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Abstract: To reduce fire hazards and expand high-value applications of lignocellulosic materials,
thin films comprising graphene nanoplatelets (GnPs) and multi-wall carbon nanotubes (CNTs)
pre-adsorbed with alkali lignin were deposited by a Meyer rod process. Lightweight and highly
flexible papers with increased gas impermeability were obtained by coating a protective layer of
carbon nanomaterials in a randomly oriented and overlapped network structure. Assessment of the
thermal and flammability properties of papers containing as low as 4 wt % carbon nanomaterials
exhibited self-extinguishing behavior and yielded up to 83.5% and 87.7% reduction in weight loss
and burning area, respectively, compared to the blank papers. The maximum burning temperature as
measured by infrared pyrometry also decreased from 834 ◦C to 705 ◦C with the presence of flame
retardants. Furthermore, papers coated with composites of GnPs and CNTs pre-adsorbed with lignin
showed enhanced thermal stability and superior fire resistance than samples treated with either
component alone. These outstanding flame-retardant properties can be attributed to the synergistic
effects between GnPs, CNTs and lignin, enhancing physical barrier characteristics, formation of
char and thermal management of the material. These results provide great opportunities for the
development of efficient, cost-effective and environmentally sustainable flame retardants.
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1. Introduction

The use of fire as a source of energy has been critical for the development of human civilization.
However, fire hazards also present serious threats to people’s life and property, and have recently
attracted considerable attention from governments and society. In 2015, USA fire departments
responded to an estimated 1,345,500 fires, causing 3280 civilian fire fatalities, 15,700 injuries and
an estimated $14.3 billion in direct property loss [1]. Most materials used in building and construction
can be rapidly oxidized in the exothermic combustion process in the presence of oxygen and
heat. Cellulose-based materials, in particular, are easily ignitable and susceptible to degradation
at elevated temperatures, and require the addition of flame retardants to improve their resistance
to fire [2–4]. Flame retardants typically contain bromine, chlorine, phosphorus, nitrogen, metals,
or minerals based on aluminum and magnesium [5,6]. For instance, ammonium polyphosphate [7,8],
diammonium phosphate [9], hydroxyapatite (Ca10(OH)2(PO4)6) [10], poly(vinylphosphonic acid) [11]
and poly(methylenephosphine) [12] have been employed to endow cellulose-based materials
(e.g., pulp fibers, paper and cotton fabrics) with fire-resistance properties. Nevertheless, conventional
flame retardants, especially halogenated compounds, require relatively large quantities to be efficient,
have low tolerance to chemicals such as oxidants and organic solvents, and exhibit negative
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environmental and health impacts. Therefore, the development of flame retardants with good chemical
stability and environmentally sustainable characteristics is critical to improve safety awareness of
consumers and meet increasing fire resistance requirements.

Recently, carbon nanomaterials such as graphene nanoplatelets (GnPs) and carbon nanotubes
(CNTs) have drawn tremendous attention due to their superior flame-retarding properties in polymer
composites, including polypropylene [13,14], epoxy [15], poly(vinyl alcohol) [16] and poly(methyl
methacrylate) [17]. The incorporation of these carbon nanoparticles significantly delayed ignition and
reduced the heat-release rate during the combustion of polymer composites. Moreover, they provided
other essential properties for enhanced fire protection, such as char formation [18], smoke and toxic
gas suppression [19], and physical barriers to oxygen and gaseous pyrolysis products [20]. However,
the application of carbon nanomaterials as flame-retarding agents for cellulose-rich substrates so
far is scant. Papers prepared from bleached hardwood Kraft pulp comprising 35 wt % CNTs
produced a lower effective heat of combustion than the blank samples [21]. Other flame-retardant
papers were made by incorporating graphene oxide into the aqueous pulp, and demonstrated good
flame retardancy [18]. To improve fire protection further, surface coating is typically considered as
a convenient, economical and efficient approach, due to its advantages including easy accumulation of
flame retardants at the substrate surface forming a protective layer, and simultaneously preserving
the bulk properties of the substrate [22]. For instance, graphene phosphonic acid composite was
deposited as a fire-protective layer on the surface of papers by dip coating with a loading amount of
13.6 wt % [23]. Pine sawdust was also soaked into a suspension of reduced graphene oxide and sodium
metaborate hydrates with a loading of 13.4% to improve its flame retardancy [24]. These reports have
shown great promise as effective flame retardants; nevertheless, opportunities exist for improved fire
resistance, especially at low nanomaterial content (i.e., <10 wt %). Reducing the loading of carbon
nanoparticles is of paramount importance to minimize environmental impact and ensure that the price
of the resulting materials would not increase significantly compared to that of untreated ones.

The present research describes the preparation of aqueous mixtures of GnPs, CNTs and lignin as
environmentally sustainable precursors for the deposition of a fire-protective layer on the surface of papers
by Meyer rod coating. Compared to other methods, the Meyer rod coating is a reproducible technique
for the continuous large-scale preparation of uniform carbon nanomaterial films, which is critical for the
formation of a protective barrier to limit soot transfer [25]. Furthermore, the combination of GnPs with
CNTs in the correct proportions has the potential to yield synergistic effects [26,27], while the incorporation
of lignin, the second most abundant natural polymer typically treated as a waste byproduct of the pulp and
paper industry, can ensure high dispersion quality of nanomaterials [28], and provide good char-forming
ability [29–31]. Considering the above, we successfully developed a cost-effective, high-performance
and environmentally sustainable composite flame retardant with nanomaterial content as low as 4 wt %.
The surface morphology, gas permeability, chemical structure and fire resistance of the as-prepared
flame-retardant papers were thoroughly studied. The effects of coating content and formulation—with
different ratios of GnPs, CNTs and lignin—on the fire-retardant properties were examined, and the
flame-retardant mechanism was discussed.

2. Results and Discussion

2.1. Characterization of Coated Papers

Figure 1 illustrates the fabrication process of the fire-resistant papers. The rod-coating method
was used to precisely control the thickness of the protective layer by adjusting the volume and solution
concentration of the precursors. The average thickness of the plain paper was 113 µm and reached
164–169 µm after coating with 2.5 g/m2 of carbon nanomaterials (Table 1). Notably, no obvious
differences in thickness were observed among the papers coated with different combinations of carbon
nanomaterials at the same loading amount.
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Figure 1. The schematic showing the fabrication and flame test of the GnP/CNT/lignin-coated papers. 

Table 1. Formulation of the coating materials on the papers and air resistance of the treated papers. 

Sample 
GnPs 

(mg/mL) 
CNTs 

(mg/mL) 
Lignin 

(mg/mL) 
Coating Density w/–w/o 

Lignin (g/m2) 
Thickness 

(μm) 

Gurley 
Number 

(s/100 mL) 
C * 0 0 0 0–0 113 ± 6  154 ± 3 

G-2.5 * 10 0 20 7.5–2.5  168 ± 6  255 ± 40 
M-2.5 * 0 10 20 7.5–2.5 164 ± 3  765 ± 108 

GM-2.5 * 5 5 20 7.5–2.5  165 ± 5  889 ± 119 
GM0.5-2.5 * 3.3 6.7 20 7.5–2.5  169 ± 8  903 ± 75 
GM0.5-1.7 * 3.3 6.7 20 5.1–1.7 166 ± 3 411 ± 47 
GM0.5-3.3 * 3.3 6.7 20 9.9–3.3 176 ± 16 1199 ± 262 
GM0.5-4.2 * 3.3 6.7 20 12.6–4.2  180 ± 10 1307 ± 299 
GM0.5-5.0 * 3.3 6.7 20 15.0–5.0  184 ± 20 1661 ± 172 
GM0.5-5.8 * 3.3 6.7 20 17.4–5.8  188 ± 10 2368 ± 334 

LGM0.5-5.0 * 6.7 13.3 10 7.5–5.0  192 ± 13 1717 ± 240 
LGM2-2.5 * 3.3 6.7 20 7.5–2.5  169 ± 8  903 ± 75 
LGM4-1.5 * 2 4 24 7.5–1.5  167 ± 9 637 ± 53 
LGM9-0.75 * 1 2 27 7.5–0.75  168 ± 6 423 ± 53 

L * 0 0 30 7.5–0 163 ± 5 202 ± 12 

* Sample designation is as follows: G, M and L refer to papers coated with graphene nanoplatelets 
(GnPs), carbon nanotubes (CNTs) and lignin (and their corresponding mixtures), respectively. C 
designates the plain paper used as control experiment. For heterogeneous coatings, the first number 
following the type of material indicates the mass ratio of the mixture. For instance, GM0.5 corresponds 
to a GnP:CNT ratio of 1:2, while LGM4 refer to a lignin:GnP/CNT ratio of 4:1. The last number 
indicates the coating density of carbon nanomaterials (i.e., GnPs and CNTs) in g/m2 excluding the 
lignin.  

When the GnP:CNT ratio was kept at 1:2 and the content of carbon nanomaterials increased from 
1.7 to 5.8 g/m2, the thickness of the resulting papers increased accordingly from 166 μm (GM0.5-1.7) 
to 188 μm (GM0.5-5.8). Variations in thickness across 15 different locations per sheet remained lower 
than 2% for all specimens, revealing the good uniformity of the coating process, which was further 
demonstrated by scanning electron microscope (SEM) observations illustrated in Figure 2. In the 
plain paper without coating, individual cellulose microfibers with different sizes were nested 

Figure 1. The schematic showing the fabrication and flame test of the GnP/CNT/lignin-coated papers.

Table 1. Formulation of the coating materials on the papers and air resistance of the treated papers.

Sample GnPs
(mg/mL)

CNTs
(mg/mL)

Lignin
(mg/mL)

Coating Density
w/–w/o Lignin (g/m2)

Thickness
(µm)

Gurley
Number

(s/100 mL)

C * 0 0 0 0–0 113 ± 6 154 ± 3
G-2.5 * 10 0 20 7.5–2.5 168 ± 6 255 ± 40
M-2.5 * 0 10 20 7.5–2.5 164 ± 3 765 ± 108

GM-2.5 * 5 5 20 7.5–2.5 165 ± 5 889 ± 119
GM0.5-2.5 * 3.3 6.7 20 7.5–2.5 169 ± 8 903 ± 75
GM0.5-1.7 * 3.3 6.7 20 5.1–1.7 166 ± 3 411 ± 47
GM0.5-3.3 * 3.3 6.7 20 9.9–3.3 176 ± 16 1199 ± 262
GM0.5-4.2 * 3.3 6.7 20 12.6–4.2 180 ± 10 1307 ± 299
GM0.5-5.0 * 3.3 6.7 20 15.0–5.0 184 ± 20 1661 ± 172
GM0.5-5.8 * 3.3 6.7 20 17.4–5.8 188 ± 10 2368 ± 334

LGM0.5-5.0 * 6.7 13.3 10 7.5–5.0 192 ± 13 1717 ± 240
LGM2-2.5 * 3.3 6.7 20 7.5–2.5 169 ± 8 903 ± 75
LGM4-1.5 * 2 4 24 7.5–1.5 167 ± 9 637 ± 53

LGM9-0.75 * 1 2 27 7.5–0.75 168 ± 6 423 ± 53
L * 0 0 30 7.5–0 163 ± 5 202 ± 12

* Sample designation is as follows: G, M and L refer to papers coated with graphene nanoplatelets (GnPs),
carbon nanotubes (CNTs) and lignin (and their corresponding mixtures), respectively. C designates the plain paper
used as control experiment. For heterogeneous coatings, the first number following the type of material indicates
the mass ratio of the mixture. For instance, GM0.5 corresponds to a GnP:CNT ratio of 1:2, while LGM4 refer to
a lignin:GnP/CNT ratio of 4:1. The last number indicates the coating density of carbon nanomaterials (i.e., GnPs
and CNTs) in g/m2 excluding the lignin.

When the GnP:CNT ratio was kept at 1:2 and the content of carbon nanomaterials increased from
1.7 to 5.8 g/m2, the thickness of the resulting papers increased accordingly from 166 µm (GM0.5-1.7)
to 188 µm (GM0.5-5.8). Variations in thickness across 15 different locations per sheet remained lower
than 2% for all specimens, revealing the good uniformity of the coating process, which was further
demonstrated by scanning electron microscope (SEM) observations illustrated in Figure 2. In the
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plain paper without coating, individual cellulose microfibers with different sizes were nested together
creating a cellulose matrix (Figure 2A). When lignin was used as the sole coating material (Figure 2B),
some cellulose nanofibers were still visibly exposed, meaning that lignin did not fully cover the whole
paper surface. In all other cases, the absence of visible aggregates yielded relatively flat carbon layers
of 25–30 µm in thickness on the paper surface regardless of the type of materials used for coating
(Figure 2C–F), confirming the good dispersion of carbon nanomaterials during the process [28,32].
This can be attributed to the strong capillary forces of the porous paper, and the resulting large
contact area between the coated materials and the cellulose microfibers. The addition of lignin with
numerous hydrophilic groups also promoted the adsorption of carbon nanomaterials on the surface of
hydrophilic cellulose fibers. The surface texture, however, was found to vary with the nature of the
thin films. Except for the GnP-coated samples, where obvious micro-cracks were observed (Figure 2C),
all specimens exhibited a relatively smooth surface. One-dimensional CNTs formed an entangled
network consisting of randomly aligned CNT bundles with macropores of diameter up to 400 nm
(Figure 2D). This was consistent with pore analysis of similar CNT membranes by mercury intrusion
porosimetry, showing a broad size distribution with peak pore size of several hundred nm [33].
Interestingly, the apparent smoothness of the hybrid coating comprising both GnPs and CNTs at
a mass ratio of 1:2 was much better than that of either component alone, with the larger pores in
the CNT network being filled by the two-dimensional GnPs (Figure 2F). It is also worth noting that
the surface smoothness decreased when higher amounts of GnPs were added in the hybrid mixture
(Figure 2E). Therefore, the hierarchical GnP/CNT hybrid structure was expected to have better barrier
effect and flame retardant performance than those using either component alone.
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scissoring at 1414 cm−1, C–O stretching at 1030 cm−1 and C–H out-of-plane bending at 870 cm−1 [34–
36]. After coating, the intensities of the characteristic peaks of cellulose listed above gradually 
decreased depending on the coating composition, in the order of L, G-2.5, M-2.5, GM-2.5 and GM0.5-
2.5. It is well known that the IR light passes through the attenuated total reflection (ATR) crystal and 
penetrates into the sample contacting the crystal with a depth of several micrometers, which is in the 
range of the different coating thicknesses reported in this work (i.e., 25–30 μm). Meanwhile, carbon 
nanomaterials, such as GnPs and CNTs, typically showed very strong absorption in the IR region. 
Therefore, it is reasonable to assume that the IR-active groups of the cellulose substrate covered by 
coatings tens of micrometers thick would not be detected unless being directly exposed to the IR light 
due to the presence of micro-cracks or poorly coated regions. FTIR spectroscopy with ATR 
attachment can thus be utilized as a way to investigate the density and uniformity of the coating on 

Figure 2. Scanning electron microscope (SEM) images of the paper coated by different carbon materials
(A): control paper; (B): lignin-coated paper; (C): G-2.5; (D): M-2.5; (E): GM-2.5; (F): GM0.5-2.5.

The Fourier transformed infrared (FTIR) spectra of the different coated papers are shown in Figure 3A.
The distinctive infrared (IR) peaks of cellulose were present in the plain paper (i.e., no coating), including
O–H stretching at 3335 cm−1, CH2 asymmetrical stretching at 2914 cm−1, CH2 scissoring at 1414 cm−1, C–O
stretching at 1030 cm−1 and C–H out-of-plane bending at 870 cm−1 [34–36]. After coating, the intensities of
the characteristic peaks of cellulose listed above gradually decreased depending on the coating composition,
in the order of L, G-2.5, M-2.5, GM-2.5 and GM0.5-2.5. It is well known that the IR light passes through the
attenuated total reflection (ATR) crystal and penetrates into the sample contacting the crystal with a depth
of several micrometers, which is in the range of the different coating thicknesses reported in this work
(i.e., 25–30 µm). Meanwhile, carbon nanomaterials, such as GnPs and CNTs, typically showed very strong
absorption in the IR region. Therefore, it is reasonable to assume that the IR-active groups of the cellulose



Int. J. Mol. Sci. 2017, 18, 2368 5 of 14

substrate covered by coatings tens of micrometers thick would not be detected unless being directly
exposed to the IR light due to the presence of micro-cracks or poorly coated regions. FTIR spectroscopy
with ATR attachment can thus be utilized as a way to investigate the density and uniformity of the coating
on the paper surface. The characteristic peaks of cellulose were clearly identified in the papers coated by
lignin, GnPs and CNTs alone, but these peaks were hardly detected in the papers coated with both GnPs,
CNTs and lignin, especially GM0.5-30. Since all coatings had similar thicknesses, this suggested that the
mixture of GnPs, CNTs and lignin yielded more-uniform and densely packed coatings than any other
combinations, which was consistent with SEM observations.
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Figure 3. Representative Fourier transformed infrared (FTIR) spectra (A) and thermograms (B) of the
blank and coated papers.

The thermal degradation of the papers coated with different carbon nanomaterials was evaluated
by thermogravimetric analysis (TGA) under synthetic air, as depicted in Figure 3B. In each case,
the first weight loss detected below 100 ◦C was associated with desorption of imbibed moisture in the
papers. Interestingly, the mass decrease induced by water evaporation was much lower for papers
coated with a mixture of GnPs, CNTs and lignin (i.e., ~0.5 wt %) compared to that of other samples
(i.e., 5–7 wt %). Between 230 and 300 ◦C, all specimens experienced an abrupt reduction in mass
caused by the formation of low-molecular-weight volatile chemicals due to the thermal decomposition
of cellulose, which proceeded slowly above 300 ◦C and extended until 500 ◦C. The last weight loss was
recorded in the temperature range of 600–700 ◦C due to the oxidation of nanomaterials and residual
carbon. The total weight loss of blank paper was 90.5%, and the remaining 9.5% can be attributed to
binders and pigments used during the paper-making process. The papers coated with either CNTs or
GnPs alone yielded lower total weight losses of 88.1% and 88.7%, respectively, while the paper treated
with the hybrid mixture showed the best thermal stability with a total weight loss of 84.5%. It is also
worth noting that, per the manufacturer’s technical data, both GnPs and CNTs were fully oxidized
above 750 ◦C with less than 1 wt % residual ash. Therefore, we can deduce that the residual mass of
paper can be increased significantly by coating its surface with a mixture of lignin, CNTs and GnPs.

2.2. Gas Permeability of Coated Papers

The surface coatings can act as a protective layer to delay combustion by limiting the transfer
of oxygen, decomposition gases and heat to/from the cellulose substrate underneath. Consequently,
the air resistance or gas permeability of the coating played an essential role in the flame-retardant
mechanism of the materials. The air resistance of the paper coated with different carbon nanomaterial
combinations was evaluated by the Gurley number (Table 1). It was found that the air resistance of the
papers coated with various carbon nanomaterials was significantly higher than that of the plain paper,
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while the gas permeability of the paper did not change after the sole deposition of lignin. This reveals
that the addition of carbon nanomaterials obstructed the pores of the cellulose substrate. In addition,
the papers coated with both GnPs and CNTs had a much higher air resistance compared to those coated
with either component alone, indicating the superior pore-filling effect of the mixture. The paper
coated with GnPs alone (i.e., G-2.5) had the lowest air resistance (i.e., 255 ± 40 s), while the paper
coated with a mixture of GnPs and CNTs (i.e., GM0.5-2.5) exhibited the highest value (i.e., 903 ± 75 s),
which is nearly six times larger than that of plain paper (i.e., 154 ± 3 s). These results are consistent
with our SEM and FTIR characterization data. The variations in air resistance among the different
types of coating can be attributed to the differences in their conformation on the cellulose substrate.
Compared to one-dimensional CNTs, GnPs should theoretically show a higher air resistance due to the
“tortuous path” created by their two-dimensional structure [15]. However, the degree of entanglement
of two-dimensional structures is lower than their one-dimensional counterparts, and the presence of
multiple micro-cracks in the sole GnP coating, as illustrated in Figure 2C, significantly hindered the air
resistance of the paper. When GnPs and CNTs were mixed together, both the entangled CNT network
and the “tortuous path” formed by GnPs most likely induced a synergistic effect through the creation of
a physical barrier that could effectively retard the progress of gas molecules through the coated paper.
The efficiency of this synergistic effect depended on the proportion of GnPs and CNTs present in the
mixture. When larger quantities of GnPs were incorporated, the distance between entangled nanotubes
would increase, resulting in larger size pores, thus increasing the gas permeability of the coating.
Therefore, there is an optimum GnP:CNT ratio to obtain the best air resistance. Furthermore, the air
resistance increased with the thickness of the coating layer, which is consistent with previous studies
reporting the gas permeability of CNT membranes [33]. It was indicated that a more-compact structure
was achieved by increasing the loading amount on the paper surface. Finally, the air resistance of the
coated papers decreased with an increasing content of lignin, due to the lower pore-filling effect of
lignin compared to that of carbon nanomaterials.

2.3. Flame-Retardant Performance

2.3.1. Effect of Carbon Nanomaterials

A butane flame was applied to the paper surface for 5 s and then withdrawn to observe the
combustion behavior (Figure 4 and Movie S1). It was seen that the plain paper kept burning after the
removal of the flame until it was completely consumed in less than 15 s. In contrast, all coated papers
immediately stopped burning upon the withdrawal of the flame and maintained their initial shape
with little shrinkage and wrinkles, indicating excellent self-extinguishment properties. Furthermore,
the combustion process varied with the coating composition. In the case of sole GnP coating (G-2.5),
the papers exhibited the largest burned area, indicating the fast progression of combustion throughout
the paper. For the CNT-coated papers (M-2.5), smaller burned areas were observed at multiple locations
in the samples, revealing that the fire was able to spread rapidly across gaps due to locally intense heat
spots. Compared to other specimens, papers coated with both GnPs and CNTs showed limited fire
propagation, as illustrated by smaller burned area and the absence of flaming at locations other than
that exposed to the burner. These results were consistent with IR analysis, where small independent
heat spots spread over a large area of the burned paper coated with CNTs, while the heat signature
of the burned paper coated with GnPs formed a large and continuous region with temperatures
exceeding 450 ◦C, which was higher than the decomposition temperature of cellulose [37]. In the
case of GnP/CNT-coated papers, fewer small heat spots were localized in the area in contact with the
flame. Similar trends were observed when the flame was applied to the papers for 15 s (Figure S1 and
Movie S2). To quantitatively characterize the fire-resistance properties, the burned area, weight loss
and maximum temperature of the different samples were extracted from the digital images after 5 s and
15 s of contact time with a flame (Table 2). The papers coated with the GnP/CNT mixtures exhibited
lower burned areas and weight losses than those coated by either component alone. In addition,
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the mixtures with the lowest amount of GnPs showed maximum improvements in flame-retardant
characteristics compared to samples containing more GnPs, with up to 14.6% and 15.7% reductions in
burned area and weight loss, respectively. Notably, the heat release was significantly reduced and the
maximum temperature decreased by up to 129 ◦C in the presence of CNTs, which was consistent with
previous studies reporting the fire resistance of polymer composites reinforced with CNTs [17,21,26].Int. J. Mol. Sci. 2017, 18, 2368 7 of 14 
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Table 2. The burned area, weight loss and maximum temperature after the flame-retardant testing of
the papers burned for 5 s and 15 s.

Sample Burned Area (%) Weight Loss (%) Maximum Temperature (◦C)

- 5 s 15 s 5 s 15 s 5 s 15 s
C 100 100 100 100 809 ± 71 831 ± 53

G-2.5 15.7 ± 3.4 35.5 ± 1.5 18.2 ± 6.0 40.4 ± 2.7 791 ± 11 834 ± 42
M-2.5 12.4 ± 2.7 21.0 ± 2.6 16.05 ± 1.8 25.3 ± 2.9 766 ± 5 705 ± 13

GM-2.5 12.0 ± 3.1 22.5 ± 2.5 14.6 ± 2.9 26.4 ± 1.5 760 ± 3 709 ± 3
GM-0.5-2.5 10.7 ± 2.9 20.9 ± 3.0 13.5 ± 2.7 24.7 ± 3.8 749 ± 16 730 ± 23

2.3.2. Effect of Coating Density

To investigate the effect of flame-retardant concentration on the fire-resistance properties of
coated papers, the loading of flame-retarding agents was varied while the coating composition
was kept constant. Since it yielded the best flame-retardant properties, the coating formulation
comprising a GnP:CNT mass ratio of 1:2 is reported henceforth as “GM0.5-x”, with x indicating the
content of the GnP/CNT mixture in g/m2. From Figure S2 it is seen that all coated papers exhibited
self-extinguishment properties and that the burned area became noticeably smaller as the coating
density increased. The IR images also confirmed this trend with smaller and more-localized heat spots
at higher coating density. Results from Figure S2 were further analyzed to determine the evolution of
the weight loss and burned area as a function of coating density after 15 s of contact time with a butane
flame, as depicted in Figure 5A. It was found that the burned area drastically decreased from 37.7%
to 15.7% when the coating density increased from 5.1 to 9.9 g/m2, and then the reduction slowed
down with further increments in coating density until no statistical differences in burned area were
identified at 15 g/m2 and above. The same trend was observed in weight loss, which increased with
coating density up to a certain level beyond which the additional incorporation of flame retardants
did not change the weight loss of coated papers. Further addition of flame retardants above this
optimal value not only represents a waste of materials but may also induce undesired effects in other
substrate properties (e.g., flexibility, optical density, cost and total mass), which is consistent with
a previous study reporting a similar phenomenon in the case of polymer nanocomposites reinforced
with graphene oxide [38].
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15 s of contact time with a butane flame.
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2.3.3. Effect of the Ratio of Lignin to Carbon Nanomaterials

The effect of lignin content on the combustion behavior of the coated papers was investigated
by varying the mass ratio of lignin to carbon nanomaterials from 1:2 to 9:1. In each case, the carbon
nanomaterial composition was kept constant with a GnP:CNT mass ratio of 1:2, and the coating density
was maintained at 7.5 g/m2. The samples were designated as LGMx-y, with x indicating the ratio of
lignin to carbon nanomaterials and y indicating the content of GnPs and CNTs. From Figure S3 it is
observed that the coating paper containing carbon nanomaterials maintained the self-extinguishing
properties regardless of the lignin concentration, while the paper coated by solely lignin kept burning
after the flame was withdrawn. Moreover, the calculated burned area and weight loss decreased with
the addition of lignin up to a certain level, beyond which further increase in lignin concentration led to
a slight augmentation of the burned area and weight loss (Figure 5B). The lowest values of burned
area (i.e., 12.3%) and weight loss (i.e., 16.5%) were achieved with a lignin-to-carbon nanomaterial ratio
of 4:1. Interestingly, these values were equivalent or even lower than the burned area and weight loss
reported at higher coating densities. This means that the coating density can be significantly reduced
while maintaining the same level of flame-retardant properties by adjusting the lignin-to-carbon
nanomaterial ratio, providing great opportunities for cost reduction. In this study, the total mass
content of carbon nanomaterials was as low as 4 wt %.

3. Flame-Retardant Mechanism

The superior flame-resistance properties of the coated papers at low flame-retardant content can be
attributed to the synergistic effects between GnPs, CNTs and lignin, improving (i) the physical barrier
characteristics, (ii) the formation of thermally stable char and (iii) the thermal management of the
system. First, the presence of a physical barrier between the substrate and the environment is critical
to limit the transport of oxygen and other gaseous products during combustion. The combination
between one dimensionalCNTs and two dimensional GnPs has closed the gaps between them (Figure 1)
and formed a denser coating layer on the paper surface with reduced gas permeability (Table 1).
The lower porosity of this hybrid structure and the presence of a “tortuous path” induced by the evenly
distributed GnPs in the CNT network were able to greatly hinder mass and heat transfers between the
paper and the flame. However, simply mixing CNTs and GnPs was not sufficient to create an efficient
physical barrier, and the dispersion state of these carbon nanomaterials is of paramount importance.
Previous research reported that the flame-retardant properties of polymer composites with poorly
dispersed CNTs did not improve compared to the pristine composites without CNTs [39]. Owing to
its large number of condensed aromatic structures, lignin was adsorbed on GnPs and CNTs via π-π
interactions and prevented the nanomaterials from sticking together due to electrostatic repulsion
and steric hindrance during the aqueous-phase coating process, as demonstrated elsewhere [28,32].
Moreover, multiple hydrophilic groups in the lignin structure (e.g., methoxyl, phenolic hydroxyl,
aldehyde and carboxyl) can interact with cellulose via hydrogen bonding, hence connecting the carbon
nanomaterials to the paper substrate. Therefore, the role of lignin is twofold: (i) it promotes the
aqueous dispersion of carbon nanomaterials [28], and (ii) serves as a cross-linking agent to bridge the
cellulose microfibers with carbon nanomaterials (Figure 6). This results in the formation of a compact
layer protecting the substrate from the flame and preserving the paper integrity, which will also
be responsible for the self-extinguishing properties. Without the combination of all these elements,
the coating appeared to be cracked (i.e., G-2.5), with open pores of several hundred nanometers
in size (i.e., M-2.5), and showed high gas permeability (i.e., L), which was detrimental to the fire
resistance of the papers. Furthermore, when the concentration of lignin in the coating increased
up to a certain amount, the flame-retardant properties of the papers were improved, while the gas
permeability increased. This suggests that a different flame-retardant mechanism occurs at higher
lignin content. Lignin is known as a char-forming agent and its lower degradation temperature
compared to that of carbon nanomaterials will facilitate the formation of carbonaceous residue during
combustion, which can balance, to some extent, the augmentation of gas permeability at high lignin
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content. This char can further shield the substrate from the flame by filling in voids between adjacent
particles, serving as a thermal insulating barrier inhibiting mass and heat transfers between the paper
and its surroundings. Finally, thermal management was also greatly improved by the different carbon
materials in the coating. CNTs were efficient heat sinks that can absorb heat from the ignition source,
while GnPs can diffuse the heat energy away from the source [40]. When used separately, CNTs
could cool the paper surface down from 831 ◦C to 709 ◦C (Table 2) but generated local and intense
hot spots causing additional flaming areas, while GnPs spread the heat to wider areas, speeding
up the combustion process. Their combination, on the other hand, can concurrently cool down the
surface, delay combustion and prevent flame propagation. In the hybrid coating, the heat energy
is rapidly transferred from the GnPs to the CNTs, where the existence of heat-sink regions ensures
efficient heat dissipation [41]. In addition, adjacent GnPs and CNTs will provide an increased number
of direct contacts compared to either component alone (Figure 1), closing the gaps between them and
forming a denser hierarchical network with larger numbers of thermally conductive pathways for
better thermal management.Int. J. Mol. Sci. 2017, 18, 2368 10 of 14 
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4. Materials and Methods

4.1. Materials

Pristine copy papers with an average density of 0.65 g/cm3 were obtained from North Pacific
Paper Company (Longview, WA, USA). GnPs with an average surface area of 750 m2/g were supplied
by Sigma-Aldrich Corp. (St. Louis, MO, USA). Multi-wall CNTs with length of 10–20 µm and mean
outer diameter of 50 nm synthesized by catalytic chemical vapor deposition and purified using acid
chemistry were provided by Cheap Tubes Inc. (Grafton, VT, USA). The alkali lignin was purchased
from Tokyo Chemical Industry Co. (Tokyo, Japan). Deionized (DI) water served as solvent for the
nanomaterial dispersions. All chemicals were used as received without any further treatment.

4.2. Preparation of GnP/CNT/Lignin-Coated Paper

The preparation of flame-retardant papers is summarized in Figure 1. A certain amount of alkali
lignin was dispersed in DI water and stirred for 10 min. Then, the lignin dispersion was bath-sonicated
for 10 min by an ultrasonicator (VWR International, LLC, Radnor, PA, USA). A desired amount of GnPs
and/or CNTs was added into the suspension and double sonicated based on a previously established
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procedure [28]. This method allows for the preparation of stable and concentrated suspensions of
individualized nanomaterials with significantly reduced processing time and improved dispersion
quality. The different coating formulations are listed in Table 1. Subsequently, the dispersions were
applied onto both sides of the plain paper by Meyer rod coating in a single deposition step. A smooth
rod moving at a speed of 150 mm/s was used to enable the production of large and uniform films in
short times. The rod moving speed was not a critical factor and could be slightly adjusted without
affecting coating quality [42]. The coated samples were air dried and conditioned under a controlled
atmosphere (i.e., 50% humidity, 20 ◦C) for at least 48 h prior to further characterization.

4.3. Characterization

Surface morphologies of the GnP/CNT-coated paper were examined by a scanning electron
microscope (SEM, XL830, FEI Company, Hillsboro, OR, USA) operated at 5 kV. The plain paper
without coating was sputtered with a thin layer of gold prior to SEM observation. The chemical
structure information of the samples was obtained by a Shimadzu Fourier transform infrared (FTIR)
spectrophotometer with an attenuated total reflectance (ATR) mode (IRPrestige-21, Shimadzu Corp.,
Kyoto, Japan). All spectra were collected within the wavenumber range of 600–4000 cm−1 at a spectral
resolution of 4 cm−1. Thickness was measured at 15 different spots per sample using a Electronic
Thickness Tester Model 2 (Thwing-Albert Instrument Co., West Berlin, NJ, USA) operated at 7.3 psi
in accordance with the Technical Association of the Pulp and Paper Industry standard method
(TAPPI, T411) to ensure repeatability of the thickness values. Thermogravimetric analysis (TGA)
was performed on a NETZSCH STA-449-F3 (Selb, Germany). About 25 mg of sample was placed into
a platinium-rhodium alloycrucible and heated from room temperature to 850 ◦C at a rate of 10 ◦C/min
under a synthetic air atmosphere (i.e., oxygen at 25 mL/min and nitrogen at 25 mL/min). The gas
permeability of the papers was measured to evaluate the barrier effect of the coating materials based on
the Gurley method (TAPPI, T460 cm-88). The Gurley number, which can be directly correlated to the air
resistance of the material [43], was defined as the time for a given volume (100 mL) of air to flow through
1 in2 (6.45 cm2) circular area of paper under constant pressure by the test apparatus (Model 4110,
Gurley Precision Instruments, Troy, NY, USA). At least three measurements were performed to obtain
the average air resistance value of each sample.

4.4. Flame Resistance Test

The vertical flame tests were carried out in triplicate based on the TAPPI, T461 cm-00 standard
method. Briefly, a suspended 60 mm × 90 mm paper was exposed to a butane flame in an atmosphere
in accordance with TAPPI T402 (Figure 1). The flame of the burner was adjusted to a height of 40 mm
and applied to the center of the specimen for 15 s (i.e., the flame itself was touching the sample surface).
Shorter flammability tests (i.e., at 5 s ignition times) were also conducted to analyze the materials’
self-extinguishing properties. The burning evolution of the papers was captured by a video camera.
After it ceased to flame, the sample was removed from the holder and the charred area was gently
tapped to break away loose char. The weight loss (WL) was recorded using a Mettler Toledo AG285
analytical balance (Columbus, OH, USA) and the burned area (AL) was determined using ImageJ
based on the following equations,

WL = 100 ∗ (Wi − Wf)/Wi (1)

AL = 100 ∗ (Ai − Af)/Af, (2)

where WL, Wi, Wf, AL, Ai and Af are the weight loss, initial weight, final weight after burning, burned
area, initial area, and remaining area after burning of the tested paper, respectively. Furthermore, an IR
camera equipped with a pyrometer (MikroScan 7600, LumaSense Technologies, Inc., Santa Clara, CA,
USA) was used to monitor the temperature distribution of the sample while burning. The emissivity
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was set to 0.90 and 0.96 for the pristine and coated papers, respectively. All flame resistance experiments
were performed three times and average values of WL, AL and maximum temperature were calculated.

5. Conclusions

Cellulosic paper was endowed with extraordinary self-extinguishing properties and flame
retardancy by coating its surface with GnPs, CNTs and lignin using a Meyer rod-coating method.
Carbon nanomaterials pre-adsorbed with alkali lignin created a hierarchical network structure
forming a compact layer on the paper surface, which served as a protective film during combustion.
Such a carbonaceous shield was able to retard greatly the combustion progress of the material by
reducing the transport of air and decomposition byproducts from/to the substrate. Papers coated
by combinations of GnPs, CNTs and lignin exhibited a more-uniform and compact structure with
lower air permeability and higher amounts of thermally conductive pathways resulting in enhanced
flame-retardant performance compared to papers coated by either component alone. Moreover,
the fire-resistance properties gradually reached a maximum after a certain quantity of flame retardant
was applied to the paper surfaces, and the lignin content played an essential role as char-forming agent.
Using a tailored coating of unmodified commercially available carbon nanomaterials with specific
composition and density, we were able to achieve superior fire resistance properties, while keeping the
amount of carbon nanomaterials to a minimum level. We expect that these findings will guide future
optimization of advanced and affordable flame-retarding agents for minimizing fire risk, meeting
safety regulations and expanding high-value application of cellulose and other polymer materials.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/11/2368/s1.
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