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Abstract: With the avalanche of biological sequences in public databases, one of the most challenging
problems in computational biology is to predict their biological functions and cellular attributes.
Most of the existing prediction algorithms can only handle fixed-length numerical vectors. Therefore,
it is important to be able to represent biological sequences with various lengths using fixed-length
numerical vectors. Although several algorithms, as well as software implementations, have been
developed to address this problem, these existing programs can only provide a fixed number of
representation modes. Every time a new sequence representation mode is developed, a new program
will be needed. In this paper, we propose the UltraPse as a universal software platform for this
problem. The function of the UltraPse is not only to generate various existing sequence representation
modes, but also to simplify all future programming works in developing novel representation
modes. The extensibility of UltraPse is particularly enhanced. It allows the users to define their own
representation mode, their own physicochemical properties, or even their own types of biological
sequences. Moreover, UltraPse is also the fastest software of its kind. The source code package,
as well as the executables for both Linux and Windows platforms, can be downloaded from the
GitHub repository.
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1. Introduction

Over the last two decades, huge numbers of biological sequences have been deposited in public
databases. Until today, the number of these sequences is still increasing exponentially. However,
the cellular and functional attributes of these sequences, no matter whether they are nucleotide
sequences or protein sequences, remain largely unknown. It is a very important task for computational
biology to predict the functional and cellular attributes of these sequences.

In the view of machine learning, most of these prediction tasks can be formulated as pattern
classification problems. As elaborated in a series of publications [1–8], one of the most challenging parts
is to represent a biological sequence with a fixed-length numerical vector, yet still keep a considerable
amount of the sequence-order information. This is because almost every existing algorithm for these
tasks can only handle fixed-length vectors, but not the sequences.

For protein and peptide sequences, Chou proposed pseudo-amino acid compositions (PseAAC) [9]
and amphiphilic pseudo-amino acid compositions (AmPseAAC) [10]. Ever since the concepts of
pseudo-factors were introduced, they have rapidly penetrated into almost every area of computational
proteomics [11–20]. As elaborated in a review article, the form of classic pseudo-amino acid
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compositions has been generalized to contain various types of information [21], which is known
as the general-form pseudo-amino acid compositions. The applications of PseAAC concepts have been
summarized in the review papers [22,23].

Recently, the concept of PseAAC has been extended to represent nucleotide sequences [24].
Chen et al. developed pseudo-dinucleotide compositions (PseDNC) to predict DNA recombination
hostspots [25]. This formulation was then extended as pseudo-k nucleotide compositions (PseKNC),
which have been applied in predicting splicing sites [26], predicting translation initiation sites [27],
predicting nucleosome positions [28], predicting promoters [29], predicting DNA methylation sites [30],
predicting microRNA precursors [31] and many others [32–41].

In the early days of pseudo-amino acid compositions, every study had to implement
PseAAC independently. Although the algorithms in every implementation are identical, different
implementations may introduce computational discrepancies due to technical details. For example,
different implementations may give results with different precisions. This kind of differences may be
amplified by machine-learning based predictors, which may eventually produce different prediction
results. For another example, different implementations may have very different computational
efficiencies. This means one implementation may only use a second to process a dataset, while
another program may require over an hour to achieve the same results on the same dataset with the
same parameters.

To solve these problems, a universal implementation of the algorithm should be provided. Many
efforts have been made for this purpose [42–52]. The first program focus on the PseAAC formulation is
the PseAAC server [43], which was brought online in the year 2008. The PseAAC server can compute
Type-I and Type-II PseAAC using six different kinds of physicochemical properties of amino acids.
The PseAAC server has a friendly user interface, which is convenient and efficient for small datasets.
However, for large datasets and the repeatedly parameter scanning process, the computational
efficiency of the PseAAC server is not ideal. The PseAAC-Builder [45], which was released in the year
2012, is dedicated to improving the efficiency. Unlike the PseAAC server, the PseAAC-Builder is a
stand-alone program that can be executed locally. It has a simple graphical user interface (GUI) for
the users’ convenience. It can also be executed in a command line environment. The computational
efficiency of PseAAC-Builder is much higher than the PseAAC server, especially in the command line
environment. Although the PseAAC-Builder includes over 500 different types of physicochemical
properties, it did not provide the ability to compute general form PseAAC. PseAAC-General [46], which
is a major upgrade to the PseAAC-Builder, was developed to solve this problem. PseAAC-General
provides the ability to compute several commonly used general forms of PseAAC, such as the GO
mode, the functional domain mode and the evolutionary mode. The users of PseAAC-General can
slightly extend its ability by using Lua scripts.

After Chen et al. proposed the PseKNC representations for nucleotide sequences, similar software
and services were needed for DNA and RNA sequences. Chen et al. released the PseKNC [48] and
PseKNC-General [49] packages for converting DNA/RNA sequences into its PseKNC or general form
of PseKNC representations. Liu et al. developed the repDNA [50], repRNA [51], and Pse-In-One [52]
services for more types of descriptors. The Pse-In-One service attempts to be a universal online service
that can be applied on both protein and nucleotide sequences.

However, all existing software packages and online services suffer from three problems. (1) Lack of
extensibility. Most of the existing software can only be used to produce existing modes of representation.
The users cannot extend the software to handle their own novel representation modes. Although
PseAAC-General can be extended by using Lua script, it can only be used for protein sequences;
(2) Lack of flexibility. Most of the existing software can only handle one type of biological sequences,
either nucleotide sequences or protein sequences. Pse-In-One is the only existing service that can handle
protein sequence as well as nucleotide sequences. However, no program can handle user-defined
sequence types. For example, when studying the protein phosphorylation sites, the modified residues
should have different notations of sequences, which are not in the standard 20 letters. The users
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need to define the extra letters to represent the modified residues. As far as we know, no program
can handle this kind of sequence; (3) Lack of computational efficiency on large datasets. Most of the
existing programs are not designed to handle large datasets. They may need many minutes to process
a million sequences. If a user needs to repeatedly scan parameters of a representation, the processing
time may be days or even weeks.

In this paper, we proposed the UltraPse program, which is a universal and extensible software
platform for all possible sequence representation modes. The UltraPse program unified the processing
of nucleotide and protein sequence in one program, as well as the user-defined sequence types.
UltraPse supports two forms of extension modules, the BSOs (Binary Shared Objects) and the Lua
scripts, which are called the TDFs (Task Definition Files) in UltraPse. The users can develop their own
modes by just writing several lines of Lua scripts. UltraPse has very high computational efficiency. It is
even faster than the PseAAC-General, which used to be the fastest program of its kind. For the users’
convenience, we have integrated many existing modes within the UltraPse. We expect that the UltraPse
program can be a useful platform which simplifies all future programming works in developing novel
sequence representation modes. All source codes of UltraPse, including some extension modules can
be downloaded freely under the term of GNU GPL (GNU General Public License) v3 from the GitHub
repository: https://github.com/pufengdu/UltraPse.

2. Results and Discussion

2.1. Computational Efficiency Analysis

We compared the computational efficiency of UltraPse to that of PseAAC-General and Pse-In-One
under the same conditions. As in Figure 1, the UltraPse can process over 120 thousand sequences per
second, while PseAAC-General can process about 85 thousand sequences per second. Unfortunately,
the Pse-In-One can process only less than one thousand sequences per second. According to these
results, the computational efficiency of UltraPse is roughly 1.5 times of the PseAAC-General, and about
185 times of Pse-In-One. Since the algorithms of the three programs are essentially the same, the reason
for the efficiency differences resides in the technical details of the implementations.
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Figure 1. Computational efficiency comparisons. Three programs are compared. The comparison was
carried out by letting the three programs compute amino acid compositions on the same dataset on the
same machine. Every program was executed with the same parameters for three times. The average
execution time was applied in calculating the computational efficiency. The computational efficiency is
measured by the average number of sequences that are processed every second. Pse-In-One: A program
in literature [52]; PseAAC-General: A program in literature [46]; UltraPse: A program of this work.
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2.2. Flexibility and Extensibility

We integrated 35 sequence representation modes within the UltraPse. The representation modes
can be organized hierarchically as in Figure 2. The integrated modes can be used to represent protein,
as well as DNA and RNA sequences. The modes cover most of the representation modes that can be
generated by PseAAC-General, PseKNC-General, and Pse-In-One. Moreover, UltraPse can generate
even more modes, for example, the commonly used one-hot encoding mode [53–55]. The sequence
representation modes of UltraPse can be extended by using BSOs and TDFs. According to our
own works, using UltraPse in developing novel representation modes can save over half of the
programing labor.

1 

 

 
Figure 2. Hierarchical organization of integrated sequence representation modes. UltraPse integrated
the sequence representation modes in its distribution package. Most of these modes can also be
applied in user-defined sequence types, as long as the users provide proper definitions of the
physicochemical properties.

Besides the user-defined representation modes of protein and nucleotide sequences, the users
of UltraPse can define their own sequence types using TDFs. They are allowed to choose a set of
letters other than the standard ones to represent additional information. For example, a user can
use C for cytidines on a DNA sequence, and M for methylated cytidines. The choice of the letter M
totally depends on the users. Even more, the users of UltraPse can define their own physicochemical
properties with TDFs.

The TDFs of UltraPse is written using Lua language, which is a simple, powerful and extensible
programming language which has been applied in bioinformatics software previously [56]. We provide
over 20 UltraPse specific functions and interfaces. Users can access and modify UltraPse internal data
structures using these functions in TDFs. We compared the flexibility and the extensibility of different
software in Table 1.
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Table 1. Software function comparison in terms of flexibility and extensibility.

Software Functions Sequence Types Extensibility

UltraPse DNA, RNA, Protein,
User-defined types

Users can define their own sequence
types, representation modes and

physicochemical properties

PseAAC-General [46] Protein Users can define their own
representation modes

PseAAC-Builder [45] Protein No extensibility

Pse-In-One [52] DNA, RNA, Protein Users can define their own
physicochemical properties

PseKNC [48] DNA, RNA Users can define their own
physicochemical properties

PseKNC-General [49] DNA, RNA Users can define their own
physicochemical properties

2.3. Compatibility and Robustness

UltraPse can recognize FASTA format files that are directly downloaded from one of the following
five databases: GenBank, UniProt, EMBL, DDBJ, and RefSeq. The sequence identifiers and comments
in these public databases can be automatically recognized. For FASTA file that are not from these
public databases, UltraPse can also recognize them as long as the comment line of every sequence is
unique in the FASTA file. Besides the FASTA format requirements, there is no additional restriction on
input data format. As indicated in Table 2, this is a unique advantage of UltraPse.

According to Chou’s five step rule [12,21,57–60], before converting biological sequences into
numerical vectors, a high-quality benchmark dataset must be constructed. The construction of a
dataset usually includes a step to filter out the sequences containing non-standard letters. For example,
B, J, or X appear in protein sequences in the UniProt database. However, the sequences containing
these letters are hardly suitable for further analysis in many cases. As indicated in Table 2, UltraPse
provides a user-controllable data fault tolerant ability. According to users’ choice, when one of
these sequences is encountered, UltraPse can automatically skip the sequence or abort all further
computations. This function is useful in adopting third-party datasets in practical works, because
filtering out the sequences usually requires tedious programming work.

Table 2. Software function comparison in terms of data processing ability.

Software Output Formats Input Formats Data Fault Tolerant a

UltraPse SVM b, TSV c, CSV d
Multi-line FASTA (Automatic ID

recognition for UniProt, GenBank,
EMBL, DDBJ and RefSeq)

User-controllable behavior
on data faults

PseAAC-General [46] SVM, TSV, CSV Single-line FASTA (With
restrictions on comment line) e

Automatically ignore and
report data faults

PseAAC-Builder [45] SVM, TSV, CSV Single-line FASTA (With
restrictions on comment line)

Automatically ignore and
report data faults

Pse-In-One [52] SVM, TSV, CSV Mutlti-line FASTA Abort processing on
data faults

PseKNC [48] SVM, TSV, CSV Mutlti-line FASTA Abort processing on
data faults

PseKNC-General [49] SVM, TSV, CSV Mutlti-line FASTA Abort processing on
data faults

a Data fault tolerant: The behavior of a software when it encounters some invalid data records. Here, the invalid
data records include the sequences with non-standard letter and the sequence without sufficient length; b SVM:
data format for libSVM [61]; c TSV: tab separated vector; d CSV: comma separated vector; e Single-line FASTA:
the sequence of a record in the file must not spread to multiple lines. Both PseAAC-General and PseAAC-Builder
have the same restrictions.
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2.4. Technical Detail Comparison

Most state-of-the art software is written in Python, while PseAAC-General and UltraPse are
written in C++. This difference eventually made the difference in computational efficiency. Since the
computational efficiencies of PseAAC-General and UltraPse are comparable, we can compare several
technical details of them.

PseAAC-General is a program that can be extended by using Binary Extension Modules (BEMs).
However, it should be noted that, the BEMs of PseAAC-General are completely different to the BSOs
in UltraPse. A BEM of PseAAC-General is just a compressed data block. However, how this data
block should be used, was still implemented by the PseAAC-General main program. In the UltraPse,
a BSO is actually a dynamically loaded library, which contains all the information and instructions for
constructing one or more sequence representation modes. Therefore, the BSOs of UltraPse are much
more flexible than the BEMs of PseAAC-General.

We have seen that UltraPse has roughly 1.5 times the efficiency of PseAAC-General. This
advantage is achieved by an internal representation scheme and a pre-computing mechanism of
UltraPse. In PseAAC-General, the sequences are converted to a series of physicochemical properties.
The sequence descriptors are then computed according to the corresponding algorithms. However,
this intuitive implementation requires repeatedly computing dot-product or Euclidean distance
between physicochemical vectors of different amino acids. Since the combination of two different
amino acids is limited, we pre-compute the dot-product and Euclidean distance for all possible
combinations in UltraPse. The sequences in UltraPse are not converted into a series of physicochemical
properties. They are converted into UltraPse internal indices, which can be used to quickly find
correct values that have been pre-computed. When computing only the amino acids compositions,
the implementations of PseAAC-General and UltraPse are similar. However, UltraPse still benefits
from converting all sequences into internal indices first. Because, the amino acids counting procedure
becomes simpler, this allows the compiler to do more optimization for speed. This is why UltraPse is
faster than PseAAC-General.

2.5. Future Works in Plan

Besides the practical application of UltraPse program in research projects, there is still much work
to do in terms of software development. The work at first priority is to add an automated unit-testing
facility in the source code of UltraPse. Unit-testing is good practice in software engineering to ensure
robustness of large scale software. It will be very important for the future versions of UltraPse. The next
work in plan is to enable UltraPse support more data formats as input files. As far as we can tell,
no existing program in representing biological sequences can handle file formats other than FASTA. We
will make the next version of UltraPse handle FASTA, FASTQ, and several other formats of input file.

2.6. Availability

The UltraPse software is provided as source codes and binary packages. All the source codes
can be downloaded from the GitHub repository (Available online: https://github.com/pufengdu/
UltraPse). The binary distribution packages can also be downloaded from the Release sub-directory
in the GitHub repository. Currently, there are binary packages for Windows and Linux platforms.
The Windows binary program can be executed directly. The Linux binary package has been tested on a
freshly installed Ubuntu Linux Server 16.04.3.

3. Methods

3.1. Efficiency Comparison Protocols

We performed computational efficiency comparisons on a server with an Intel Xeon X3470
processor and 32 GB memory. To perform a fair comparison, we installed Pse-In-One locally on the
server. We also locally compiled and installed PseAAC-General and UltraPse on the same server.

https://github.com/pufengdu/UltraPse
https://github.com/pufengdu/UltraPse
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The testing dataset is the “huge” testing dataset that can be obtained from the official website of
PseAAC-General. This dataset contains 516,081 protein sequences. Since the Pse-In-One keeps
complaining about non-standard letters and too short sequences in the dataset, we excluded all
the sequences that have non-standard letters. The remaining 513,536 protein sequences were fed
into three programs independently. All three programs are configured to compute only amino acid
compositions. The computational times are measured by the “real” time value of the standard
Linux time command. To eliminate random errors, every program was executed consecutively with
exactly the same configuration three times. The average computational time was used in calculating
computational efficiency.

3.2. Abstracted Software Design

We illustrate the internal structure and the data-flows of UltraPse in Figure 3. There are four
major parts within UltraPse. They are the FASTA parser, sequence preprocessor, computing engine,
and the result writer. The FASTA parser is responsible for loading FASTA format sequences into the
memory from a hard drive. It also organizes the sequences according to their identifiers and their
sequence types. These sequences are then sent to the sequence preprocessor, where the sequences
are converted to UltraPse internal indices according to the sequence type definitions. The computing
engine is composed of several mode modules, which are configured according to user requirements.
The internal indices go through all mode modules. Eventually, sequence descriptors are generated.
The result writer exports these descriptors on the hard drive according to the format requirements.
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3.3. Implementation Technology

The UltraPse main program is written using standard C++ language, following C++14 standard.
The destination hardware architecture is x86-64. The dependencies of the UltraPse main program
include GNU standard C library and the embedded interpreter of Lua scripting language. The BSOs of
UltraPse are also written using C++, following the same rules as the main program.

On the Linux platform, the compiler for producing binary executables is the GNU g++ version 7.2.
The users should first install Lua scripting language. The configuration and compilation of UltraPse



Int. J. Mol. Sci. 2017, 18, 2400 8 of 12

need the library provided by the Lua package. On the Windows platform, the MinGW64 version
g++ compiler is applied. Several independent libraries are required to compile the codes. For the
convenience of Windows users, we provide a binary executable package for the Windows platform.

The TDFs are provided as platform-independent Lua scripts, which can be viewed, edited,
and loaded as their original form. The internal data structures of UltraPse can be accessed by Lua
scripts using UltraPse specific functions and interfaces. The details on how to write TDFs can be found
in the software manual.

3.4. A Practical Example

Figure 4 demonstrate a practical example. The classic pseudo-amino acid composition modes,
including type-I and type-II, are implemented using a TDF in UltraPse. The TDF for classic
pseudo-amino acid compositions can be found in the “tdfs” subdirectory of UltraPse. The right
part of Figure 4 is a part of this TDF. With this TDF, the users only need to specify some parameters on
the command line. For example, the “–l 10 –w 0.05” on the command line indicate the value of λ and
ω in the PseAAC formulations. Unlike PseAAC-General, where the meanings of all command line
options are fixed, the meanings of command line options can be altered by the TDFs in the UltraPse.
This is to simplify the development of novel sequence representation modes, where parameters are
required to perform correct and efficient computations.
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compositions. A TDF: classic-pseaac.lua, was applied. The FASTA format sequences are stored in
the demo.fas file. The command options indicate that the Type 2 PseAAC will be computed with
parameters: λ = 10 andω = 0.05. The output format is compatible to libSVM.

4. Conclusions

In this paper, we described our new software, the UltraPse (Available online:
https://github.com/pufengdu/UltraPse). UltraPse is a universal and extensible software
platform for generating biological sequence representations. Since many programs have already been
released for various sequence representations, UltraPse has no intention to be a new competitor on
the same playground. We expect that UltraPse can work side-by-side with other existing programs,
such as PseAAC-General, PseAAC-Builder and Pse-In-One, to accelerate the process of generating
sequence representations under various working environments.

Although we have integrated many existing sequence modes within the UltraPse, it should be
noted that the major advantage of UltraPse is its flexibility and extensibility. It was designed to be
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a software platform rather than a program with specific functions. It aims at simplifying all future
programming works in developing novel sequence representations.

Web servers have already been proved to be a good method in releasing software. However,
presenting UltraPse with a web server will severely damage its computational efficiency. Therefore,
we do not provide an online web server for UltraPse. We would rather provide it as a local program.
The users need to compile and install it on their own servers. The graphical user interfaces (GUI) is
useful on platforms like Microsoft Windows. We will develop a GUI for UltraPse on the Windows
platform in future.
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