [PubMed]

43. Shen, H.-B.; Chou, K.-C. PseAAC: A flexible web server for generating various kinds of protein pseudo
amino acid composition. Anal. Biochem. 2008, 373, 386–388. [CrossRef] [PubMed]

44. Cao, D.-S.; Xu, Q.-S.; Liang, Y.-Z. Propy: A tool to generate various modes of Chou’s PseAAC. Bioinformatics
2013, 29, 960–962. [CrossRef] [PubMed]

45. Du, P.; Wang, X.; Xu, C.; Gao, Y. PseAAC-Builder: A cross-platform stand-alone program for generating
various special Chou’s pseudo-amino acid compositions. Anal. Biochem. 2012, 425, 117–119. [CrossRef]
[PubMed]

46. Du, P.; Gu, S.; Jiao, Y. PseAAC-General: Fast building various modes of general form of Chou’s pseudo-amino
acid composition for large-scale protein datasets. Int. J. Mol. Sci. 2014, 15, 3495–3506. [CrossRef] [PubMed]

47. Xiao, N.; Cao, D.-S.; Zhu, M.-F.; Xu, Q.-S. protr/ProtrWeb: R package and web server for generating various
numerical representation schemes of protein sequences. Bioinformatics 2015, 31, 1857–1859. [CrossRef]
[PubMed]

48. Chen, W.; Lei, T.-Y.; Jin, D.-C.; Lin, H.; Chou, K.-C. PseKNC: A flexible web server for generating pseudo
K-tuple nucleotide composition. Anal. Biochem. 2014, 456, 53–60. [CrossRef] [PubMed]

49. Chen, W.; Zhang, X.; Brooker, J.; Lin, H.; Zhang, L.; Chou, K.-C. PseKNC-General: A cross-platform package
for generating various modes of pseudo nucleotide compositions. Bioinformatics 2015, 31, 119–120. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.ab.2015.08.021
http://dx.doi.org/10.1080/07391102.2015.1014422
http://www.ncbi.nlm.nih.gov/pubmed/25645238
http://dx.doi.org/10.1038/mtna.2016.37
http://www.ncbi.nlm.nih.gov/pubmed/28427142
http://dx.doi.org/10.1093/bioinformatics/btw186
http://www.ncbi.nlm.nih.gov/pubmed/27153623
http://dx.doi.org/10.1093/bioinformatics/btx579
http://www.ncbi.nlm.nih.gov/pubmed/28968797
http://dx.doi.org/10.1016/j.cmpb.2016.02.006
http://www.ncbi.nlm.nih.gov/pubmed/27040827
http://dx.doi.org/10.1016/j.compbiomed.2015.09.010
http://www.ncbi.nlm.nih.gov/pubmed/26433457
http://dx.doi.org/10.1016/j.ab.2016.06.001
http://www.ncbi.nlm.nih.gov/pubmed/27293216
http://dx.doi.org/10.1039/C6MB00374E
http://www.ncbi.nlm.nih.gov/pubmed/27410247
http://dx.doi.org/10.1155/2016/8527435
http://www.ncbi.nlm.nih.gov/pubmed/27648451
http://dx.doi.org/10.18632/oncotarget.17104
http://www.ncbi.nlm.nih.gov/pubmed/28476023
http://dx.doi.org/10.1038/s41598-017-08523-8
http://www.ncbi.nlm.nih.gov/pubmed/28811565
http://dx.doi.org/10.1093/nar/gkl305
http://www.ncbi.nlm.nih.gov/pubmed/16845018
http://dx.doi.org/10.1016/j.ab.2007.10.012
http://www.ncbi.nlm.nih.gov/pubmed/17976365
http://dx.doi.org/10.1093/bioinformatics/btt072
http://www.ncbi.nlm.nih.gov/pubmed/23426256
http://dx.doi.org/10.1016/j.ab.2012.03.015
http://www.ncbi.nlm.nih.gov/pubmed/22459120
http://dx.doi.org/10.3390/ijms15033495
http://www.ncbi.nlm.nih.gov/pubmed/24577312
http://dx.doi.org/10.1093/bioinformatics/btv042
http://www.ncbi.nlm.nih.gov/pubmed/25619996
http://dx.doi.org/10.1016/j.ab.2014.04.001
http://www.ncbi.nlm.nih.gov/pubmed/24732113
http://dx.doi.org/10.1093/bioinformatics/btu602
http://www.ncbi.nlm.nih.gov/pubmed/25231908

Int. J. Mol. Sci. 2017, 18, 2400 12 of 12

50. Liu, B.; Liu, F.; Fang, L.; Wang, X.; Chou, K.-C. repDNA: A Python package to generate various modes
of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and
sequence-order effects. Bioinformatics 2015, 31, 1307–1309. [CrossRef] [PubMed]

51. Liu, B.; Liu, F.; Fang, L.; Wang, X.; Chou, K.-C. repRNA: A web server for generating various feature vectors
of RNA sequences. Mol. Genet. Genom. 2016, 291, 473–481. [CrossRef] [PubMed]

52. Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K.-C. Pse-in-One: A web server for generating various
modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 2015, 43, W65–W71.
[CrossRef] [PubMed]

53. Li, T.; Du, P.; Xu, N. Identifying human kinase-specific protein phosphorylation sites by integrating
heterogeneous information from various sources. PLoS ONE 2010, 5, e15411. [CrossRef] [PubMed]

54. Chen, Q.-Y.; Tang, J.; Du, P.-F. Predicting protein lysine phosphoglycerylation sites by hybridizing many
sequence based features. Mol. Biosyst. 2017, 13, 874–882. [CrossRef] [PubMed]

55. Lei, G.-C.; Tang, J.; Du, P.-F. Predicting S-sulfenylation Sites Using Physicochemical Properties Differences.
Lett. Org. Chem. 2017, 14, 665–672. [CrossRef]

56. Steinbiss, S.; Gremme, G.; Schärfer, C.; Mader, M.; Kurtz, S. AnnotationSketch: A genome annotation drawing
library. Bioinformatics 2009, 25, 533–534. [CrossRef] [PubMed]

57. Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.-C. iCar-PseCp: Identify carbonylation sites in proteins by Monte Carlo
sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget 2016, 7, 34558–34570.
[CrossRef] [PubMed]

58. Qiu, W.-R.; Xiao, X.; Lin, W.-Z.; Chou, K.-C. iMethyl-PseAAC: Identification of protein methylation sites via
a pseudo amino acid composition approach. Biomed. Res. Int. 2014, 2014, 947416. [CrossRef] [PubMed]

59. Liu, B.; Xu, J.; Lan, X.; Xu, R.; Zhou, J.; Wang, X.; Chou, K.-C. iDNA-Prot|dis: Identifying DNA-binding
proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo
amino acid composition. PLoS ONE 2014, 9, e106691. [CrossRef] [PubMed]

60. Xu, Y.; Wen, X.; Wen, L.-S.; Wu, L.-Y.; Deng, N.-Y.; Chou, K.-C. iNitro-Tyr: Prediction of nitrotyrosine sites in
proteins with general pseudo amino acid composition. PLoS ONE 2014, 9, e105018. [CrossRef] [PubMed]

61. Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol.
2011, 2, 27. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/bioinformatics/btu820
http://www.ncbi.nlm.nih.gov/pubmed/25504848
http://dx.doi.org/10.1007/s00438-015-1078-7
http://www.ncbi.nlm.nih.gov/pubmed/26085220
http://dx.doi.org/10.1093/nar/gkv458
http://www.ncbi.nlm.nih.gov/pubmed/25958395
http://dx.doi.org/10.1371/journal.pone.0015411
http://www.ncbi.nlm.nih.gov/pubmed/21085571
http://dx.doi.org/10.1039/C6MB00875E
http://www.ncbi.nlm.nih.gov/pubmed/28396891
http://dx.doi.org/10.2174/1570178614666170421164731
http://dx.doi.org/10.1093/bioinformatics/btn657
http://www.ncbi.nlm.nih.gov/pubmed/19106120
http://dx.doi.org/10.18632/oncotarget.9148
http://www.ncbi.nlm.nih.gov/pubmed/27153555
http://dx.doi.org/10.1155/2014/947416
http://www.ncbi.nlm.nih.gov/pubmed/24977164
http://dx.doi.org/10.1371/journal.pone.0106691
http://www.ncbi.nlm.nih.gov/pubmed/25184541
http://dx.doi.org/10.1371/journal.pone.0105018
http://www.ncbi.nlm.nih.gov/pubmed/25121969
http://dx.doi.org/10.1145/1961189.1961199
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results and Discussion
	Computational Efficiency Analysis
	Flexibility and Extensibility
	Compatibility and Robustness
	Technical Detail Comparison
	Future Works in Plan
	Availability

	Methods
	Efficiency Comparison Protocols
	Abstracted Software Design
	Implementation Technology
	A Practical Example

	Conclusions

