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Abstract: Fructokinase (FRK) proteins play important roles in catalyzing fructose phosphorylation
and participate in the carbohydrate metabolism of storage organs in plants. To investigate the
roles of FRKs in cassava tuber root development, seven FRK genes (MeFRK1–7) were identified,
and MeFRK1–6 were isolated. Phylogenetic analysis revealed that the MeFRK family genes can be
divided into α (MeFRK 1, 2, 6, 7) and β (MeFRK 3, 4, 5) groups. All the MeFRK proteins have typical
conserved regions and substrate binding residues similar to those of the FRKs. The overall predicted
three-dimensional structures of MeFRK1–6 were similar, folding into a catalytic domain and a β-sheet
“lid” region, forming a substrate binding cleft, which contains many residues involved in the binding
to fructose. The gene and the predicted three-dimensional structures of MeFRK3 and MeFRK4 were
the most similar. MeFRK1–6 displayed different expression patterns across different tissues, including
leaves, stems, tuber roots, flowers, and fruits. In tuber roots, the expressions of MeFRK3 and MeFRK4
were much higher compared to those of the other genes. Notably, the expression of MeFRK3 and
MeFRK4 as well as the enzymatic activity of FRK were higher at the initial and early expanding tuber
stages and were lower at the later expanding and mature tuber stages. The FRK activity of MeFRK3
and MeFRK4 was identified by the functional complementation of triple mutant yeast cells that were
unable to phosphorylate either glucose or fructose. The gene expression and enzymatic activity of
MeFRK3 and MeFRK4 suggest that they might be the main enzymes in fructose phosphorylation
for regulating the formation of tuber roots and starch accumulation at the tuber root initial and
expanding stages.
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1. Introduction

In higher plants, sucrose is the end product of photosynthesis and is the main carbohydrate
transport form in phloem [1,2]. Sucrose metabolism plays a central role in plant growth and
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development, yield formation, and response to biotic and abiotic stresses [1,3]. Invertase and
sucrose synthase are the two key enzymes that catalyze the breakdown of sucrose into hexose [4].
Invertase irreversibly cleaves sucrose into fructose and glucose [5]. Sucrose synthase reversibly
converts sucrose and uridine diphosphate (UDP) into fructose and uridine diphosphate glucose
(UDPG) [6]. Fructose accounts for half of the total products of sucrose degradation, and in addition to
being a carbon and energy source, it has been recognized as a key signaling molecule in plants [7,8].

Fructose must first be phosphorylated to fructose-6-phosphate by fructokinases (FRKs) or
hexokinases (HXKs) before undergoing further metabolism [9]. The affinity of FRKs for fructose is
much higher than HXKs [10,11], which suggests that fructose in plants might be mainly phosphorylated
by FRKs. Plant FRKs belong to the pfkB family of carbohydrate kinases, containing a di-gly (GG)
motif at the N-terminal region and GAGD motif at the C-terminal region [12]. Two to eight FRK genes
exist in different plant species. Fructokinase genes have been cloned from many species, such as
Solanum lycopersicon [13], Oryza sativa [14], Citrus reticulata [15], Arabidopsis thaliana [12], Zea mays [16],
and Populus tremula [17].

The functions of plant FRKs have been characterized in some species, including their roles
in plant growth and development. In tomato, FRK1-antisense plants exhibited delayed flowering
at the first inflorescence; FRK2-antisense plants resulted in inhibition of stem and root growth,
reduction in flower and fruit numbers, and reduction in seed numbers per fruit [18]; FRK3-antisense
in plants had no effect on plant growth, but mildly affected the xylem development, reduced the
hydraulic conductivity, and caused the abortion of flowers [13]; FRK4 was specifically activated in
pollen grains throughout the later stages of anther development and during pollen germination [19].
FRKs might have an important role in plant responses to abiotic stress. Two rice FRK genes had
different expression patterns under aerobic and anaerobic conditions: OsFK1 was mainly expressed
under aerobic conditions, whereas OsFK2 was induced under anaerobic conditions [20]. In maize,
the expression of FRK2 was found to increase under short-term salt stress conditions [21]. It has been
reported that the product of FRK is catalyzed by cytosolic phosphoglucose isomerase (PGI) to form
glucose 6-phosphate, which can be transferred to the amyloid by hexose phosphate translocator.
Glucose 6-phosphate is catalyzed by plastidial phosphoglucose mutase (PGM) to form glucose
1-phosphate, and this product is converted to adenosine diphosphate glucose (ADPglucose) catalyzed
by ADPglucose pyrophosphorylase (AGPase) [22]. ADPglucose is the substrate for starch synthesis [23].
Therefore, fructokinase may play a role in starch accumulation in the sink organs of crops. Plant FRKs
are found in two locations: plastids and the cytoplasm [9,11]. The existence of plastidic FRK may
be important for starch synthesis, since starch is accumulated in plastids. Fructokinase is involved
in the early stage of wheat grain development [24]. During maize seed development, ZmFrk1 is
highly expressed 15 days after pollination, when starch quickly accumulates in seeds, indicating
that FRK plays a role in starch synthesis in the endosperm [16]. The activity of the FRK protein in
S. tuberosum increases in association with tuberization [25]. Antisense inhibition of the FRK StFK1
gene in S. tuberosum resulted in a reduced rate of tuberization and total tuber yield [22]. These results
indicate that FRK might be involved in the tuberization and starch accumulation in plant tubers.

Cassava (Manihot esculenta Crantz) is a tuber root crop with a 70–90% dry weight of starch in the
tuber root, and serves as a dietary staple food for more than 700 million people worldwide [26,27].
Photosynthetic carbon assimilation in cassava is extremely high, at 43 µmol CO2/m2/s, which
is twice the photosynthesis rate in rice, of around 20 µmol CO2/m2/s. However, the yield
of cassava is far from its maximum yield potential [28]. It has been reported that enhanced
ADP-glucose pyrophosphorylase (AGPase) activity in cassava tuber root, using transgenic technology,
can increase its tuber root number and dry weight [28]. This result suggests that an increase in
the carbohydrate metabolism-related enzyme activity in tuber root could contribute to tuber root
growth and starch accumulation. Recently, proteomics profiling revealed increased levels of FRKs
as well as starch and sucrose metabolism proteins in tuber root during cassava root tuberization [29].
However, the regulation of fructose phosphorylation in cassava has not yet been characterized. In this
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study, six cDNAs of FRK were isolated from cassava. The evolutionary relationships, exon-intron
structure, chromosome distribution, and protein three-dimensional (3D) structure of all six genes were
investigated. To elucidate the putative roles of FRK genes in cassava, their gene expression patterns
and enzyme activities during cassava tuber root development were investigated. Finally, the FRK
activity of MeFRK3 and MeFRK4 were investigated through a functional complementation experiment
in the triple mutant yeast cells, YSH74-3C (hxk1, hxk2, glk1), which are unable to phosphorylate either
glucose or fructose. These results can shed light on the putative roles of FRK in sucrose metabolism in
cassava tuber root.

2. Results

2.1. Cloning and Sequence Analysis of the Fructokinase Gene Family from Cassava

Seven FRK genes were initially identified in the cassava genome database (MeFRK1–7). Full-length
coding sequences for six MeFRKs (MeFRK1–6) were cloned from cassava cultivar SC8 by reverse
transcription polymerase chain reaction (RT-PCR), using a cDNA template mixture of leaf, flower,
and tuber root. An endogenous transcript for the MeFRK7 gene in the various samples was not
detectable, indicating that the gene is inactive in the examined tissues. The cDNA and the deduced
amino acid sequences of the six MeFRKs described in this study were deposited in GenBank under
the following accession numbers: MeFRK1 (AJK93565), MeFRK2 (AJK93566), MeFRK3 (AJK93567),
MeFRK4 (MeFRK4), MeFRK5 (KR338981), and MeFRK6 (AJK93569). The deduced amino acids of
MeFRKs are between 383 and 303 a.a, and their theoretical pIs range from 6.62 to 4.99 (Table 1).
The molecular mass of MeFRK1 is the largest (41.2 kDa), whereas the smallest one is MeFRK7 (32.9 kDa).
Alignment analysis of the amino acids showed that MeFRKs share 46.69–93.05% identity among all
family genes. Interestingly, MeFRK3 and MeFRK4 share the highest identity at 93.05% and have the
same deduced amino acid length and similar molecular mass. MeFRK2, MeFRK5, and MeFRK6 were
predicted to be located in the cytoplasmic, whereas MeFRK1, MeFRK3, MeFRK4, and MeFRK7 were
predicted to be located in the plastid. All MeFRKs have two conserved domains of FRK, i.e., pfkB1
and pfkB2, which suggests that these proteins are members of the FRK family. The di-gly (GG) motif is
in the N-terminal region, and the GAGD motif is in the C-terminal region. These conserved motifs are
important for the enzyme activity of FRK. MeFRKs contain multiple conserved residues, which might
play a key role in binding fructose and ATP (Figure 1).
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Table 1. Characteristics of the cassava fructokinase proteins that were deduced from cDNA sequences.

Gene Gene ID Accession
Numbers

Subcellular
Localization

Size pI % Similarity (a.a.) to

a.a kDa MeFRK2 MeFRK3 MeFRK4 MeFRK5 MeFRK6 MeFRK7

MeFRK1 Manes.01G116600 AJK93565 Plastid 383 41.2 5.32 63.38 56.66 56.66 52.74 63.05 68.57
MeFRK2 Manes.06G141400 AJK93566 Cytoplasm 347 37.2 5.70 — 62.53 63.40 59.37 67.57 52.34
MeFRK3 Manes.11G121800 AJK93567 Plastid 331 35.3 4.99 — 93.05 66.57 58.38 50.14
MeFRK4 Manes.04G043700 AJK93568 Plastid 331 35.4 4.99 — 66.87 57.84 50.14
MeFRK5 Manes.15G189700 KR338981 Cytoplasm 329 35.0 5.73 — 56.76 46.69
MeFRK6 Manes.01G263700 AJK93569 Cytoplasm 370 40.1 6.07 — 52.96

MeFRK7 * Manes.02G075300 — Plastid 303 32.9 6.62 —

* The characteristics of the MeFRK7 protein were analyzed according to predicate information from the cassava genome database.
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Figure 1. Alignment of the deduced amino acid sequences of the six cassava fructokinases (FRKs). 
Two conserved domains (pfkb1 and pfkb2) of FRKs are indicated by black lines. The di-gly (GG) and 
G/AXGD motifs are indicated by blue and green boxes, respectively. Proposed key substrate binding 
residues of fructose and ATP are indicated by red and blue asterisks, respectively. Dark-blue shading, 
pinkish shading and light blue shading reflect 100%, 75% and 50% amino acid residues conservation, 
respectively. 

2.2. Structure Analysis and Chromosomal Distribution of the MeFRK Family Genes 

The gene structures of the MeFRK genes were studied by aligning the genomic sequence from 
the cassava genome database (Available online: http://www.phytozome.net/cassava) and the CDS 
region for each MeFRK gene. The number of exons in MeFRK genes ranges from four to seven (Figure 
2). MeFRK1 and MeFRK2 have seven exons, and the first exon of MeFRK2 is the smallest one (22 bp) 
among all the exons in MeFRKs. MeFRK3 and MeFRK4 share similar gene structures: both contain 
four exons, and the length of each exon is the same. The gene length of MeFRK5 is the smallest among 
all the MeFRKs, with five exons. MeFRK6 and MeFRK7 have six exons. The chromosomal distribution 
and orientation of MeFRK genes were obtained by identifying their chromosomal position, as per 
version 6.1 of the cassava genome database. The seven MeFRK genes were mapped to six 
chromosomes of the cassava genome (Figure 3). No tandem duplication of the cassava FRK genes 
was found. MeFRK1 and MeFRK6 were mapped in Chromosome 1, with opposite orientation to the 
other MeFRK genes. MeFRK7 was mapped in Chromosome 2. MeFRK2–5 have the same orientation 
and are present in Chromosomes 4, 6, 11, and 15, respectively. Interestingly, most of the MeFRK genes 
are distributed at the end of chromosomes, such as MeFRK2–7. 

Figure 1. Alignment of the deduced amino acid sequences of the six cassava fructokinases (FRKs).
Two conserved domains (pfkb1 and pfkb2) of FRKs are indicated by black lines. The di-gly (GG)
and G/AXGD motifs are indicated by blue and green boxes, respectively. Proposed key substrate
binding residues of fructose and ATP are indicated by red and blue asterisks, respectively. Dark-blue
shading, pinkish shading and light blue shading reflect 100%, 75% and 50% amino acid residues
conservation, respectively.

2.2. Structure Analysis and Chromosomal Distribution of the MeFRK Family Genes

The gene structures of the MeFRK genes were studied by aligning the genomic sequence from the
cassava genome database (Available online: http://www.phytozome.net/cassava) and the CDS region
for each MeFRK gene. The number of exons in MeFRK genes ranges from four to seven (Figure 2).
MeFRK1 and MeFRK2 have seven exons, and the first exon of MeFRK2 is the smallest one (22 bp)
among all the exons in MeFRKs. MeFRK3 and MeFRK4 share similar gene structures: both contain four
exons, and the length of each exon is the same. The gene length of MeFRK5 is the smallest among all
the MeFRKs, with five exons. MeFRK6 and MeFRK7 have six exons. The chromosomal distribution and
orientation of MeFRK genes were obtained by identifying their chromosomal position, as per version
6.1 of the cassava genome database. The seven MeFRK genes were mapped to six chromosomes of
the cassava genome (Figure 3). No tandem duplication of the cassava FRK genes was found. MeFRK1
and MeFRK6 were mapped in Chromosome 1, with opposite orientation to the other MeFRK genes.
MeFRK7 was mapped in Chromosome 2. MeFRK2–5 have the same orientation and are present in
Chromosomes 4, 6, 11, and 15, respectively. Interestingly, most of the MeFRK genes are distributed at
the end of chromosomes, such as MeFRK2–7.

http://www.phytozome.net/cassava
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Figure 3. Genome-wide distribution and orientation of the MeFRK genes on cassava chromosomes. 
Chromosome numbers are indicated at the top of each bar. The red lines on the cassava chromosomes 
indicate the positions of the MeFRK genes. The blue arrows indicate the gene orientation. 

2.3. Phylogenetic Analysis of MeFRK Genes 

To determine the evolutionary relationships among the plant FRK proteins, sequences of 38 FRK 
family members from M. esculenta, Jatropha curcas, Ricinus communis, S. lycopersicum, A. thaliana, 
Camellia Sinensis, Saccharum spontaneum, and Z. mays were analyzed using a neighbor-joining (NJ) 
phylogenetic tree (Figure 4). These plant FRK proteins were classified into two groups (α and β 
groups). MeFRK1, MeFRK2, MeFRK6, and MeFRK7 were clustered in the α group, wherein MeFRK1 
and MeFRK7, MeFRK2 with JcFRK7, and MeFRK6 with RcFRK6 were clustered together in a 
subclade. MeFRK3–5 were clustered in the β group, wherein MeFRK3 and MeFRK4 had a close 
relationship with JcFRK2, and RcFRK4; MeFRK6 and RcFRK6 are clustered together in a subclade. 
Most MeFRK proteins have a close relationship with the FRK proteins from J. curcas and R. communis. 
The three species belong to Euphorbiaceae. 
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2.3. Phylogenetic Analysis of MeFRK Genes

To determine the evolutionary relationships among the plant FRK proteins, sequences of 38
FRK family members from M. esculenta, Jatropha curcas, Ricinus communis, S. lycopersicum, A. thaliana,
Camellia Sinensis, Saccharum spontaneum, and Z. mays were analyzed using a neighbor-joining (NJ)
phylogenetic tree (Figure 4). These plant FRK proteins were classified into two groups (α and β

groups). MeFRK1, MeFRK2, MeFRK6, and MeFRK7 were clustered in the α group, wherein MeFRK1
and MeFRK7, MeFRK2 with JcFRK7, and MeFRK6 with RcFRK6 were clustered together in a subclade.
MeFRK3–5 were clustered in the β group, wherein MeFRK3 and MeFRK4 had a close relationship
with JcFRK2, and RcFRK4; MeFRK6 and RcFRK6 are clustered together in a subclade. Most MeFRK
proteins have a close relationship with the FRK proteins from J. curcas and R. communis. The three
species belong to Euphorbiaceae.
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at the branch nodes are the confidence levels from 1000 replicate bootstrap samplings. Red dots 
indicate the FRKs from M. esculenta, blue triangles indicate the FRKs from J. curcas, and green squares 
indicate the FRKs from R. communis. 
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To further examine the structural features of MeFRKs, the conserved motifs were analyzed 
according to their phylogenetic relationships. Eleven motif sequences have been identified in 
MeFRKs (Figure 5). The GG motif is found in Motif 9, and the G/AXGD motif is found in Motif 8 
(Figure 5A). All the motifs distributed in the α or β MeFRK groups are similar, but the non-conserved 
sequences at the N-terminus are longer in the α group compared to the β group. MeFRK7 lost Motif 
7 and Motif 11. Interestingly, MeFRK3 and MeFRK4 had the same motif distribution. 
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Figure 4. Phylogenetic analysis of the FRK proteins from M. esculenta, J. curcas, R. communis, S.
lycopersicum, A. thaliana, C. Sinensis, S. spontaneum, and Z. mays. The neighbor-joining (NJ) tree was
constructed using Molecular Evolutionary Genetics Analysis Version 7.0 (MEGA7). The values shown
at the branch nodes are the confidence levels from 1000 replicate bootstrap samplings. Red dots indicate
the FRKs from M. esculenta, blue triangles indicate the FRKs from J. curcas, and green squares indicate
the FRKs from R. communis.

2.4. Motif Distribution in MeFRK Proteins

To further examine the structural features of MeFRKs, the conserved motifs were analyzed
according to their phylogenetic relationships. Eleven motif sequences have been identified in
MeFRKs (Figure 5). The GG motif is found in Motif 9, and the G/AXGD motif is found in Motif
8 (Figure 5A). All the motifs distributed in the α or β MeFRK groups are similar, but the non-conserved
sequences at the N-terminus are longer in the α group compared to the β group. MeFRK7 lost Motif 7
and Motif 11. Interestingly, MeFRK3 and MeFRK4 had the same motif distribution.
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Figure 5. The conserved motifs of MeFRK proteins according to the phylogenetic relationships.
(A) The motif sequences in MeFRKs, which were identified by MEME. The GG and G/AXGD motifs are
indicated by red and black boxes, respectively; (B) the motif distribution in MeFRKs. The NJ tree was
constructed with full amino acids of MeFRKs using Muscle and MEGA7 software with 1000 bootstraps.
Gray lines represent the non-conserved sequences, and each motif is indicated by a colored box and
a number. The length of the motifs in each protein is shown proportionally. α and β indicate different
groups of MeFRKs.
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2.5. Three-Dimensional Structure of MeFRK Proteins

To further characterize the MeFRKs, the three-dimensional (3D) structures of MeFRK1–6
proteins were modeled based on the crystal structure of FRK protein from Halothermothrix orenii
(Protein Databank ID 3HJ6) using SWISS-MODEL software. The predicted 3D structures of MeFRK1–6
were validated with the QMEAN server for model quality estimation. The total QMEAN-score
(estimated model reliability between 0 and 1) of the predicted 3D models for MeFRK1–6 were 0.49, 0.56,
0.56, 0.56, 0.57, and 0.50, respectively. This indicates that the predicted 3D structures of MeFRK1–6 were
reliable. The overall three-dimensional structures of the six MeFRK proteins were similar (Figure 6).
The sequences of the MeFRK proteins distinctly fold into the catalytic domains and a β-sheet “lid”
region. To predict the theoretical position of the sites for fructose and ATP binding with MeFRK1–6,
the primary models of MeFRK1–6 were further structurally aligned with a model of the FRK protein
from Vibrio cholerae O395 (Protein databank ID 5EYN) using the PyMOL program (Schrödinger,
New York, NY, USA). The results showed that ATP is predicted to bind a pocket on the catalytic
domain, and the substrate binding cleft of MeFRK1–6 is located at the interface between the catalytic
domain and the lid region (Figure 6). MeFRK1–6 contain all seven of the conserved substrate binding
residues (using the numbering based on MeFRK1, the residues are Leu72, Asp74, Gly95, Gly96,
Gly97, Asn100, and Ile197) and have a orientation similar to that of the fructose molecule (Figure 7).
The numbers of substrate binding residues for MeFRK3 and MeFRK4 are the same (Figure 7C,D).
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Figure 6. Illustrated representation and substrate recognition domains of the predicted
three-dimensional structure models of MeFRK1–6. (A) MeFRK1, (B) MeFRK2, (C) MeFRK3,
(D) MeFRK4, (E) MeFRK5, and (F) MeFRK6. The catalytic domains of the MeFRKs are depicted in blue,
and the β-sheet “lid” regions in yellow. Colored stick structures represent ATP, and spherical structures
indicate fructose molecules. The image was generated using the PyMOL program (Schrödinger, Inc.,
New York, NY, USA).
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2.6. The Expression Patterns of MeFRK Genes in Different Tissues of Cassava

The tissue expression profiles of MeFRK1-6 were determined in the leaves, stems, tuber roots,
flowers, and fruits of cassava. All the tested tissues were collected 180 days after planting, except
the fruit, which was collected 225 days after planting. The results show that the expressions of
MeFRK1–4 were identified in all tested tissues, whereas the expression level of MeFRK2 in the tissues
was comparably low. As for specific tissues and organs, the expression levels of MeFRK1 and MeFRK3
were high in the leaves, and that of MeFRK4 was high in the reproductive organs (flowers and fruits);
MeFRK5 was specifically expressed in flowers, and MeFRK6 was specifically and weakly expressed in
leaves (data not shown). Remarkably, almost all the MeFRKs had low expression levels in tuber roots
180 days after planting (Figure 8).
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2.7. The Differential Expression of MeFRKs during Cassava Tuber Root Development

To investigate the expression patterns of MeFRK genes during tuber root developmental stages, the
differential expressions of the MeFRKs were examined in tuber root 90, 135, 180, 225, and 270 days after
planting. The results show that MeFRK3 and MeFRK4 were highly expressed at all stages, among which
the highest expression was at the tuber initial stage (90 days), followed by the early expanding stage
(135 days), and the expressions drastically reduced (almost a 4-fold decrease) at the later expanding
stage (180 days) and tuber mature stages (225 and 270 days). The expression level of MeFRK1 was
more or less stable at all stages, but it was lower compared with MeFRK3 and MeFRK4. A very weak
expression of MeFRK2 and no expression of MeFRK5 or MeFRK6 were observed in all cassava tuber
development stages (Figure 9).

Int. J. Mol. Sci. 2017, 18, 2398 10 of 18 

 

180 days after planting, was used to calibrate the data for other genes for map-making. Each value is 
the mean ± standard error (SE) of three biological replicates (n = 3).  

2.7. The Differential Expression of MeFRKs during Cassava Tuber Root Development 

To investigate the expression patterns of MeFRK genes during tuber root developmental stages, 
the differential expressions of the MeFRKs were examined in tuber root 90, 135, 180, 225, and 270 days 
after planting. The results show that MeFRK3 and MeFRK4 were highly expressed at all stages, among 
which the highest expression was at the tuber initial stage (90 days), followed by the early expanding 
stage (135 days), and the expressions drastically reduced (almost a 4-fold decrease) at the later 
expanding stage (180 days) and tuber mature stages (225 and 270 days). The expression level of 
MeFRK1 was more or less stable at all stages, but it was lower compared with MeFRK3 and MeFRK4. 
A very weak expression of MeFRK2 and no expression of MeFRK5 or MeFRK6 were observed in all 
cassava tuber development stages (Figure 9). 

 

Figure 9. The differential expression analysis of MeFRK genes during cassava tuber root development. 
The differential expressions of MeFRK genes were examined using qPCR at the tuber initial stage (90 
days), the tuber expanding stage (135 and 180 days), and the tuber maturity stage (225 and 270 days). 
Each value is the mean ± SE of three biological replicates (n = 3). The amount of MeFRK mRNA was 
normalized by β-tubulin mRNA. The expression level of MeFRK2 at 180 days was used as a calibrator 
to compare the data across genes for map-making. 

2.8. The Activity of FRKs in Cassava Tubers during Tuber Root Development 

To test the possible involvement of FRKs in sucrose metabolism at a sink organ during cassava 
tuber root development, the FRK activity was measured at the initial tuber stage (90 days), the 
expanding tuber stage (135 and 180 days), and the mature tuber stage (225 and 270 days). The results 
showed that FRK activity in the tuber was highest at the initial tuber stage (90 days), followed by the 
early expanding tuber stage (135 days). It decreased with increasing tuber root maturity; thus, the 
lowest activity was found at the tuber mature stage, 270 days after planting (Figure 10). 

Figure 9. The differential expression analysis of MeFRK genes during cassava tuber root development.
The differential expressions of MeFRK genes were examined using qPCR at the tuber initial stage
(90 days), the tuber expanding stage (135 and 180 days), and the tuber maturity stage (225 and
270 days). Each value is the mean ± SE of three biological replicates (n = 3). The amount of MeFRK
mRNA was normalized by β-tubulin mRNA. The expression level of MeFRK2 at 180 days was used as
a calibrator to compare the data across genes for map-making.

2.8. The Activity of FRKs in Cassava Tubers during Tuber Root Development

To test the possible involvement of FRKs in sucrose metabolism at a sink organ during
cassava tuber root development, the FRK activity was measured at the initial tuber stage (90 days),
the expanding tuber stage (135 and 180 days), and the mature tuber stage (225 and 270 days). The results
showed that FRK activity in the tuber was highest at the initial tuber stage (90 days), followed by the
early expanding tuber stage (135 days). It decreased with increasing tuber root maturity; thus, the
lowest activity was found at the tuber mature stage, 270 days after planting (Figure 10).Int. J. Mol. Sci. 2017, 18, 2398 11 of 18 
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2.9. Yeast Complementation of MeFRK3 and MeFRK4

To confirm the identity of MeFRKs as an FRK, the cDNAs of MeFRK3 and MeFRK4 were cloned
into the yeast shuttle vector pDR196 to obtain pDR196-MeFRK3 and pDR196-MeFRK4. They were
then expressed in a triple-mutant yeast strain YSH7.4-3C, which is a mutant for hexose kinases (hxk1,
hxk2, glk1), unable to phosphorylate glucose or fructose. Therefore, YSH7.4-3C is unable to grow on the
media containing fructose or glucose as the sole carbon sources. As shown in Figure 11, the yeast cells
carrying pDR196-MeFRK3 and pDR196-MeFRK4 grew well on the medium with fructose, but could
not grow on the medium with glucose; the control cells transformed with empty pDR196 vector failed
to grow on either of the selection media. These results indicate that MeFRK3 and MeFRK4 encode FRKs
with a high specificity to phosphorylate fructose.
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3. Discussion

3.1. Identification and Characterization of MeFRK Genes

Fructokinase plays a key role in the tuberization of potato [22]. In addition, it has been reported
that FRK is involved in the carbohydrate metabolism process during the tuberization of cassava
roots [29,30]. However, no further information is available about the FRK gene family in cassava.
Previous studies have reported that the members of the FRK gene family vary among plant species.
For instance, it has seven members in A. thaliana [11], four members in S. lycopersicum [31], and
two members in Z. mays [16]. In the present study, seven FRK genes (MeFRK1–7) were found in
cassava, and six MeFRKs (MeFRK1–6) were cloned from cassava cultivar SC8. All the MeFRK proteins
have the conserved domains of FRK (pfkB1 and pfkB2), the di-gly (GG) motif, the GAGD motif, and
the proposed key substrate binding residues, which are consistent with the reported FRKs in other
plants [11]. Phylogenetic analysis of the 38 FRK proteins from eight plants showed that the MeFRKs
are most closely related to the FRKs from R. communis and P. trichocarpa (Figure 4). These three species
belong to the order Malpighiales. The α group members (MeFRK1, –2, –6, and –7) have more
exons and longer amino acid sequence than the β group members (MeFRK3–5) (Table 1, Figure 2).
Simultaneously, motif analysis showed that the MeFRKs in the α group have longer non-conserved
sequences at the N-terminus compared to the β group MeFRKs (Figure 5). These structural differences
between α and β group members of MeFRKs might cause differences in their enzymatic activity.
For example, the Km and kcat values of α group members (AtFRK1 and AtFRK3) in A. thaliana are
higher compared to those of the β group members (AtFRK2–7) [11]. The 3D structural models of
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MeFRK1–6 showed that these proteins are distinctly folded into a catalytic domain and a β-sheet
“lid” region. They form the substrate binding cleft that contains many residues involved in fructose
binding, and ATP is predicted to bind a pocket on the catalytic domain. These structures are typical of
FRK proteins [11,32]. Seven substrate binding residues of MeFRKs are conserved and have similar
orientation with the fructose molecule. The results of the sequence and 3D structure analyses of
MeFRKs suggest that all FRK members from cassava can catalyze the phosphorylation of fructose.

3.2. Differential Expression and Enzymatic Activity of MeFRKs

The tissue-specific expression patterns of MeFRK1–6 could provide a basis for understanding their
functions in cassava plant development. The expression patterns of MeFRK1–6 in various organs or
tissues were examined at the tuber developmental stage (180 days). MeFRK1–4 were widely expressed
in most plant tissues. MeFRK1 and MeFRK3 were highly expressed in the leaves, suggesting that these
two genes might play an essential role in leaf development. MeFRK2 was expressed at low levels in
all tested tissues, and MeFRK6 was weakly expressed in leaves, which indicates that these two genes
might not play an important role in the carbohydrate metabolism of the cassava plant. MeFRK4 was
highly expressed in the stems, flowers, and fruits, indicating that it might primarily regulate the
development of stems, flowers, and fruits. Suppression of SlFRK3 in tomato can reduce the stem
xylem area, indicating that Slfrk3 may play a role in xylem development [13]. MeFRK5 was specifically
expressed in flowers, suggesting that this gene might have a specific function in floral development.
This result is correlated with tomato FRK4, which is a pollen-specific expression [33]. The expressions
of MeFRKs suggest that the roles of MeFRKs in different tissues might vary. Similar results have been
found for other FRK genes from S. lycopersicum participating in the development of flowers, pollen,
stems, leaves, root, and fruits [9].

The expression of MeFRK7 was not detected in any tissues. It has been reported that the expression
of some plant FRK genes are affected by abiotic stress, such as anaerobic stress [20] and salt stress [21].
Recently, the expression of FRKs in C. sinensis was found to respond to salt stress, drought stress,
and cold stress [34]. In Saccharum, FRK3 and FRK5 were both dramatically induced under drought
stress [35]. Therefore, we speculate that the expression of MeFRK7 might be related to certain
stressed conditions.

Our results show that almost all the MeFRK genes were weakly expressed in tuber roots, compared
to other tissues, 180 days after planting. However, it has been reported that FRKs play a role in cassava
tuber root development and starch synthesis [36]. FRKs were reportedly involved in the development
of sink organs. In Z. mays, ZmFRK2 is expressed at an earlier time during seed development [16].
In rice, OsFKI and OsFKII are especially expressed in rice grains and play a role in starch storage during
development of rice grains [14]. To investigate the temporal expression of MeFRK1–6 during cassava
tuber root tuberization, qPCR analysis was performed using tubers at the initial tuber stage (90 days),
the expanding tuber stage (135 and 180 days, the main period of starch accumulation), and the mature
tuber stage (225 and 270 days). The results show that MeFRK3 and MeFRK4 were the most active genes
among the MeFRKs in cassava tuber roots, with the highest expression level at the initial (90 days)
and early expanding tuber stages (135 days). MeFRK1 and MeFRK2 maintained low expression levels,
and MeFRK5 and MeFRK6 were not expressed in the tuber roots (Figure 9). These results show that
MeFRK3 and MeFRK4 are the most active genes among MeFRK1–6 in cassava tuber roots, and high
expression is correlated with high fructokinase activity at the initial and early expanding tuber stages
and lower activity at the mature tuber stages. Similarly, the expression of the StFK1 gene in potato
was high in small tubers, and declined after longer growth periods. Enzyme activity analysis found
that the trend of fructose kinase activity during potato tuber development was consistent with the
expression pattern of the StFK1 gene [37]. Our results show that the enzymatic activity of FRKs was
higher at the initial and expanding tuber stages in tuber roots, which is consistent with the results of
FRK gene expression during cassava tuber root development (Figure 10). Potato FRK StFK1 mainly
catalyzes the phosphorylation of fructose in tubers and participates in the tuberization and starch
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accumulation in tubers [22]. Modulation of the fructokinase activity of potato via antisense inhibition
of the fructokinase resulted in a reduced tuber number and a reduced tuber yield [22]. The results from
the gene expression and enzymatic activity analyses suggest that plastidic fructokinases MeFRK3 and
MeFRK4 might be key genes for fructose phosphorylation during cassava tuber root development, and
are involved in sucrose metabolism by regulating the formation of tuber roots and starch accumulation.
Subsequent research will manipulate MeFRK activity in cassava to increase the number of tubers or
the yield.

4. Materials and Methods

4.1. Plant Materials

Plants of cassava cultivar SC8 were used throughout the experiments described in this manuscript.
The plants were field-grown at Hainan University under normal conditions at an average temperature
of 23.8 ◦C and an average relative humidity of 85%. Leaves, stems, tubers, and flowers 180 days
after planting, and fruits 225 days after planting, were collected for MeFRK gene cloning and for
the investigation of their expression patterns in different cassava tissues. In order to identify the
FRK members that play a key role in tuber root development, tuber tissues were collected for RNA
extraction or FRK enzymatic analysis at the tuber root initial stage (90 days), the expanding stage
(135, 180 days), and the maturity stage (225, 270 days). All samples were immediately frozen in liquid
nitrogen upon collection and stored at −80 ◦C.

4.2. RNA Extraction and cDNA Synthesis

The total RNA was extracted using RNAplant Plus reagent (TianGen, Beijing, China) following the
manufacturer’s instructions; it was electrophoresed in 1% agarose gel and stained with Golden View™
(BioMed, Beijing, China) to verify its quality. For gene clones, the reaction of reverse transcription
was performed following the instructions on the RNA PCR Kit (AMV) Ver.3.0 and Oligo dT-Adaptor
Primer (TaKaRa, Dalian, China). For quantitative real-time PCR analysis, reverse transcription was
carried out with the PrimeScript™ RT Reagent Kit with gDNA Eraser (Perfect Real Time) (TaKaRa,
Dalian, China), according to the manufacturer’s protocol.

4.3. Cloning of MeFRK cDNAs

Full-length cDNAs of the MeFRK genes were isolated via RT-PCR, using a set of gene-specific
primers (Table 2), which were designed based on BLAST analysis of the cassava genome database
(Available online: http://www.phytozome.net/cassava) using seven published sequences of the
AtFRK1–7 in A. thaliana [11]. The PCR reaction was carried out at a final volume of 50 µL, containing
1 µL of cDNA from different tissues, following the manufacturer’s instructions from the Ex Taq DNA
polymerase kit (Takara, Japan). The PCR cycling conditions were as follows: 3 min at 94 ◦C, followed
by 30 cycles of 94 ◦C for 30 s, a range of annealing temperatures for different MeFRKs from 57 to 63 ◦C
for 30 s, 72 ◦C for 2 min, and a final extension of 10 min at 72 ◦C. The PCR products were separated
on 1% agarose gel and purified by Axygen Purification kit (Axygen, Union, CA, USA), cloned into
pMD18-T vector (Takara, Dalian, China), and sequenced (Shanghai Sangon Biological Engineering
Technology and Services Co., Ltd, Shanghai, China).

http://www.phytozome.net/cassava
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Table 2. Gene specific primers of MeFRKs used for RT-PCR amplification.

Gene Forward Primer (5′ to 3′) Reverse Primer (5′ to 3′)

MeFRK1 TACCCATTAATTCTAACGCCAC CATAAAACTAGGATTGCAGACATCT
MeFRK2 CTCTCTCATCTCTGATTCGTGCT GGTTGTGAACTAAGAAGGATTGAA
MeFRK3 CTTCTTCTCTCATTCTCCTCTACAAA TGCTACCCAAACAAAAAGAGAATAT
MeFRK4 GACTTCATTGTCTCTTCTTCTCTTCC AATTTGTCTATTTTGAGGCGTTG
MeFRK5 AAAAAATGACAATCTCAGCAGC AATTAGTTGGTGTTGGACTTGAT
MeFRK6 TTCTCATCTGATGTTGCCTGAC CATTGTGAAATCTATCCTGCTCA
MeFRK7 TTCAACTGCATGGCTCTTCACTCTA GAACAAGGAAATGGGAATACTGAAC

4.4. Sequence Feature Analyses and Phylogeny Construction

The molecular weight (Mw) and theoretical isoelectric point (pI) of MeFRKs were predicted
using ExPASy [38]. The multiple sequence alignment of the FRKs from cassava was carried out
using the DNAman 6.0 program (Lynnon Biosoft, Quebec City, QC, Canada). The subcellular
localizations of the MeFRKs were predicted by integrating the predictions by TargetP 1.1
(Available online: http://www.cbs.dtu.dk/services/TargetP/) and WoLF PSORT (Available online:
http://www.genscript.com/wolf-psort.html). For the phylogenetic analysis, FRKs from M. esculenta,
J. curcas, R. communis, S. lycopersicum, A. thaliana, C. Sinensis, S. spontaneum, and Z. mays were aligned
using the Muscle program, and the phylogenetic tree was constructed using the MEGA 7 program [39].
The branching reliability was assessed by the bootstrap re-sampling method using 1000 bootstrap
replicates. The conserved motifs of FRK proteins from M. esculenta were predicted using the MEME
web server [40].

4.5. Exon–Intron Structure Analysis and Chromosomal Mapping

In order to display the structure of introns and exons of MeFRK genes, the cDNA sequences of
MeFRK genes were aligned with the corresponding genomic DNA sequences from the cassava genome
database (Available online: http://www.phytozome.net/cassava). The Gene Structure Display Server
(GSDS) program was used to visualize the gene structure [41]. The genomic position of the MeFRK
genes and the total length of each chromosome were obtained from the cassava genome database.
Subsequently, the MeFRK genes were manually mapped onto chromosomes.

4.6. Prediction of Three-Dimensional Structure of the MeFRK Proteins

Full-length amino acid sequences of the six cassava FRK proteins were submitted to
the Swiss-Model server (Available online: http://beta.swissmodel.expasy.org/) to predict their
three-dimensional structure. All the resulting models were based on their homology to the
three-dimensional structure of the FRK protein from Halothermothrix orenii (Protein Databank ID 3HJ6).
To predict the theoretical site of fructose binding with MeFRKs, the 3D structural models of MeFRKs
were further structurally aligned with an FRK from Vibrio cholerae O395 (Protein databank ID 5EYN) in
complex with fructose, using PyMOL (Schrödinger, Inc., New York, NY, USA). The predicted substrate
binding residues of MeFRKs were also displayed using PyMOL.

4.7. Quantitative Real-Time PCR (qPCR) Analyses

qRT-PCRs were performed on an Applied Biosystems HT7900 apparatus (Applied Biosystems
CA, USA), using the Takara SYBR®Premix ExTaq II (Tli RNaseH Plus) kit (Takara, Dalian, Japan) in
a 384-well plate. Each reaction was run in a 10 µL volume, containing 5 µL of 2× SYBR ® Premix Ex
Taq II (Tli RNaseH Plus), 0.2 µL of ROX Reference Dye (50×), 0.2 µL of forward and reverse primers
(10 µM), 0.4 µL of H2O, and 4 µL of template cDNA. All PCR reactions were performed at the following
standard conditions: 1 min at 95 ◦C for one cycle, followed by 45 cycles of 95 ◦C for 5 s and 60 ◦C for
30 s. The dissociation curve was used to assess the amplification specificity. The results were analyzed
using SDS2.4 software. The specific primers for each gene are shown in Table 3. Three technical

http://www.cbs.dtu.dk/services/TargetP/
http://www.genscript.com/wolf-psort.html
http://www.phytozome.net/cassava
http://beta.swissmodel.expasy.org/
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replicates for each biological sample were analyzed. Tubulin was used as a reference gene, as described
previously [42]. Relative abundance of the transcripts was analyzed using the 2−∆∆Ct method [43].

Table 3. Primers for MeFRK1-6 used for qPCR amplification.

Gene Forward Primer (5′ to 3′) Reverse Primer (5′ to 3′)

MeFRK1 TTGCCTCCTCTTGTTTCCATTC TTGCTGCATTTAACCCATCACC
MeFRK2 CAGGGTTGGTGGTGTGAAAGTG ACCGCTCCTCATCCTTCAATAG
MeFRK3 CTTCTTCTCTCATTCTCCTCTACAA TTCAAGAAACCAGGTGCCTC
MeFRK4 CCGAATCCTATTATCACGCG GGAGACAGTGGGGACGAAGT
MeFRK5 CTCAGCAGCAAACAATAGCCCAT TAGCACAGGCAACATTGGCAGGT
MeFRK6 GAATGTTTTCGATGCTGTTTATGTT GCCAGGTGCTTCTGCAAGTG

4.8. Activity Analysis of the Fructokinases

The FRK activity in tuber during cassava tuber developmental stages were measured using
a continuous assay, coupling fructose phosphorylation to NADP+ reduction at 340 nm, according to
Qin et al. [15]. Fructokinase activity was measured as the total fructose phosphorylating capacity and
expressed in nmol/min/g FW. Three technical replicates for each biological sample were analyzed.

4.9. Yeast Complementation Assay for MeFRK3 and MeFRK4

A yeast shuttle vector pDR196, containing the URA3 gene as a selective marker, was used to
express the MeFRK3 and MeFRK4 cDNAs in yeast cells. The cDNAs were inserted as a PstI/SalI
fragment into the PstI/SalI sites within pDR196, and the resultant plasmids of pDR196-MeFRK3 and
pDR196-MeFRK4 were verified by sequencing. Yeast (Saccharomyces cerevisiae) transformation was
carried out by the LiAc/PEG method using the triple mutant yeast cells YSH7.4-3C (hxk1, hxk2, glk1)
that are unable to phosphorylate either glucose or fructose [44]. The yeast cells were grown on YPgal
medium, consisting of 2% bacto-peptone, 1% yeast extract, and 2% galactose. Selective media for uracil
auxotrophic growth of the transformed colonies contained 0.67% yeast Nitrogen base (Difco) and 2%
of either galactose, glucose, or fructose, supplemented with the appropriate amino acids and lacking
uracil. The mutant strain transformed with an empty pDR196 vector served as the control.
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