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Abstract: Protein-protein interactions (PPIs) play crucial roles in almost all cellular processes.
Although a large amount of PPIs have been verified by high-throughput techniques in the past
decades, currently known PPIs pairs are still far from complete. Furthermore, the wet-lab experiments
based techniques for detecting PPIs are time-consuming and expensive. Hence, it is urgent and
essential to develop automatic computational methods to efficiently and accurately predict PPIs.
In this paper, a sequence-based approach called DNN-LCTD is developed by combining deep
neural networks (DNNs) and a novel local conjoint triad description (LCTD) feature representation.
LCTD incorporates the advantage of local description and conjoint triad, thus, it is capable to
account for the interactions between residues in both continuous and discontinuous regions of
amino acid sequences. DNNs can not only learn suitable features from the data by themselves,
but also learn and discover hierarchical representations of data. When performing on the PPIs data
of Saccharomyces cerevisiae, DNN-LCTD achieves superior performance with accuracy as 93.12%,
precision as 93.75%, sensitivity as 93.83%, area under the receiver operating characteristic curve
(AUC) as 97.92%, and it only needs 718 s. These results indicate DNN-LCTD is very promising for
predicting PPIs. DNN-LCTD can be a useful supplementary tool for future proteomics study.

Keywords: protein-protein interactions; amino acid sequences; local conjoint triad descriptor;
deep neural networks

1. Introduction

Protein-protein interactions (PPIs) play critical roles in virtually all cellular processes, including
immune response [1], DNA transcription and replication [2], and signal transduction [3]. Therefore,
correctly identifying PPIs can not only better elucidate protein functions but also further understand the
various biological processes in cells [4–6]. In recent years, biologists take advantage of high-throughput
technologies to detect PPIs, such as mass spectrometric (MS), tandem affinity purification (TAP) [7],
yeast two-hybrid system (Y2H) [8,9], and so on. Unfortunately, these wet-lab experiments are costly
and labor-intensive, and have a high rate of both false positive and false negative, and limited coverage.
Hence, it is extremely imperative to develop reliable computational models to predict PPIs in large
scale [10].

So far, a number of computational methods have been developed for the detection of PPIs.
Most of these methods are based on the genomic information, such as Gene Ontology and
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annotations [11], phylogenetic profile, and gene fusion [12]. Methods employ 3D structural information
of proteins [13,14] and the sequence conservation between interacting proteins [15] also have been
reported. However, these methods are heavily dependent on the pre-knowledge of the proteins, such as
protein functional domains, structure information of proteins, and physicochemical properties of
proteins [16,17]. In other words, all these methods are hardly implementable unless the pre-knowledge
about proteins is available. Compared to the abundant data of protein sequences, other types of data
including 3D structure, Gene Ontology annotations, and domain-domain interactions of proteins are
still limited.

Many researchers have innovated sequence-based methods for detecting PPIs [18–24],
and experimental results have shown that the information of the amino acid sequences alone is
sufficient to identify new PPIs. Among them, Shen et al. [18] achieved an excellent effect based on
support vector machine (SVM). They grouped 20 standard amino acids into 7 classes according
to their dipoles, volumes of the side chains, and then employed conjoint triad (CT) method to
extract the features information of amino acid sequences based on the classification of amino
acids. Next, SVM predictor is used to predict PPIs. Their method yields a high prediction accuracy
of 89.3% on human PPIs. However, it does not consider the neighboring effect and PPIs are
almost always occurring in the non-continuous segments of amino acid sequences. Guo et al. [19]
developed SVM-based method by using auto covariance (AC) to abstract the feature information in
the discontinuous amino acid segments in the sequence, and obtained a perfect result with accuracy
as 86.55% on Saccharomyces cerevisiae (S. cerevisiae). Yang et al. [20] introduced local descriptor (LD)
to encode amino acid sequences based on k-nearest neighbor (kNN). In this study, they grouped
20 standard amino acids into 7 classes as done by Shen et al. [18]. Then they divided an entire
protein sequence into ten segments with varying length and extracted information of each segment.
Finally, they applied kNN to predict PPIs. This kNN based method achieves prediction accuracy as
86.15% on S. cerevisiae. You et al. [21] innovated a novel multi-scale continuous and discontinuous
(MCD) descriptor based on the LD [20]. In order to discover more information from amino acid
sequences, MCD descriptor applies the binary coding scheme to construct varying length segments
and abstracts the feature vectors from these segments. Then the minimum redundancy maximum
relevancy criterion [25], which can reduce the feature abundance and computation complexity, is used
to select an optimal feature subset. Finally, SVM is employed to predict new PPIs. This solution obtains
a high accuracy as 91.36% on S. cerevisiae. Recently, Du et al. [22] employed deep neural networks
(DNNs), a recently famous and popular machine learning technique, and amphiphilic pseudo amino
acid composition (APAAC) [26] to predict new PPIs. They firstly extracted the feature information from
two respective amino acid sequences by APAAC, then they took APAAC features of two respective
proteins as inputs of two separate DNNs and fused the two DNNs to predict PPIs. Their method
obtains an accuracy of 92.5% on PPIs of S. cerevisiae.

LD descriptor [20] only considers the neighboring effect of adjacent two types of amino
acids. Hence, it cannot sufficiently abstract information of neighboring amino acids but can
sufficiently discover information of discontinuous segments of the amino acid sequences. On the
other hand, CT [18] considers the neighboring effect of adjacent three types of amino acids but
ignores the discontinuous information. Given these observations, we combine the advantage of
local descriptor [20] and conjoint triad method [18], and introduce a novel feature representation
method called local conjoint triad descriptor (LCTD). LCTD can better account for the interactions
between sequentially distant but spatially close amino acid residues than LD [20] and CT [18]. DNNs,
a recently powerful machine learning technique, can not only reduce the impact of noise in the raw data
and automatically extract high-level abstractions, but also have better performance than traditional
models [27,28]. Inspired by these characteristics of DNNs, we employ DNNs to detect the PPIs based
LCTD feature representation of amino acid sequences and introduce an approach called DNN-LCTD.
Particularly, DNN-LCTD extracts the feature information of the amino acid sequences by LCTD,
then it trains a 3-hidden layers neural network by taking feature sets derived from LCTD as inputs
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and accelerates training by graphics processing unit (GPU). Finally, the learned network is employed
to predict new PPIs. We perform experiments on PPIs of S. cerevisiae, DNN-LCTD achieves 93.12%
accuracy, 93.83% sensitivity, 93.75% precision, and area under the receiver operating characteristic
curve (AUC) as 97.92%, and only uses 718 s. Experimental results on other five independent datasets:
Caenorhabditis elegans (4013 interacting pairs), Escherichia coli (6954 interacting pairs), Helicobacter pylori
(1420 interacting pairs), Homo sapiens (1412 interacting pairs), and Mus musculus (313 interacting pairs),
further demonstrate the effectiveness of DNN-LCTD.

2. Results and Discussion

In this section, we briefly introduce the evaluation metrics employed in performance comparison.
Then, we provide the recommended configuration of experiments. Finally, we analyze and discuss the
experimental results and compare our results with those of other related work.

2.1. Evaluation Metrics

To reasonably evaluate the performance of DNN-LCTD, five-fold cross validation is adopted.
Cross validation can avoid the overfitting and enhance the generalization performance [29].
Six evaluation metrics are used to quantitatively measure the prediction performance of DNN-LCTD,
including overall prediction accuracy (ACC), precision (PE), recall (RE), specificity (SPE), matthews
correlation coefficient (MCC), F1 score values, and area under the receiver operating characteristic
curve (AUC). They (except AUC) are defined as follows:

ACC =
TP + TN

TP + FP + TN + FN
(1)

PE =
TP

TP + FP
(2)

RE =
TP

TP + FN
(3)

SPE =
TN

TN + FP
(4)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

F1 =
2TP

2TP + FP + FN
(6)

where TP (true positive) is the number of the true PPIs that are correctly predicted, the FN (false
negative) is the number of the true interacting pairs that are failed to be predicted, TN (true negative) is
the number of the true non-interactions protein pairs of that are correctly predicted, FP (false positive)
is the number of true non-interactions pairs that are failed to be predicted. MCC is a measure for
the quality of binary classification. MCC equal to 0 means completely random prediction, −1 means
completely wrong prediction and 1 means perfect prediction. F1 score is a harmonic average of
precision and recall. A larger F1 denotes a better performance. Receiver operating characteristic
curve (ROC) can elucidate the diagnostic ability of a binary classifier system by graphical plot.
This curve is produced by plotting the true positive rate versus the false positive rate under different
thresholds [30,31]. AUC is the area under the ROC curve and its value is widely employed to compare
predictors. The larger the value of AUC, the better the predictor is.
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2.2. Experimental Setup

DNN-LCTD is implemented on Tensorlfow platform https://www.tensorflow.org. The flowchart
of DNN-LCTD is shown in Figure 1. DNN-LCTD firstly encodes the amino acid sequences using
the novel LCTD. After that, we train a 3-hidden layers neural network with GPU based on the
encoded feature sets. Finally, we apply the learned DNN to predict new PPIs. Hyper-parameters
of the DNN model heavily impact the experimental results. Deep learning algorithms have ten
or more hyper-parameters to be properly specified, trying all of them is impossible in practice [32].
We summarize the recommended configuration of DNN-LCTD in Table 1. As to the parameters setup of
the comparing methods, we use the grid search approach to obtain the optimal parameters. The optimal
parameters is shown in Table 2. The details of the parameters of comparing methods are available
at http://scikit-learn.org. For Du et al. work [22], there are too many parameters need to be set,
the information of parameters can be accessed via http://ailab.ahu.edu.cn:8087/DeepPPI/index.html.
All the experiments are carried out on a server with configuration: CentOS 7.3, 256 GB RAM, and Intel
Exon E5-2678 v3. DNN-LCTD uses NVIDIA Corporation GK110BGL [Tesla K40c] to accelerate training
of DNNs.

DIP
PIR

Uniprot

Obtain Protein

Interaction Data

Positive Set 

PPI
Negative Set 

PPI

Testing

Random Pairing

LCTD

DNN with 

GPU

Learned network
Evaluation & 

Comparison

Obtain Protein

Sequence  Data

Noneg = Nopos

Final 

Dataset

Y
N

Figure 1. The flowchart of DNN-LCTD for predicting protein-protein interactions. There are some
abbreviations in this figure, including database of interacting proteins (DIP), protein information
resource, local conjoint triad descriptor (LCTD), protein-protein interactions (PPIs), and graphics
processing unit (GPU). The Noneg is the number of non-interacting protein pairs, Nopos is the number
of interacting protein pairs. Y/N means yes/no.

2.3. Results on PPIs of S. cerevisiae

In order to achieve good experimental results, the corresponding hyper-parameters for deep
neural network are firstly optimized. Table 1 provides the recommended hyper-parameters that are
chosen by a large number of experiments. Considering the numerous samples used in this work,
five-fold cross validation is adopted to reduce the impact of data dependency and to minimize the
risk of over-fitting. Thus, five models are generated for the five sets of data. Table 3 reports the
results of DNN-LCTD on five individual folds (fold 1–5) and the overall average results of five folds.
From Table 3, we can observe that all the prediction accuracies are nearly ≥93.1%, the precisions
are ≥93.35%, all the recalls are almost ≥93.4%, the specificities are ≥92.75%, and the F1 are ≥92.4%.
In order to comprehensively evaluate the performance of DNN-LCTD, the MCC and AUC are also
calculated. DNN-LCTD achieves superior prediction performance with an average accuracy as 93.11%,
precision as 93.75%, recall as 92.40%, specificity as 92.75%, MCC as 86.24%, F1 as 93.06%, and AUC
as 97.95%.

https://www.tensorflow.org
http://scikit-learn.org
http://ailab.ahu.edu.cn:8087/DeepPPI/index.html
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Table 1. Recommended parameters of DNN-LCTD in the experiments.

Name Range Recommendation

Learning rate 1, 0.1, 0.001, 0.002, 0.003, 0.0001 0.002

Batch size 32, 64, 128, 256, 512, 1024 512, 1024

Weight initialization uniform, normal, lecun_uniform, glorot_normalglorot_normal, glorot_uniform

Per-parameter adaptive learning rate SGD, RMSprop, Adagrad, AdamAdadelta, Adam, Adamax, Nadam

Activation function relu, tanh, sigmoid, softmax, softplus relu, sigmoid

Dropout rate 0.5, 0.6, 0.7 0.6

Depth 2, 3, 4, 5, 6, 7, 8, 9 3

Width 16, 32, 64, 128, 256, 1024, 2048, 4096 2048, 512, 32

GPU Yes, No Yes

Table 2. Optimal parameters of comparing methods.

Method Name Parameters

Guo’s work [19] SVM + AC
C γ kernel

32768.0 0.074325444687670064 poly

Yang’s work [20] kNN + LD
n_neighbors weights algorithm p

3 distance auto 1

Zhou’s work [33] SVM + LD
C γ kernel

3.1748021 0.07432544468767006 rbf

You’s work [21] RF + MCD
n_estimators max_features criterion bootstrap

5000 auto gini True

SVM: support vector machine, kNN: k-nearest neighbor, RF: random forest, AC: auto covariance,
LD: local descriptor, MCD: multi-scale continuous and discontinuous, rbf: radical basis function,
gini: gini index.

Plenty sequence-based methods have been employed to predict PPIs. We compare the
prediction performance of DNN-LCTD with the other existing approaches on S. cerevisiae, including
Guo et al. [19], Yang et al. [20], Zhou et al. [33], You et al. [21], and Du et al. [22]. The details of these
approaches were introduced in Section 1. From Table 3, we can observe that DeepPPI [22] achieves
the best performance among comparing methods (except DNN-LCTD). DeepPPI firstly uses APAAC
descriptor to encode the amino acid sequence for each protein and takes the APAAC features as
separate inputs for two individual DNNs to extract high-level features of these two proteins, it finally
fuses the extracted features to predict PPIs. Its average prediction accuracy is 92.58%± 0.38%, precision
is 94.21% ± 0.45%, recall is 90.95% ± 0.41%, MCC is 85.41% ± 0.76%, F1 is 92.55% ± 0.39%, and AUC
is 97.55% ± 0.16%. This result mean that DeepPPI [22] is indeed successful for predicting new PPIs
using DNNs with APAAC [26]. DNN-LCTD encodes the amino acid sequences of each protein via
LCTD descriptor, it then concatenates the LCTD features of two proteins into a longer feature vector
and takes the concatenated features as inputs of DNN for prediction. The average accuracy, recall,
MCC, F1 and AUC of DNN-LCTD are 0.53%, 1.45%, 0.83%, 1.05% and 0.4% higher than those of
DeepPPI, respectively. The reason is that LCTD can discover more feature information from amino
acid sequences than APAAC. The DNN-LCTD is far greater than other comparing approaches can be
attributed to the merits of DNNs and of LCTD. The contributions of LCTD and DNNs will be further
investigated in Sections 2.4 and 2.5. The S. cerevisiae dataset contains tremendous samples, hence, a little
improvement in prediction performance still has a great effect. Based on these experimental results,
we can conclude that DNN-LCTD can more effectively predict PPIs than other comparing methods,
and the proposed LCTD descriptor can explore more patterns from continuous and discontinuous
amino acid segments.
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Table 3. Results of five-fold cross validation on PPIs of S. cerevisiae.

Method ACC PE RE SPE MCC F1 AUC

DNN-LCTD

fold 1 93.28% 93.35% 93.19% 93.37% 86.56% 93.27% 98.18%
fold 2 93.22% 95.47% 90.78% 95.67% 86.55% 93.06% 97.99%
fold 3 93.38% 93.74% 93.01% 93.75% 86.76% 93.37% 97.99%
fold 4 93.10% 93.68% 92.60% 93.62% 86.21% 93.14% 97.74%
fold 5 92.58% 92.52% 92.41% 92.75% 85.16% 92.47% 97.84%

Average 93.11%± 0.31% 93.75%± 1.08% 92.40%± 0.96% 93.83%± 1.10% 86.24%± 0.63% 93.06%± 0.35% 97.95%± 0.17%

Du’s work [22] DNN + APAAC 92.58%± 0.38% 94.21% ± 0.45% 90.95%± 0.41% 94.41%± 0.45% 85.41%± 0.76% 92.55%± 0.39% 97.55%± 0.16%

You’s work [21] RF + MCD 89.15%± 0.33% 90.00%± 0.57% 88.10%± 0.17% 90.21%± 0.61% 78.33%± 0.67% 89.04%± 0.31% 94.78%± 0.21%

Zhou’s work [33] SVM + LD 88.76%± 0.37% 89.44%± 0.27% 87.89%± 0.45% 89.62%± 0.30% 77.53%± 0.53% 88.66%± 0.28% 94.69%± 0.31%

Yang’s work [20] kNN + LD 84.81%± 0.37% 87.53%± 0.14% 81.18%± 0.84% 88.44%± 0.18% 69.80%± 0.71% 84.23%± 0.47% 90.03%± 0.31%

Guo’s work [19] SVM + AC 87.88%± 0.56% 88.16%± 0.90% 87.53%± 0.59% 88.24%± 1.02% 75.77%± 1.12% 87.84%± 0.53% 93.69%± 0.33%

ACC: accuracy, PE: precision, SPE: specificity, MCC: matthews correlation coefficient, AUC: area under the receiver operating characteristic curve, DNN: deep neural network,
RF: random forest, SVM: support vector machine, kNN: k-nearest neighbor, APAAC: amphiphilic pseudo amino acid composition, MCD: multi-scale continuous and discontinuous,
LD: local descriptor, AC: auto covariance.
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The adopted negative PPIs set may lead to a biased estimation of prediction performance [34].
To prove the rationality of a negative set generated by selecting non-interacting pairs of
non-co-localized proteins [19], we perform additional testing on a simulated dataset of S. cerevisiae.
Particularly, we firstly construct the negative PPIs set by pairing proteins whose subcellular
localizations are different, and we randomly select 17,257 protein pairs as the negative set of the
simulated dataset. Next, we construct the positive PPIs set by pairing proteins whose subcellular
localizations are the same, regardless of being interacting pairs or not. We then randomly select 17,257
protein pairs as the positive set. As a result, the simulated testing dataset includes 34,514 protein pairs
for testing, where half are positives and the other half are negatives. After that, we randomly divide
these testing PPIs into five folds, and apply the same DNN as trained on the dataset in Table 3 to
predict PPIs in each fold. Table 4 reports the evaluation results on this simulated dataset. From Table 4,
we can see that the values of accuracy, recall, MCC, and F1 are much lower than the corresponding
values reported in Table 3. The reason for the high specificity in Table 4 is that the way of constructing
negative dataset in the training dataset (used in Table 3) and simulated testing dataset is the same.
These results indicate that the constructed negative set is reasonable.

Table 4. Results on simulated S. cerevisiae dataset.

ACC PE RE SPE MCC F1 AUC

fold 1 82.53% 92.24% 71.01% 94.04% 66.85% 80.24% 92.47%
fold 2 82.89% 93.57% 70.71% 95.12% 67.86% 80.55% 93.52%
fold 3 82.56% 93.25% 70.30% 94.89% 67.22% 80.16% 92.52%
fold 4 82.09% 94.02% 68.95% 95.52% 66.74% 79.56% 93.08%
fold 5 82.24% 91.74% 70.26% 93.86% 66.14% 79.58% 92.85%

Average 82.46%± 0.31% 92.97%± 0.95% 70.25%± 0.79% 94.68%± 0.71% 66.96%± 0.64% 80.02%± 0.44% 92.89%± 0.43%

2.4. Comparison with Different Descriptors

To further investigate the contribution of the novel local conjoint triad descriptor, we separately
train DNNs based on CT [18], AC [19], LD [20,33], MCD [21], APAAC [22], and LCTD. After that we
use pairwise t-test at 95% significance level to check the statistical significance between LCTD and
LD, MCD, AC, CT, APAAC in five-fold cross validation and report the results in Figure 2 and Table 5.
In Table 5, •means that LCTD is statistically significant better than other descriptors on a particular
evaluation metric. From Figure 2 and Table 5, we can observe that the prediction performance using
LCTD outperforms other descriptors across nearly all evaluation metrics. The ACC, MCC, F1 and AUC
of DNN-LCTD are 1.76%, 3.48%, 1.86%, and 2.85% higher than those of DNN-MCD; 2.92%, 5.81%,
3.05% and 1.62% higher than those of DNN-LD; 3.62%, 7.25%, 3.56% and 2.06% than those of DNN-AC;
1.27%, 7.74%, 9.41% and 1.99% than those of DNN-CT; 3.02%, 5.99%, 3.03% and 2.06% than those of
DNN-APAAC, respectively. These improvements can be attributed to that LCTD can extract more
useful feature information of amino acid sequences by incorporating the advantage of LD [20,33] and
conjoint triad (CT) descriptor [18]. From these results, we can conclude that the novel LCTD can more
sufficiently capture the feature information of amino acid sequences for PPIs prediction.
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Figure 2. Performance comparison based on DNNs with AC, LD, MCD, LCTD, CT, or APAAC on
S. cerevisiae dataset.

Table 5. Results based on DNNs with AC, LD, MCD, LCTD, CT, and APAAC on S. cerevisiae dataset.
• indicates LCTD is statistically (according to pairwise t-test at 95% significance level) superior to the
other descriptor.

ACC (%) PE (%) RE (%) SPE (%) MCC (%) F1 (%) AUC (%)

DNN-LCTD 93.11± 0.33 93.75± 0.88 92.40± 0.81 93.83± 0.85 86.24± 0.66 93.06± 0.39 97.95± 0.16
DNN-MCD 91.35± 0.31• 92.80± 1.08 89.67± 0.96• 93.03± 1.10 82.76± 0.64• 91.20± 0.35• 95.10± 0.17•
DNN-LD 90.19± 0.26• 91.63± 0.77• 88.46± 0.42• 91.92± 0.72• 80.43± 0.55• 90.01± 0.27• 96.33± 0.18•
DNN-AC 89.49± 0.36• 89.40± 3.06• 89.61± 3.92• 89.38± 1.25• 78.99± 1.19• 89.50± 1.15• 95.89± 0.31•
DNN-CT 91.84± 0.31• 88.12± 0.27• 79.81± 1.08• 96.12± 0.44 78.50± 0.59• 83.65± 0.46• 95.96± 0.34•
DNN-APAAC 90.09± 0.20• 91.66± 0.27• 88.45± 0.56• 91.77± 0.33• 80.25± 0.39• 90.03± 0.23• 95.89± 0.03•

2.5. Comparison with Existing Methods

Meanwhile, in order to further investigate the effective of DNNs, we separately train the different
state-of-the-art predictors on S. cerevisiae dataset using LCTD to encode amino acid sequences,
these predictors include support vector machine (SVM) [35], k neighbor nearest (kNN) [36], random
forest (RF) [37], and adaboost [38]. Then, we compare the prediction performance based on the six
already introduced evaluation metrics. In this study, five-fold cross validation is employed to reduce
the impact of data dependency and enhance the reliability of the experiments. The results are shown in
Figure 3. From Figure 3 we can see that a high average accuracy of 93.11% is obtained by DNN-LCTD.
The average accuracy of adaboost, kNN, random forest, and SVM are 92.83%, 86.87%,92.28%, 92.76%,
respectively. DNNs have the highest prediction performance across all evaluation metrics except in RE
and SPE. In practice, grid search is used to seek the optimal parameters of these comparing algorithms.
We also show the training speed of different comparing methods in Table 6. We can observe that
DNN-LCTD with central processing unit (CPU) is separately 2, 25 and 39 times faster than random
forest, adaboost and SVM. In order to speed up training of DNN-LCTD, GPU is employed. We can see
that the training time of DNN-LCTD with GPU is 3 times faster than that with CPU, 4, 9.5, 97.5 and
148 times than k neighbor nearest, random forest, adaboost and SVM. According to these experimental
results, we can conclude that DNN-LCTD can accurately and efficiently predict PPIs from amino
acid sequences.
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Figure 3. Performance comparison of other algorithms with LCTD descriptor on S. cerevisiae dataset.

Table 6. Comparison of training times of different comparing algorithms.

Method DNN-LCTD (GPU) DNN-LCTD (CPU) SVM kNN Random Forest Adaboost

Times (s) 718 2680 106,347 2814 6906 70,026

2.6. Results on Independent Datasets

To further assess the practical prediction ability of DNN-LCTD and other comparing methods,
we firstly train different models with optimal configurations (details in Section 2.2) using PPIs of
S. cerevisiae dataset (34,514 protein pairs). After that, five independent datasets that only contain
the samples of interactions, including Caenorhabditis elegans (4013 interacting pairs), Escherichia coli
(6954 interacting pairs), Helicobacter pylori (1420 interact-ing pairs), Homo sapiens (1412 interacting pairs),
and Mus musculus (313 interacting pairs), are used as test sets to evaluate the prediction performance
of these trained models. The prediction results are shown in Table 7. From Table 7, we can observe
that the accuracy of DNN-LCTD on C. elegans, E. coli, H. pylori, H. sapiens, and M. musculus are 93.17%,
94.62%, 87.38%, 94.18%, and 92.65%, respectively. DNN-LCTD has a higher accuracy than DeepPPI [22]
and SVM + LD [33] on E. coil, H. sapiens, and M. musculus. The accuracy of SVM + LD [33] is far lower
than DNN-LCTD on C. elegans and H. pylori. These prediction accuracies are satisfying except on H.
pylori. The reason is that we use S. cerevisiae as the training set to train models, the trained model is
inclined to species that are closer to S. cerevisiae. In reality, S. cerevisiae has closer relationship with
other four datasets than with H. pylori. These prediction results indicate that DNN-LCTD has a good
generalization ability for predicting PPIs.

Table 7. Prediction results on five independent PPIs datasets, PPIs of S. cerevisiae are used as the
training set.

Species Test Pairs
ACC

DNN-LCTD Du’s Work [22] Zhou’s Work [33]

C. elegans 4013 93.17% 94.84% 75.73%
E. coli 6984 94.62% 92.19% 71.24%

H. sapiens 1412 94.18% 93.77% 76.27%
H. pylori 1420 87.38% 93.66% 75.87%

M. musculus 313 92.65% 91.37% 76.68%
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3. Materials and Methods

In this section, we briefly introduce the datasets we used for experiments, including S. cerevisiae
and other five independent datasets. Then, we introduce the details of LCTD, a novel feature
representation descriptor. Finally, we present a brief introduction of deep neural networks (DNNs),
including characteristics and skills.

3.1. PPIs Datasets

To reliably evaluate the performance of DNN-LCTD, a validation benchmark dataset is necessary.
We adopt the S. cerevisiae dataset used by Du et al. [22] for experiments. This dataset was collected
from the database of interacting proteins (DIP; version 20160731) [39]. The protein pairs of this dataset
exclude proteins with fewer than 50 amino acids and ≥40% sequence identity [19]. Finally, this
dataset contains 17,257 positive protein pairs. Negative examples impact the prediction results of
PPIs. The common approach is based on annotations of cellular localization [40,41]. The negative
set is obtained by pairing proteins whose subcellular localizations are different. The strategy must
meet the following requirements [18,19]: (1) the non-interaction pairs cannot appear in the positive
dataset, and (2) the contribution of proteins in the negative set should be as harmonious as possible,
which means that proteins without subcellular localization information, or denoted as ’putative’,
’hypothetical’ are excluded for constructing the negative set. Finally, 48,594 negative pairs are
generated via this strategy. In the end, S. cerevisiae contains 34,514 protein pairs, where half are
from positive dataset and the other (17,257 negative pairs) are randomly selected from the whole
negative set. Other five independent PPIs datasets, including Caenorhabditis elegans (4013 interacting
pairs), Escherichia coli (6954 interacting pairs), Helicobacter pylori (1420 interacting pairs), Homo sapiens
(1412 interacting pairs), and Mus musculus (313 interacting pairs) [33], are used as independent
test datasets to assess the generalization ability of DNN-LCTD. These datasets are available at
http://ailab.ahu.edu.cn:8087/DeepPPI/index.html.

3.2. Feature Vector Extraction

Whether the encoded features are reliable or not can heavily affect the performance of PPIs
prediction. The main challenge is how to effectively describe and represent an interacting protein pairs
by a fixed length feature vector, in which the essential information content of interacting proteins is fully
encoded. Various sequence-based methods are proposed to predict new PPIs, but one flaw of them is
that they cannot adequately capture interaction information from continuous and discontinuous amino
acid segments at the same time. To overcome this problem, we introduce a novel local conjoint triad
descriptor (LCTD), which incorporates the advantage of local descriptor (LD) [20,33] and conjoint triad
(CT) [18] sequence representation approach. To clearly introduce the LCTD, we first briefly introduce
the feature representation methods of CT [18] and LD [20,33] in the following two subsections.

3.2.1. Conjoint Triad (CT) Method

Shen et al. [18] introduced the conjoint triad (CT). In order to conveniently represent the
20 standard amino acids and to suit synonymous mutation, they firstly divided these 20 standard
amino acids into 7 groups based on the dipoles and volumes of the side chains as shown in Table 8.
After that, the conjoint triad method is introduced to extract the sequence information, which includes
the properties of one amino acid and its vicinal amino acids and regards any three continuous amino
acids as a unit [18]. The process of generating descriptor vectors is described as follows.

Table 8. Division of amino acids into seven groups based on the dipoles and volumes of the side chains.

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

A, G, V C F, I, L, P M, S, T, Y H, N, Q, W K, R D, E

http://ailab.ahu.edu.cn:8087/DeepPPI/index.html
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Firstly, they replaced each amino acid in the protein sequence by the index depending on
its grouping. For instance, protein sequence “VCCPPVCVVCPPVCVPVPPCCV” is replaced by
0112201001220102022110. Then, binary space (V, F) stands for a protein sequence. Here, V is the vector
space of the sequence features, and each feature vi represents a kind of triad type [18]. For example,
v1, v7, and v10 are separately representing the triad unit of 100, 010, 310. F is the frequency vector
corresponding to V, and the value of the ith dimension of F (fi) is the frequency of type vi appearing
in amino acid sequence [18]. As the amino acids grouped into seven classes, the size V should be
7 × 7 × 7; therefore, i = 0, 1, · · · , 342. The detailed definition and description is shown in Figure 4.
Clearly, each protein has a corresponding F vector. Nevertheless, the value of fi relates to the
length of amino acid sequence. A longer amino acid sequence generally have a larger value of
fi, which complicates the comparison between two heterogeneous proteins. As such they employed
the normalization to solve this problem as follows:

di = (fi −min{f0, f1, · · · , f342})/max{f0, f1, · · · , f342} (7)

where the value of di is normalized in the range [0, 1]. fi is the frequency of conjoint triad unit vi
appearing in the protein sequence. Finally, they connected the vector spaces of two proteins to present
the interaction features. Thus, a 686-dimensional vector (343 for each protein) is generated for each
pair of proteins.

0 0 0 2 3 3 4 4 1 2 5 5 0 0 0

...
...

Figure 4. Schematic diagram for conjoint triad. The number is the classes grouped by the dipoles and
volumes of the side chains. fi is the frequency that triad type appears in the protein sequence. F is the
vector set for all fi.

3.2.2. Local Descriptor (LD)

Local descriptor (LD) is an alignment-free approach previously used to classify several proteins
families [42,43]. Yang et al. [20] and Zhou et al. [33] employed this method to extract the interactions
information from amino acid sequences. 20 standard amino acids are grouped into 7 groups based
on the dipoles and volumes of the side chains at first, as shown in Table 8. Then each entire protein
sequence is divided into 10 segments as shown in Figure 5. For each local region, three local descriptors
including composition (C), transition (T) and distribution (D) are employed to extract the feature
information. C represents the composition of each amino acid group. T stands for the frequency from
a type of amino acids to another type. D describes the distribution pattern along the entire region by
measuring the location of the first 25%, 50%, 75% and 100% of residues of a given group [33,44].
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Valine Cysteine Proline

Protein Sequence

J

I

B C D

FE

G

H

A

Split Segments

E F

G

H

I

J

Local protein sequence

Figure 5. The 10 descriptor regions (A–J) are split for a hypothetical protein sequence. The regions
A–D and E–F are obtained by dividing the entire amino acid sequence into four equal regions and two
equal regions [20,33], respectively. G stands for the central 50% of the amino acid sequence. Regions H,
I, and J represent the first, final and central 75% of the amino acid sequence, respectively.

Then, each local region split is replaced by the index depending on the classification of
amino acids. For example, protein sequence “VCCPPVCVVCPPVCVPVPPCCV” is replaced by
0112201001220102022110 based on classification of amino acids as shown in Figure 6. There have
eight ‘0’, seven ‘1’, and seven ‘2’ in the protein sequence. The composition for these three symbols is
8 × 100%/(8 + 7 + 7) = 36.36%, 7 × 100%/(8 + 7 + 7) = 31.82%, and 6 × 100%/(8 + 7 + 7) = 31.82%,
respectively. There are 7 transitions from ‘0’ to ‘1’ or from ‘1’ to ‘0’ in this sequence, and the percentage
frequency of these transitions is (7/21) × 100% = 33.33%. Similarly, the transitions from ‘0’ to ‘2’ or ‘2’
to ‘0’ and transitions from ‘1’ to ‘2’ or ‘2’ to ‘1’ are respectively calculated as (3/21) × 100% = 14.29%
and (4/21) × 100% = 19.05%. For distribution D, there are 8 residues encoded as ‘0’ in the example of
Figure 6, the position of the first residue ‘0’, the second residue ‘0’ (25% × 8 = 2), the fourth residue ‘0’
(50%× 8 = 4), the sixth ‘0’ residue (75%× 8 = 6), and the eight residue ‘0’ (100%× 8 = 8) in the encoded
sequence are 1, 6, 9, 15, and 22, respectively. Thus D descriptor for ‘0’ is: (1/22 × 100% = 4.55%),
(2/22 × 100% = 9.09%), (4/22× 100% = 18.18%), (6/22× 100% = 27.27%) and (8/22× 100% = 36.36%),
respectively. Similarly, the D descriptor for ‘1’ and ‘2’ is (9.09%, 13.64%, 45.45%, 63.64%, 95.45%) and
(18.18%, 22.73%, 54.55%, 72.73%, 86.36%), respectively.

For each local region, three descriptors (C, T, D) are computed and concatenated into
a 63-dimensional feature vector, 7 for C, 21 (7 × 6/2) for T and 35 (7 × 5) for D. Then all descriptors
from 10 regions are concatenated into an 630-dimensional vector. Finally, LD concatenates the vectors
of two individual amino acid sequences. Thus, a 1260-dimensional vector is constructed to characterize
each protein pair.
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V    C    C    P    P    V    C    V    V    C     P     P    V    C    V    P    V    P    P    C    C    V  

    0     1     1     2    2     0     1     0     0     1     2     2     0     1     0     2    0     2     2    1      1    0     

               1     2                         3                   4                          5                                      6     7

      1    2                                        3     4                          5           6     7                           

Protein sequence :

Group index of residue :

Ordinal number for 0 :

Ordinal number for 1 :

Ordinal number for 2 :

0-1 transitions:

1-2 transitions:

0-2 transitions:

                 1                                2            3     4                          5            6           7                                8

Valine Cysteine Proline

Figure 6. A hypothetical protein sequence figuring the structure of composition, transition and
distribution pattern of a protein region.

3.2.3. Local Conjoint Triad Descriptor (LCTD)

From the process of LD descriptor [20,33], we can find that it only considers the neighboring effect
of adjacent two types of amino acids. Therefore, it cannot sufficiently extract information of neighbor
amino acids, but can sufficiently discover information of discontinuous segments of the amino acid
sequence. Meanwhile, we observe that the conjoint triad method [18] considers the neighboring effect
of adjacent three types of amino acid, but ignores the discontinuous information. Thus, we advocate to
integrate the merits of LD [20,33] and conjoint triad (CT) [18] to introduce a novel feature representation
of amino acid sequence called LCTD. LCTD groups the 20 standard amino acids into 7 groups on
the dipoles and volumes of the side chains at first as shown in Table 8. Then it divides the entire
protein sequence into 10 segments as done by LD [20,33]. Next, for each local region, we calculate four
descriptors, composition (C), transition (T) and distribution (D), and conjoint triad (CT). C represents
the composition of each amino acid group. T stands for the frequency from a type of amino acid to
another type. D describes the distribution pattern along the entire region by measuring the location
of the first 25%, 50%, 75% and 100% of residues of a given group [33,44]. Conjoint triad considers
the properties of one amino acid and its vicinal amino acids, it regards any three continuous amino
acids as a unit [18]. These descriptors are introduced in Sections 3.2.1 and 3.2.2. For each local region,
the four descriptors (C, T, D, CT) are calculated and concatenated, and a total of 63 + 343 descriptors
are generated: 7 for C, 21 (7 × 6/2) for T and 35 (7 × 5) for D, and 343 for CT. After that, all descriptors
from 10 regions are concatenated into an 4060-dimensional vector. Finally, LCTD concatenates the
vectors of two individual proteins. Thus, a 8120-dimensional vector is constructed to encode each
protein pair. The corresponding equations are shown as follows:

DAi = C⊕ T ⊕ D⊕ CT (i = 1, 2, · · · , 10) (8)

DBi = C⊕ T ⊕ D⊕ CT(i = 1, 2, · · · , 10) (9)

DA = DA1 ⊕ DA2 ⊕ · · · ⊕ DA10 (10)

DB = DB1 ⊕ DB2 ⊕ · · · ⊕ DB10 (11)
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DAB = DA ⊕ DB (12)

where A and B are a pair of proteins, ⊕ is the vector concatenating operator. DA, DB is the extracted
feature vector from A and B, respectively. i refers to any segment in 10 split segments. DAB is the
extracted feature of two amino acid sequences. These 8120-dimensional feature vectors are used as
input of DNNs for training and prediction.

3.3. Deep Neural Network

Deep learning, a popular type of machine learning algorithms, consists with an artificial neural
network of multiple nonlinear layers. It is inspired by the biological neural network that constitutes
animal brains. The characteristics of deep learning are that it can learn suitable features from the
original data without designed by human engineers, and discover hierarchical representations of
data [45]. The depth of a neural network corresponds to the number of hidden layers, and the width
is the maximum number of neurons in one of its layers [27]. Neural network with a large number of
hidden layers (three or more hidden layers) is called deep neural network [27].

The basic structure of DNN consists of an input layer, multiple hidden layers, and an output
layer, the special configuration of our neural network is shown in Figure 7. In general, input data (x)
are given to the DNN, the output values are sequentially computed along the layers of the network.
Neurons of a hidden layer or output layer are connected to all neurons of the previous layer [27].
Each neuron computes a weighted sum of its inputs and applies a nonlinear activation function to
calculate its outputs f (x) [27]. The representations in the layer below are transformed into slightly
more abstract representations by the computation in each layer [46]. In general, the nonlinear activation
function including sigmoid, hyperbolic tangent, or rectified linear unit (ReLU) [47]. The sigmoid and
ReLU are used in this study.

In this work, we use the mini-batch gradient descent [48] and Adam algorithm [49] to reduce the
sensitivity to the specific choice of learning rate [27], and speed up training using GPU. The dropout
technique is employed to avoid the overfitting, which the activation of some neurons is randomly set
to zero during training in each forward pass as shown in Figure 7 [27]. The dotted line means this
neuron will not be activated and calculated. The activation function of ReLU [47] and the loss of cross
entropy is employed because they can both accelerate the model training and obtain better prediction
results [50]. Batch normalization approach is also employed to reduce the dependency of training with
the parameter initialization, speed up training and minimize the risk of over-fitting. The following
equations are used to calculate the loss:

Hi1 = σ1(Wi1Xi1 + bi1)(i = 1, · · · , n) (13)

Hi(j+1) = σ1(WijHij + bij)(i = 2, · · · , n, j = 1, · · · , h) (14)

L = − 1
n

n

∑
i=1

[yiln(σ2(WihHih + bih) + (1− yi)ln(1− σ2(WihHih + bih))] (15)

where n is the number of PPIs for batch training. σ1 is the activation function of ReLU, σ2 is the
activation function of the output layer with sigmoid, X is the batch training inputs, H is the outputs of
hidden layer, and y is the corresponding desired outputs. h is the depth of the DNN, W is the weight
matrix between the input layer and the output layer and b is the bias.
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Figure 7. The structure of the adopted DNN with LCTD features and the dropout technique.

4. Conclusions

In this article, we propose an efficient approach for predicting PPIs from protein primary
sequences by a novel local conjoint triad feature representation with DNNs. The LCTD takes PPIs
of continuous segments and discontinuous segments in protein sequence into account at the same
time. The feature sets, characterized by LCTD, are capable of capturing more essential interactions
information from the continuous and discontinuous binding patterns within a protein sequence.
We then train a DNN with LCTD feature sets as inputs. Finally, the trained DNN is employed
to predict the new PPIs. The experimental results indicate that DNN-LCTD is very promising for
predicting PPIs and can be an available supplementary tool to other approaches.

The high prediction accuracy can be partially attributed to a biased selection of positive/negative
training data. In practice, the available PPIs are incomplete and have a high rate of false positives and
false negative. Furthermore, constructing the negative data set by subcellular localization information
may also result in bias. How to construct a high quality negative set and how to reduce the impact of
noisy and bias of PPIs data are future pursues. Another possible reason for the high accuracy is that
DNN can model complex relationship between molecules by hidden layers and reduce the impact of
noisy and bias of PPIs data.
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