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Abstract: Herbal supplements are a significant source of drug-drug interactions (DDIs), herb-drug
interactions, and hepatotoxicity. Cytochrome P450 (CYP450) enzymes metabolize a large number
of FDA-approved pharmaceuticals and herbal supplements. This metabolism of pharmaceuticals
and supplements can be augmented by concomitant use of either pharmaceuticals or supplements.
The xenobiotic receptors constitutive androstane receptor (CAR) and the pregnane X receptor (PXR)
can respond to xenobiotics by increasing the expression of a large number of genes that are involved in
the metabolism of xenobiotics, including CYP450s. Conversely, but not exclusively, many xenobiotics
can inhibit the activity of CYP450s. Induction of the expression or inhibition of the activity of CYP450s
can result in DDIs and toxicity. Currently, the United States (US) Food and Drug Administration does
not require the investigation of the interactions of herbal supplements and CYP450s. This review
provides a summary of herbal supplements that inhibit CYP450s, induce the expression of CYP450s,
and/or whose toxicity is mediated by CYP450s.

Keywords: cytochrome P450; pregnane X receptor; constitutive androstane receptor; herbal
supplement; drug-induced liver injury; herb-induced liver injury; drug-drug interactions; drug-herb
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1. Introduction

The aim of this review is to highlight the effects of herbal supplement use on xenobiotic
metabolism and the development of hepatotoxicity or modulation of therapeutic efficacy, either alone or
with concurrent use of other herbal supplements and Food and Drug Administration (FDA)-approved
pharmaceuticals. Cytochrome P450 (CYP450) enzymes metabolize a large number of xenobiotics, which
may lead to the formation of hepatotoxic compounds. Fortunately, pharmaceuticals are evaluated
for the potential to inhibit or induce CYP450 enzymes before being marketed in the United States
(US) [1]. However, regulations for herbal supplements in the United States do not require surveillance
or the reporting of adverse events by the manufacturer to the FDA [2]. Thus, the data concerning the
hepatotoxicity of herbal supplements are derived from case reports and series, retrospective databases,
and progressive registries, such as the US Drug-Induced Liver Injury (DILI) Network and the Spanish
DILI Registry [3,4]. Therefore, herbal supplements that inhibit CYP450 enzymes are problematic,
because in addition to affecting the therapeutic efficacy of drugs that require bioactivation for effect,
these interactions may inhibit the metabolism of toxic parent compounds to less toxic daughter
compounds (Figure 1) [5].
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Figure 1. The effect of P450 inhibitors on drug toxicity. The parent compound can be the herbal 
supplement itself or a co-administered Food and Drug Administration (FDA)-approved drug. (A) 
Schematic of the general mechanism; (B) a specific example discussed in the text [5]. 

The expression of CYP450 enzymes is induced by nuclear receptors that respond to xenobiotics. 
Many CYP450 enzymes are transcriptionally regulated by the xenobiotic receptors pregnane X 
receptor (PXR, also known as NR1I2, SXR, or PAR) and constitutive androstane receptor (CAR; 
NR1I3) [6–9]. We will discuss the involvement of PXR and CAR in herbal supplement hepatotoxicity 
later in this review. Many herbal supplements can activate these receptors leading to an increased 
expression of CYP450 enzymes and can affect the metabolism of other xenobiotics. In many instances 
of this can lead to hepatotoxicity, as well as deactivating active drugs and decreasing the therapeutic 
effect. The induction of CYP450 enzymes may result in hepatotoxicty by increasing the metabolism 
of less toxic parent compounds to much more toxic daughter compounds (Figure 2) [10–14]. 

 
Figure 2. The effect of P450 inducers on toxicity. The parent compound can be the herbal supplement 
itself or a co-administered FDA-approved drug. (A) Schematic of the general mechanism; (B,C) 
specific examples discussed in the text [10–14]. 

Figure 1. The effect of P450 inhibitors on drug toxicity. The parent compound can be the herbal
supplement itself or a co-administered Food and Drug Administration (FDA)-approved drug.
(A) Schematic of the general mechanism; (B) a specific example discussed in the text [5].

The expression of CYP450 enzymes is induced by nuclear receptors that respond to xenobiotics.
Many CYP450 enzymes are transcriptionally regulated by the xenobiotic receptors pregnane X receptor
(PXR, also known as NR1I2, SXR, or PAR) and constitutive androstane receptor (CAR; NR1I3) [6–9].
We will discuss the involvement of PXR and CAR in herbal supplement hepatotoxicity later in this
review. Many herbal supplements can activate these receptors leading to an increased expression
of CYP450 enzymes and can affect the metabolism of other xenobiotics. In many instances of this
can lead to hepatotoxicity, as well as deactivating active drugs and decreasing the therapeutic effect.
The induction of CYP450 enzymes may result in hepatotoxicty by increasing the metabolism of less
toxic parent compounds to much more toxic daughter compounds (Figure 2) [10–14].
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Figure 2. The effect of P450 inducers on toxicity. The parent compound can be the herbal supplement
itself or a co-administered FDA-approved drug. (A) Schematic of the general mechanism; (B,C) specific
examples discussed in the text [10–14].

Concurrent use of pharmaceuticals with herbal supplements, as well as the use of multiple herbal
supplements, presents additional problems. Many patients do not report herbal supplement use to
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their physicians [15–18], with one study showing that approximately one-third of patients do not
disclose the use of herbal supplements to their physicians [19]. Complicating matters further, a Spanish
study shows that 20% of patients use herbal supplements concurrently with prescription drugs [20],
with another study showing that 20% of patients reported the use of one or more herbal supplements,
and 30% of patients reported taking an herbal supplement to treat the same condition that they were
concomitantly taking prescription medication to treat [21]. Combining herbal supplements with
prescription drugs without the knowledge of primary care providers is especially troubling when
considering that the hepatotoxicity of herbal supplements can also arise from herb-drug interactions
(Figure 3) [22–24].
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can be the herbal supplement itself or a co-administered FDA-approved drug. (A) Schematic of the
general mechanism; (B) a specific example discussed in the text [22–24].

2. Literature Search Methodology

To develop this review concerning the association of herbal supplement use with P450 modulation
and hepatotoxicity, we used the search terms “herbal supplement” or “herb” combined with
“hepatotoxicity” or “liver injury” to search the PubMed database. From this initial search, we selected
compounds associated with hepatotoxicity in an in vivo model. We then searched for each of these
supplements with “P450”, “CYP450”, or “cytochrome P450”. Finally, we searched for “herbal
supplement” or “herb” combined with “P450”, “CYP450”, or “cytochrome P450”. Care is taken
to include reports where the effect (P450 modulation or hepatotoxicity) is attributable to a single
causative compound or when an extract of defined herbal ingredients is provided.

3. Herbal Supplements with Potential P450-Associated Hepatotoxicity

The most commonly used herbal supplements in the United States are echinacea, garlic, ginko
biloba, saw palmetto, ginseng, grape seed extract, green tea, and St. John’s wort [25]. This review
will discuss herbal supplements that inhibit cytochrome P450 enzymes (Figure 1) or induce P450
expression (Figure 2), and those whose toxicity is mediated by the P450 system (Figure 3). Examples of
these herbal supplements are discussed in the proceeding sections and are summarized in Tables 1–3,
respective to figure numbering. These interactions can lead to HILI with the use of herbal supplements
alone or when used in combination with traditional FDA-approved pharmaceuticals.

3.1. Herbal Supplement Inhibition of P450s

Cytochrome P450 enzymes, predominantly hydroxylate xenobiotics and endobiotics, enable
conjugation to additional chemical moieties to facilitate elimination from the body [26]. In the
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case of hepatotoxic compounds, these enzymes decrease the exposure of the compound to the liver
(Figure 1). Therefore, when patients are administered multiple xenobiotics, care should be taken
that one compound does not increase the toxicity of another by inhibiting the metabolism of a toxic
compound to its less-toxic daughter compounds. The ability of pharmaceuticals to inhibit P450
enzymes is evaluated during drug development and is usually well characterized before reaching
market and general patient populations [1]. Also, in the United States, herbal supplements are not
required to be evaluated for this effect before reaching market. This would be problematic even if
only the activation of inactive pro-drugs was prevented and the therapeutic efficacy was decreased.
Inhibition of CYP450 enzymes may prevent the activation required for efficacious treatment by inactive
prodrugs (e.g., tamoxifen) [27]. However, this is very concerning because of the potential for increasing
hepatic and systemic exposure to toxic compounds, which would otherwise be metabolized by the
P450 system. For example, catechins in green tea, terpenes in black cohosh and cranberry, geniposide
and genipin in Gardenia, fucomarins in grapefruit juice, and Echinacea extract may inhibit the activity
or decrease the expression of cytochrome P450 enyzmes (Table 1).

Table 1. Reports of herbal supplements that inhibit P450 activity or expression.

Herbal Supplement Preparation/Compound Effect on P450 CYP450 Reported

Mangosteen
(Garcinia mangostana) Aqueous extract Inhibition of activity [28]. 2C8, 2C9, 2C19

Black cohosh
(Actaea racemosa L.
[syn. Cimifuga racemosa L.])

Fukinolic acid and cimicfugic
acids A and B

Inhibition of activity of purified
enzymes [29]. 1A2, 2D6, 2C9, 3A4

Green tea *
(Camellia sinensis)

(−)-epigallocatechin-3-gallate
Inhibition of activity in HLM (human liver
micrsomes) and HIM (human intestinal
microsomes) [30].

2B6, 2C8, 2C19, 2D6, 3A

Extract Inhibition of activity in rat liver
microsomes [31]. 3a

Menthol

Menthofuran Inhibited activity in HLM [32]. 2A6

Menthofuran Inhibited coumarin 7-hyroxylation in
purified enzymes [33]. 2A6, 2A13

(−)-menthol * Inhibited coumarin 7-hydroxylation in
purified enzymes [33]. 2A13, 2A6

Garcinia jasminoides *

Geniposide, extract Decreased activity in rat liver
microsomes [34]. 3A4

Genipin Inhibited activity and decreased mRNA
and protein expression in HepG2 [35]. 2C19, 3A4

Geniposide Decreased activity in rat livers [34]. 3a

Garlic (Allium sativum) *

Garlic oil
Inhibited activity reflected by
6-hydroxychlorzoxazone/chlorzaoxazone
serum ratios in humans [11,12].

2E1

Not noted Inhibited activity reflected by decreased
phenacetin metabolism in HLM [36]. 1A2

Retrorsine Inhibited activity in purified enzymes [37]. 3A4

Grapefruit
(Citrus paradisi) *

Dhydrobergamottin,
gergamottin Inhibited activity in HLM [38,39]. 3A4

Juice Inhibited activity reflected by decreased
midazolam concentrations in humans [39]. 3A4

Saw palmetto
(Serenoa repens) Extract Inhibited activity in HLM [40]. 2C8

Echinacea purpura *

Root Extract (pill)
Inhibition of activity reflected by
decreased midazolam hydroxylation in
humans [41,42].

3A4

Root Extract (pill)
Inhibition of activity as reflected by
decreased caffeine metabolism in
humans [41,42].

1A2

Marslinic acid, corosolic acid,
ursolic acid Inhibited the activity in HIM [43]. 3A4
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Table 1. Cont.

Herbal Supplement Preparation/Compound Effect on P450 CYP450 Reported

Cranberry
(vaccinium macrocarpon) Extract Inhibited activity of purified enzymes [44]. 1A2, 2D6

Milk thistle
(Silybum marianum)

Silybin, isosilybin

Decreased mRNA and inhibited
PXR-mediated CYP-Luciferase activity in
LS180 cell line [45].

3A4

Inhibited promoter activity via hPXR [45]. 3A4

Tomato
(Lycopersicon esculentum) Juice extract Inhibited activity of purified enzymes [46]. 3A4

Capsicum
(Capsicum annuum L.
var. grossum.)

Dried and re-suspended
in DMSO Inhibited activity of purified enzymes [46]. 3A4

Potato (Solanum tuberosum
L.)

Dried and re-suspended
in DMSO Inhibited activity of purified enzymes [46]. 1A2, 2D6, 3A4

Eggplant
(Solanum melongena L.)

Dried and re-suspended
in DMSO Inhibited activity of purified enzymes [46]. 1A2, 2D6, 3A4

Sweet pepper
(Capsicum annuum)

Dried and re-suspended
in DMSO Inhibited activity of purified enzymes [46]. 1A2, 2D6, 3A4

Black elderberry
(Sambucus nigra) Extract (pill) Inhibited activity in microsomes

overexpressing CYP450 [44]. 1A2, 2D6, 3A4

Fennel (Foeniculum vulgare) Extract (tea) Inhibited activity in microsomes
overexpressing CYP450 [44]. 1A2, 2D6, 3A4

Horsetail
(Equisetaceae family) Extract (tea) Inhibited activity in microsomes

overexpressing CYP450 [44]. 1A2, 2D6, 3A4

Raspberry leaf
(Rubus idaeus) Extract (pill) Inhibited activity in microsomes

overexpressing CYP450 [44]. 1A2, 2D6, 3A4

Cinnamon
(Cinnamomum verum)

o-methoxy cinnamaldehyde Inhibited activity in rat liver
microsomes [47]. 1a2, 2e1

Extract Inhibited activity in microsomes
overexpressing CYP450 [48]. 2C9, 3A4

Ginger (Zingiber officinale) Extract Inhibited activity in microsomes
overexpressing CYP450 [48]. 2C9, 3A4

Mace (Myristica fragrans) Extract Inhibited activity in microsomes
overexpressing CYP450 [48]. 2C9, 3A4

Nutmeg (Myristica genus) Extract Inhibited activity in microsomes
overexpressing CYP450 [48]. 2C9, 3A4

Valerian
(Valeriana officinalis) Extract Inhibited activity in HLM [40]. 2C8

Madagascan
medicinal plant
(Catharanthus roseus)

Ajmalicine Inhibited activity in HLM [49]. 2D6
Vindolene Inhibited activity in HLM [49]. 2D6, 3A4
Serpentine Inhibited activity in HLM [49]. 2D6, 3A4

Southern African
medicinal plant
(Sutherlandia frutescens)

Extract Inhibited activity in transfected
microsomes [50]. 3A4

Southern African
medicinal plant
(Moringa oleifera)

Extract Inhibited activity reflected by decreased
testosterone hydroxylation in HLM [51]. 3A4

West African medicinal
plants

Extract
Inhibited activity in transfected
microsomes [52].

3A4, 3A5, 3A7

Aframomum cuspidatum
Aframomum meliguieta
Harrisonia abyssinica
Phyllanthus amarus
Piper guineense
Lonchocarpus sericeus
Lipia multiflora

West African medicinal
plants

Extract
Inhibited activity in transfected
microsomes [52].

3A4, 3A7

Jutropha curcas
Persia Americana
Oxytenanthera abyssinica
Talinum triangulare
Tanzanian medicinal plant
Cyphostemma ildebrandtii
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Table 1. Cont.

Herbal Supplement Preparation/Compound Effect on P450 CYP450 Reported

Tanzanian medicinal
plant (Acacia nilotica) Extract Inhibited activity in transfected

microsomes [53,54]. 2C9, 2C19, 2D6, 3A4

Tanzanian medicinal
plants

Extract
Inhibited activity in transfected
microsomes [53,54].

2C9, 2C19, 3A4Acacia robusta
Agauria salicifolia

Tanzanian medicinal
plants

Extract
Inhibited activity in transfected
microsomes [53,54].

2C9, 3A4Elaeodendron buchananii
Sclerocarya birrea

Peppermint
(Mentha piperita)

Oil Inhibited activity in HLM [55]. 3A4
Menthol * Inhibited activity in HLM [55]. 3A4
Menthyl acetate Inhibited activity in HLM [55]. 3A4
Ascorbyl palmitate Inhibited activity in HLM [55]. 3A4

Sesamin
(Sesamum indicum) Not noted

Inhibited activity reflected by decreased
phenacetin, diclofenac, omeprazole,
dextromethorphan, and midazolam
metabolism in HLM [36].

1A2, 2C9, 2C19, 2D6, 3A4

Tumeric (Curcuma longa) Not noted
Inhibited activity reflected by decreased
diclofenac, omeprazole, dextromethorphan,
and midazolam metabolism in HLM [36].

2C9, 2C19, 2D6, 3A4

St. John’s wort
(Hypericum perforatum) Not noted

Inhibited activity reflected by decreased
phenacetin, diclofenac, and midazolam
metabolism in HLM [36].

1A2, 2C9, 3A4

Herbs, compounds, or preparations marked with an asterisk have been associated with alteration of P450 metabolism
in human subjects or have been associated with hepatotoxicity and may be clinically significant.

3.1.1. Green Tea

Green tea is traditionally made in China from the leaves of Camellia sinensis, and it is consumed to
treat cancer, cardiovascular disease, dyslipidemia, inflammation, and weight loss [56–60]. Green
tea use has been associated with hepatotoxicity at higher doses [61,62]. The hepatotoxicity of
green tea in humans has been described as exhibiting a hepatocellular pattern of toxicity, and was
evaluated by using the Roussel Uclaf Causality Assessment Method (RUCAM) causality assessment
scale [62]. Additionally, using green tea in combination with other supplements was associated
with liver injury that was shorter-onset and more-serious than that observed when patients were
taking green tea alone [62]. This more-serious toxicity could be the result of interactions between the
green tea and other components of the preparations. Whole green tea extract and the catechin
(−)-epigallocatechin-3-gallate administered in a purified form inhibit the activity of multiple
cytochrome P450 enzymes, including CYP2B6, CYP2C8, CYP2C19, CYP2D6, and CYP3A, in human
liver and intestinal microsomes [30]. In rats that were administered commercially available green tea,
the activities of hepatic microsomal cytochrome P450s were decreased, including those of CYP2C,
CYP2E1, and CYP3A [63]. (−)-Epigallocatechin-3-gallate administered at non-lethal doses to mice
decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. In mice, lethal
hepatotoxicity was observed at higher doses [64]. Toxicity attributed to green tea extract has also
been reported in rats [65]. Green tea extract administered to rats affected the pharmacokinetics of
simvastatin and inhibited the hydroxylation of midazolam by CYP3a in liver microsomes [31]. Green
tea extract and (−)-epigallocatechin-3-gallate pre-treatment reduced the area under the time-plasma
concentration curve (AUC) and maximum plasma concentration (Cmax) of nadolol—a β-blocker that
is not metabolized by cytochrome P450 enzymes but is reported to be a substrate for several drug
transporters—in rats [5]. Thus, the consumption of green tea may inhibit the intestinal absorption of
pharmaceutics taken concurrently. Additionally, green tea extract and a component of this extract,
(−)-epigallocatechin-3-gallate, inhibit multiple P450 enzymes, and this inhibition may contribute to the
toxicity that is associated with green tea use. Please see an earlier review concerning the hepatotoxicity
of green tea for further information [66].
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3.1.2. Black Cohosh

Black cohosh (Actae/Cimicfuga racemose) is native to the eastern region of North America. The roots
and rhizomes of black cohosh are used as a hormone replacement and as an anti-inflammatory [67,68].
Hepatotoxicity has been reported in patients taking black cohosh [69,70]. Black cohosh has been
reported as a probable causation of liver injury [69–71]. Although, a prior review discounted
previous separate reports of hepatotoxicity that is attributed to black cohosh due to the difficulty in
assigning causation as a result of using mixtures of multiple supplements, the temporal association of
consumption and toxicity, and the presence of other confounding variables [72]. However, a recent
case report found black cohosh to be a highly probable cause of hepatotoxicity [71]. In humans,
the presence of 4HNE protein adducts in the hepatocytes of patients administered black cohosh was
associated with acute liver necrosis and pathologic changes indicative of autoimmune hepatitis [70].
In mice, black cohosh administration increased liver weight and both the expression and activity of
Cyp2b and Cyp3a [73]. However, this induction seems to be mediated by mouse but not by human
PXR. Compounds isolated from the extract of black cohosh were triterpene glycosides, fukinolic acid,
cimicifugic acid A, and cimicifugic acid B, which all inhibited multiple CYP450 enzymes (1A2, 2D6, 2C9,
3A4) [29]. Although these data suggest the potential for interaction with drugs that are metabolized
by these enzymes, the authors found that these compounds were not directly toxic to the human
hepatoma cell line HepG2, supporting the hypothesis that black cohosh causes an immune-mediated
liver injury [29]. Black cohosh is hepatotoxic to humans, and components of black cohosh inhibit P450
enzymes; but, whether this toxicity is modulated by interactions with the P450-inhibitory compounds
in the extract is unclear.

3.1.3. Cranberry

Cranberry (Vaccinium macrocarpon) is native to North America and is consumed to treat wounds,
prevent urinary tract infections, and to treat diabetes [74–76]. The triterpenes, marslinic acid,
corosolic acid, and ursolic acid that are present in cranberry juice inhibit CYP3A4 in human intestinal
microsomes [43]. Cranberry extract also inhibited CYP1A2, CYP2D6, and CYP3A4 [44].

3.1.4. Grapefruit

The grapefruit (Citrus paradisi) is the result of an accidental cross between the pomelo
(C. grandis) and the sweet orange (C. sinesis) that is believed to have originated in Barbados [77].
Capsules containing grapefruit extract are used to treat hypercholesterolemia, weight reduction,
asthma, atherosclerosis, cancer, and depression [78–82]. Furocoumarins, dihydroxy bergamottin,
and gergamottin found in grapefruit juice inhibit CYP3A4 activity in human liver microsomes [38,39].
Grapefruit juice also inhibits organic anion-transporting polypeptide [39]. In humans, the activity of
clopidogrel, an antiplatelet drug used for coronary artery disease that requires activation by CYP2C19
and CYP3A4, is decreased by grapefruit juice [83].

3.1.5. Echinacea

Echinacea is a genus of flowering plants found in the Eastern and Midwestern US. It is used to
treat colds, upper respiratory infections, and dermatologic issues, and contains cichoric acid, caftaric
acid, and echinacoside [84–86]. Crude extracts of Echinacea activate hPXR to induce CYP3A4 gene
transcription and increase the mRNA of CYP1A2, CYP3A4, and MDR1 in the HepG2 cell line [87].
However, Echinacea extract may inhibit the rifampicin-mediated induction of CYP3A4 transcription
via hPXR [45] and has been reported to inhibit CYP1A2 and CYP3A [41,42].

3.1.6. Gardenia

Plants of the Gardenia genus are native to Africa, southern Asia, Australia, and Oceania.
Geniposide is an iridoid glycoside found in the Gardenia jasminoides fruit. The fruit is used as
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a food coloring, an anti-inflammatory, an antithrombotic, and as an antidepressive [88–90]. Rats
treated with geniposide or the crude extract of G. jasminoides had a decreased hepatic CYP3A4
expression and activity that was associated with an increase in glutathione [34]. Genipin, which
is also found in G. jasminoides fruit, induces CYP2D6 and inhibits CYP2C19 and CYP3A4 mRNA,
protein, and activity in the human hepatoma cell line HepG2. Genipin also decreased the expression of
MDR1 (P-gp) [35]. Geniposide decreased hepatic CYP3a levels in rat livers [34]. The administration
of gardenia yellow color caused hepatoxicity in rats [91]. Administering Gardenia yellow color,
consisting of 30% geniposide (w/v), caused increased aspartate transaminase (AST) and alanine
aminotransferase (ALT) in rats and histologic changes in rat liver [91]. The aqueous and alcoholic
extract of Fructus gardeniae and geniposide all cause hepatoxicity in rats [92,93]. Cranberry, Grapefruit,
Echinacea, and Gardenia alone may not be associated with toxicity in humans, but their effects upon the
P450 system warrant concern.

3.2. Herbal Supplement Induction of P450 Enzymes

The hydroxylation of xenobiotics and endobiotics by P450 enzymes can produce daughter
compounds that are more toxic than the parent compound (Figure 2). This is problematic enough when
the efficacy of pharmaceuticals is affected by decreasing plasma concentrations of drugs, especially in
highly active anti-retroviral therapy regimens in which one component of the drug may increase the
metabolism of another component and decrease the efficacy of anti-HIV treatment [94,95]. In the case
of P450-mediated formation of toxic metabolites, this effect may be fatal. Fortunately, pharmaceuticals
are evaluated for this potential. However, in the United States, herbal supplements are not required to
be evaluated for their potential to induce the P450 system [1]. Hyperforin in St. John’s wort, multiple
compounds in Gingko biloba, piperine in black and white pepper, diallyl sulfide in garlic, and grapeseed
extract increase p450 expression (Table 2).

Table 2. Reports of herbal supplements with human Pregnane X Receptor (hPXR)-dependent or
-independent induction of P450 expression.

Herbal Supplement Preparation/Compound Effect on hPXR

Gan Gao-Licorice (Radix et Rhizoma Glycyrrhizae) Extract Activation of CYP3A4 promoter via hPXR [96].

Huang Qi-Astragalus mebranaceus (Radix Astragali) Extract Activation of CYP3A4 promoter via hPXR [96].

Ji Xue Cao-Centella asiatica (Herba Centellae) Extract Activation of CYP3A4 promoter via hPXR [96].

Ban Lan Gen-Isatis indigotica (Radix Isatidis) Extract Activation of CYP3A4 promoter via hPXR [96].

Jin Yin Hua-Lonicera japonica (Flos Lonicerae Japonicae) Extract Activation of CYP3A4 promoter via hPXR [96].

Hong Jing Tian-Rhodiola crenulata (Radix et Rhizoma
Rhodiolae Crenulatae) Extract Activation of CYP3A4 promoter via hPXR [96].

Da Huang-Rhubarb (Radix et Rhizoma Rhei)
Extract Activation of CYP3A4 promoter via hPXR [96].

Trans-resveratrol Activation of CYP3A4 promoter via hPXR [96].

Fu Ling-Poria cocos (Poria) Extract Activation of CYP3A4 promoter via hPXR [96].

Bai Shao-Paeonia lactiflora (Radix Paeoniae Alba) Extract Activation of CYP3A4 promoter via hPXR [96].

Sang Qi-Panax notoginseng (Radix et
Rhizoma Notoginseng) Extract * Activation of CYP3A4 promoter via hPXR [96].

Chuan Xiong-Ligusticum chuanxiong
(Rhizoma Chuanxiong) Extract Activation of CYP3A4 promoter via hPXR [96].

Dang Gui-Chinese angelica (Radix Angelicae sinensis)
Extract Activation of CYP3A4 promoter via hPXR [96].

Ligustilide Activation of CYP3A4 promoter via hPXR [96].

Sheng Di Huang-Rehmannia root (Radix Rehmanniae) Extract Activation of CYP3A4 promoter via hPXR [96].

Yin Yang Huo-Epimedium brevicornum (Herba Epimedii) Extract Activation of CYP3A4 promoter via hPXR [96].

Di Gu Pi-Lycium chinense (Cortex Lycii) Extract Activation of CYP3A4 promoter via hPXR [96].

Bai Zhu-Atractylodes macrocephala (Rhizoma Atractylodis) Extract Activation of CYP3A4 promoter via hPXR [96].

Wu Wei Zi-Schisandra chinensis
(Fructus Schisandrae Chinensis)

Extract Activation of CYP3A4 promoter via hPXR [96].

Schisantherin A Activation of CYP3A4 promoter via hPXR [96].
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Table 2. Cont.

Herbal Supplement Preparation/Compound Effect on hPXR

Bai Shao-Paeonia lactiflora (Radix Paeoniae Alba) Extract Activation of CYP3A4 promoter via hPXR [96].

Mai Dong-Ophiopogon japonicas (Radix Ophiopogonis) Extract Activation of CYP3A4 promoter via hPXR [96].

Hu Zhang-Polygonum multiflorum (Radix
Polygoni Multiflori) Extract Activation of CYP3A4 promoter via hPXR [96].

Huang Lian-Coptis chinensis (Rhizoma Coptidis)
Extract Activation of CYP3A4 promoter via hPXR [96].

Berberine hydrochloride Activation of CYP3A4 promoter via hPXR [96].

Yin Chen-Artemisia scoparia (Herba Artemisiae Scopariae) Extract Activation of CYP3A4 promoter via hPXR [96].

Tian Hua Fen-Trichosanthes kirilowii (Radix Trichosanthis) Extract Activation of CYP3A4 promoter via hPXR [96].

Shui Fei Ji-Silybum marianum (Fructus silybi) Extract Activation of CYP3A4 promoter via hPXR [96].

Zhi Zi-Gardenia fruit (Fructus gardeniae) Extract * Activation of CYP3A4 promoter via hPXR [96].

Ren Shen–Ginseng (Radix et Rhizoma ginseng) *

Ginsenoside F2,
protopanaxadiol Activation of CYP3A4 promoter via hPXR [97].

Panaxatriol, Rg2,
pseudoginsenoside F11,
Rg1, ginsenodide, Rb3

Activation of CYP3A4 promoter via hPXR [97].

Extract Activation of CYP3A4 promoter via hPXR [96].

Black pepper (Piper nigrum) * Piperine
Activation of CYP3A4 promoter via hPXR,
increased mRNA and protein in intestinal cell
lines and human hepatocytes [98].

St. John’s Wort * (Hypericum perforatum)

Hyperforin Activation of CYP3A4 promoter via
hPXR [99,100].

Hyperforin Increased CYP2C9 and 3A4 protein and mRNA
in human hepatocytes [99,100].

Extract (pill)

Increased CYP3A4 activity reflected by
decreased phenytoin concentrations [12].

Increased CYP2C19 activity reflected by
decreased omeprazole concentrations in
humans dependent on CYP2C19
phenotype [13,14].

Increased activity reflected by
hydroxymidazolam/midazolam serum ratios
in humans (CYP3A4)
6-hydroxychlorzoxazone/chlorzaoxazone
serum ratios in humans (CYP2E1) [11,12].

Gingko biloba *

Extract Activation of CYP3A4 promoter via
hPXR [96,101].

Gingkolide A,
Gingkolide B

Activation of CYP3A4 promoter via
hPXR [102].

Increased CYP2B6 and 3A4 mRNA in
PHH [102].

Leaf extract

Increased activity of CYP2C19 reflected by
decreased plasma concentrations of omeprazole
and increased 5-hydroxyomeprazole in
humans [103].

Kava Kava * (Piper methysticum)

Extract Activation of CYP3A4 promoter via
hPXR [104].

Desmethoxyangonin,
dihydromethysticin Increased Cyp3a23 mRNA in rat livers [105].

Echinacea purpura *

Extract Activation of CYP3A4 promoter via hPXR [87].

Extract Increased CYP1A2 and 3A4 mRNA in
HepG2 [87].

Extract Increased CYP1A2 and 3A4 mRNA in
HepG2 [87].

Thyme (Thymus vulgaris) Extract Activation of CYP3A4 promoter via
hPXR [106].

Clove (Syzygium aromaticum) Extract Activation of CYP3A4 promoter via
hPXR [106].

Tumeric (Curcuma longa) Curcumin Activation of CYP3A4 promoter via
hPXR [106].
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Table 2. Cont.

Herbal Supplement Preparation/Compound Effect on hPXR

Red wine (Vitis vinifera) Resveratrol Activation of CYP3A4 promoter via
hPXR [106].

Southern African medicinal plant (Hypoxis hemerocallidea)

Extract Activation of CYP3A4 promoter via hPXR [50].

Rooperol Activation of CYP3A4 promoter via hPXR [50].

Stimasterol Activation of CYP3A4 promoter via hPXR [50].

Southern African medicinal plant (Sutherlandia frutescens) Extract Activation of CYP3A4 promoter via hPXR [50].

Tanzanian medicinal plant (Cyphostemma hildebrandtii) Extract Activation of CYP3A4 promoter via
hPXR [53,54].

Tanzanian medicinal plant (Agauria salicifolia) Extract Activation of CYP3A4 promoter via
hPXR [53,54].

Tanzanian medicinal plant (Elaeodendron buchananii) Extract Activation of CYP3A4 promoter via
hPXR [53,54].

Tanzanian medicinal plant (Sclerocarya birrea) Extract Activation of CYP3A4 promoter via
hPXR [53,54].

Tanzanian medicinal plant (Sterculia Africana) Extract Activation of CYP3A4 promoter via
hPXR [53,54].

Tanzanian medicinal plant (Turraea holstii) Extract Activation of CYP3A4 promoter via
hPXR [53,54].

Allspice (Pimenta dioica) Extract Increased transcription of CYP3A4 in HepG2
cell line [106].

Grape seed (Vitis vinifera) Extract Increased CYP3A4 mRNA in PHH [104].

Garlic (Allium sativum) * Diallysulfide Increased Cyp2b1 and 2b2 mRNA in rat
livers [107].

Herbs, compounds or preparations marked with an asterisk have been associated with alteration of P450 metabolism
in human subjects or have been associated with hepatotoxicity and may be clinically significant.

3.2.1. The Pregnane X Receptor (PXR)

Activation of PXR by ligands such as rifampicin and many other compounds results in the
transcription of genes that are involved in the transport and metabolism of xenobiotics. PXR is a nuclear
hormone receptor (NHR), a class of proteins that are characterized by a DNA-binding domain, as well
as a ligand-binding domain (LBD). The LBD of human PXR (hPXR) binds to many ligands with
a wide range of different structures [108,109]. NHRs bind target DNA sequences in the promoters
of target genes to induce their transcription. The LBD of PXR interacts with agonists to enable the
recruitment of co-activating proteins to trigger the transcriptional activation [108–111]. PXR regulates
the expression of cytochrome P450 enzymes (CYPs) CYP3A4, CYP2B6, CYP2C9, and CYP2C19; phase II
enzymes, including UDP-glucuronosyltransferases and sulfotransferases; and transporters, including
ATP–binding cassette transporter ABCB1 (also known as MDR1 or P-gp), multiple organic anion
transporters, and multidrug-resistance protein 3 (MRP3) [6,7,112–114]. The hPXR protein is expressed
in the liver and intestines [115]. A mouse model in which mouse PXR is replaced with hPXR enables
examination of the effect of hPXR-specific ligands on hPXR function in vivo [116,117].

3.2.2. The Constitutive Androstane Receptor (CAR)

CAR also controls the expression of xenobiotic metabolizing enzymes and transporters.
Unlike PXR, CAR is constitutively active in the absence of ligand [118]. Agonist binding
to CAR further activates CAR and results in the activation of such target genes as CYP2B6,
the CYP2C subfamily, and CYP3A4 [9]. CAR also controls the expression of other genes that
are involved in drug metabolism and transport [119,120]. Phenobarbital (used for refractory
seizure conditions) induces CAR’s dephosphorylation, which indirectly activates CAR and increases
the transcription of target genes [9,121]. Although 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene
activates mouse CAR by direct binding, it does not affect human CAR [122]. Conversely,
6-(4-chlorophenyl)imidazo(2,1-b)(1,3)thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime binds to
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and activates human CAR, but not mouse CAR [118,123]. Therefore, to study the in vivo effects of
human CAR ligands, a humanized transgenic mouse model is used.

3.2.3. St. John’s Wort

St. John’s wort (Hypericum perforatum) is used to treat anxiety and depression. St. John’s wort is
native to Europe, but is now also cultivated in the US, Canada, and Australia [124]. A constituent of
St. John’s wort, hyperforin, increases the expression of CYP2C9 [99] and CYP3A4 [100] via activation
of the hPXR. The concentration in commercial preparations of hyperforin can vary up to 10-fold
between sources [100]. The use of St. John’s wort can increase the metabolism of compounds and
result in the formation of toxic products. Indeed, there has been a report of Hypericum perforatum
induced liver injury that is associated with the use of copaiba, a herbal supplement that is used as
an anti-inflammatory [125]. Whether this is due to hPXR activation is unclear. Although St. John’s
wort is not reported to be toxic alone, it may be responsible for increasing the toxicity of compounds
that an organism is exposed to simultaneously. This toxicity may be mediated by the induction of the
P450 system by St. John’s wort constituents, such as hyperforin, activating hPXR.

3.2.4. Gingko Biloba

Gingko biloba is native to China but is now cultivated in many regions. It is used as
an anti-hypertensive as well as to treat macular degeneration and tinnitus [126–129]. Gingko biloba
extract increases hepatocyte DNA replication (an early indicator of hypertrophic change) and Cyp2b10,
Cyp1a1, and Cyp3a11 mRNA in WT mice, but not in Car−/− mice [130]. This discrepancy suggests
that the induction of the P450 system by mCar is associated with hepatic hypertrophy that is secondary
to Ginkgo biloba consumption. Ginkgo biloba extract activates the transcription of a CYP3A4 promoter
when an expression construct is overexpressed with either mouse or human PXR in HepG2 cells [101].
Ginkgo biloba extract also increases the expression of CYP3A4, CYP3A5, and ABCB1 (MDR1) mRNA in
LS180 colorectal cancer cells [101]. Further characterization of specific components of Gingko biloba
extract demonstrated that ginkgolide A and ginkgolide B induce the expression of CYP2B6, CYP3A4,
UGT1A1, MDR1, and MRP2 mRNA in primary human hepatocytes [102]. Ectopically overexpressed
hPXR is activated by both ginkgolide A and B in HepG2 [102]. Ginkgo biloba is associated with
hepatotoxicity in humans [61]. Whole extract of Ginkgo biloba, as well as the isolated compounds
gingkolide A and B themselves activate hPXR, thereby increasing the expression of CYP3A4, CYP3A5,
and CYP2B6 and other genes controlled by hPXR. Whether the toxicity reported by humans taking
Ginkgo biloba is a result of hPXR activation or of induction of the P450 system is unknown.

3.2.5. Ginseng

Ginseng is found in North America (Panax quinquefolius) and in eastern Asia (Panax ginseng).
The roots and leaves are available as pills and in energy drinks, teas, and coffee beverages.
Panax quinquefolius is used to reduce the incidence and severity of colds, whereas Panax ginseng
is believed to enhance cognitive ability and to lower blood sugar levels; both contain ginsenosides
and gintonin [97,131,132]. Wild Panax ginseng extract inhibits the induction of Cyp1a1 mRNA and
protein expression induced by benzo-pyrene. Cyp1a1 metabolizes benzypyrene, and this activation
is required for toxicity [133]. This activation is protective against benzo-pyrene–mediated toxicity in
rats [133]. However, in clinical situations in which P450 activation results in the decrease of a toxic
parent compound and the formation of a relatively non-toxic daughter compound, ginseng may
contribute to toxicity (Figure 1). Such may have been the case in a patient administered imatinib [134].
The patient took imatinib daily for seven years with no complications, but after self-administering
Panax ginseng as a constituent of an energy drink for three months, there may have been an interaction
between imatinib and the ginseng that resulted in liver injury [135]. CYP3A4 and CYP3A5 metabolize
20(S)-protopanaxadiol, a ginseng sapogenin, in human liver and intestinal microsomes [97,136].
Additionally, several ginsenosides affect hPXR: Ginsenoside F2 and protopanaxadiol activate hPXR
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to induce the transcription of the CYP3A4 gene, whereas panaxotriol, Rg2, pseudoginsenoside
F11, Rg1, ginsenoside, and Rb3 inhibt hPXR [97]. The potential for interactions and toxicity with
ginseng administration may result from the ability of ginseng’s components to affect the expression of
P450 enzymes.

3.2.6. Piperine

Piperine is an alkaloid that is responsible for the flavor and smell of black and white pepper
(Piper nigrum). White and black pepper are taken for GI distress, bronchitis, malaria, cholera,
and cancer [137,138]. The piperamides in P. nigrum are thought to cause ROS production and to
cause oxidative damage in cancer cells [139]. Piperine binds to and activates hPXR to induce the
expression of CYP3A4 and MDR1 [98]. When administered simultaneously with CCl4, piperine
increased the amounts of plasma liver enzymes, hepatic lipid peroxidation, and NADPH-cytochrome
c reductase activity [10]. The toxicity of CCl4 may be due to P450-mediated ROS production [140].
The increased activity of the P450 system due to hPXR activation by piperine may potentiate the
toxicity associated with CCl4 administration. Further studies of hPXR transgenic mice may fully
elucidate the role of piperine in CCl4-mediated HILI.

3.2.7. Garlic

Garlic (Allium sativum) is used to treat a variety of medical conditions. Consumption of large
amounts of garlic is believed to reduce the number of bites by insects, such as ticks [141]. Several
linear sulfur-containing compounds are found in garlic oil, including diallyl sulfide, diallyl disulfide,
and diallyl trisulfide [142]. Intraperitoneal injection of diallyl sulfide increased the expression of
Cyp2b1 and Cyp2b2 mRNA in rat livers [107]. Diallyl sulfide induced Cyp2b10 mRNA in WT mice,
and, to a lesser extent, in Car−/− mice [142]. Dially sulfide also increased Sult1e1 mRNA and protein
expression as well as Car nuclear localization in the livers of WT mice but not in those of Car−/−

mice [143]. Orally administered fresh garlic homogenate causes hepatotoxicity in rats [144,145]. Further
studies using Car mouse models would reveal whether Car activation by garlic homogenate or diallyl
sulfide is required for the observed toxicity.

3.3. Herbal Supplement Hepatotoxicity Mediated by the P450 System

In addition to affecting the toxicity of pharmaceuticals, the P450 system can mediate the toxicity
of herbal supplements (Figure 3). Most of the compounds discussed here are terpenes, pyrrolizidine
alkaloids, and ginsenosides (Table 3). These compounds are found in several herbal supplements that,
in many instances, are combined with herbal supplements and pharmaceuticals that modulate the
activity and expression of P450 enzymes. Pyrrolizidine alkaloids (PAs) are found in many different
species that are consumed as herbal supplements [146]. Ginsenosides are found in ginseng [147].
Examples of terpenes include peppermint oil, menthol, camphor, germander, and pennyroyal.

Table 3. Reported Hepatotoxicity of Herbal Supplements.

Herbal Supplement Preparation/Compound Toxicity

Black cohosh (Actaea racemosa) Extract Liver necrosis, autoimmune hepatitis, protein
adducts [69,70].

Ginseng (Panax ginseng and P. quinquefolius) Extract Possible liver injury in a patient after interaction
with imatinib [134].

Greater celandine (Chelidonium majus) Extract

Reports of hepatocellular injury in
humans [148–151].

Single report of cholestasis in human [148].

Black Pepper (Piper nigrum) Piperine Increased liver enzymes with CCl4 and hepatic
lipid peroxidation in mice [10].



Int. J. Mol. Sci. 2017, 18, 2353 13 of 28

Table 3. Cont.

Herbal Supplement Preparation/Compound Toxicity

St. John’s Wort (Hypericum perforatum)

Extract Liver injury associated with copaiba use [125].

Extract Increased toxicity associated with tert-butyl
hydroperoxide [152].

Green tea (Camellia sinensis)
Epigallocatechin-3-gallate Hepatotoxic in mice [64].

Extract Hepatotoxic in rats [65].

Germander (Lamiaceae family, Teucrim Genus)

Hepatotoxic in humans [61,153–155].

Teucrin A, teuchamaedryn A Hepatotoxic to isolated rat hepatocytes, CYP3A4
dependent [156].

Teucrin A Hepatocellular toxicity in mice [157].

Gingko biloba
Extract May be hepatotoxic in mice [130].

Extract Hepatotoxic in humans [61].

Camphor (Cinnamomum camphora) Topical cream Single report of hepatotoxicity in a human [158].

Kava kava (Piper methysticum) Extract Hepatotoxic in humans [61].

Pennyroyal oil (Mentha pulegium and Hedeoma pulegioides)

Oil Hepatotoxic in mice [159].

Oil Hepatotoxic in humans [160–162].

(R)-(+)-pulegone CYP2E1/1A2-dependent hepatotoxicity in
mice [163].

Pulegone, menthol Hepatotoxic in mice [164].

Menthone Hepatotoxic in rats [165,166].

Pulegone, menthol Hepatotoxic in rats [164,167].

Gardenia (Fructus gardenia)

Extract (30% geniposide) Hepatotoxic in rats [91].

Geniposide Hepatotoxic in rats [92].

Extract Hepatotoxic in rats [92].

Garlic (Allium sativum) Homogenate Hepatotoxic in rats [144,145].

Found in multiple species of plants

Monocrotaline CYP3A4-dependent hepatotoxicity in mice [168].

Dehydromonocrotaline,
dehydrorectronecine Toxic to human hepatoma cell lines [168,169].

Garcinia cambogia Extract Hepatotoxic to humans [170].

Mistletoe (Viscum coloratum) Extract Hepatotoxic to humans [171].

3.3.1. Characterization of Liver Injury by Pathophysiology

The clinicopathological characterization of DILI (reviewed in Wang et al., 2014) represents the
clinical presentation of toxicity and the pathological effects of the injury and is a necessary step to
assigning causation to a particular agent [172]. Cholestatic liver injury may be caused by the disruption
of intracellular actin or transporter proteins ultimately resulting in bile stasis [173,174]. Hepatocellular
liver damage is associated with compounds that are directly toxic to liver parenchyma and ALT
elevation. ALT is expressed throughout the liver and is associated with diffuse hepatocellular liver
injury [175]. Hepatotoxicity from herbal supplements is predominantly hepatocellular; 12% of patients
experience severe, fatal DILI, 4% require liver transplant, and chronic injury develops in 10% [176,177].
Cholestatic liver injury is defined by elevated levels of serum alkaline phosphatase (ALP), γ-glutamyl
transferase (GGT), and bilirubin [175]. This subtype is defined by an impeded bile flow and the
deposition of bile acids within the liver lobules. Direct damage of biliary epithelium or impaired bile
efflux transport can produce cholestasis [178]. Cholestasis can lead to fibrotic change and even hepatic
necrosis. ALP is expressed in biliary epithelial cells and is released during biliary obstruction [179].
Mixed liver injury results in cases in which combinations of agents are used or when a single agent has
a toxicity mechanism that damages multiple hepatic cell types [180].

3.3.2. Characterization of Liver Injury by Pathogenesis

Characterization of liver injury by pathogenesis considers intrinsic versus idiosyncratic types
of injury [181]. Intrinsic liver injury is dose-dependent and in many cases is caused by the parent
compound or a metabolite of the parent compound. Intrinsic liver injury associated with a measurable
species in the blood or liver [182,183]. These reactions are predictable (i.e., occurring in animal
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models) and are usually detected in the preclinical development of pharmaceuticals. The pathogenesis
of intrinsic liver injury is mediated by the compound and is usually reproducible in laboratory
animals [181,183–186]. Therefore, the pathogenesis of intrinsic liver injury is more easily studied
than idiosyncratic liver injury. In the more common form of liver injury, idiosyncratic liver injury,
the modification of compounds by the P450 system can result in the formation of protein adducts
that are recognized as antigens [187–189]. In many cases, these adducts are not detectable in the
blood and this effect is not reproducible in laboratory animals [190]. Idiosyncratic liver injury
likely results from a combination of genetic and environmental factors that are not reproducible
in laboratory animals [181,191]. Unlike intrinsic liver injury, the pathogenesis of idiosyncratic liver
injury is not unique to the compound initiating the reaction, but is dependent upon an immune
response [192,193]. This type of injury can only be detected in clinical development, but is more
commonly only detected after the compound is marketed, due to a relatively low incidence hiding the
effect in small study populations.

3.3.3. Assessment of Causality

Predicting the risk of liver injury due to herbal supplements requires both a standardized
causality assessment method and a repository of this information reported in the clinic. The Council
for International Organizations of Medical Sciences (CIOMS), Working Group IX, developed
the Roussel Uclaf Causality Assessment Method (RUCAM), a list of tools and guidelines for
researchers and clinicians to evaluate and manage the risk of medicinal products (including herbal
supplements) [25,194,195]. These standardized tools were developed to define and assess causality of
pharmaceutics in causing DILI. The guidelines were developed to standardize the evaluation of DILI
during development and after the public release of pharmaceuticals. The application of this method
requires classifying liver injury according to pathophysiology, time to onset, liver tests, historical
risk factors, concomitant drug and herb use, patient history, and the response to re-exposure of the
compound. The original RUCAM addressed the lack of defined items that had previously resulted
in a lack of consensus between evaluators and also introduced the consideration of chronological
data. This original version was plagued by intra- and inter-observer variability, as well as a lack of
consideration of differential diagnoses due to non-drug/herb causes [195–197]. An update to RUCAM
addressed these weaknesses and streamlined the evaluation of these cases. The updated definitions
of the classification items reduces the variability of assessments and the dependence upon outside
experts not involved with the case [195].

3.3.4. Peppermint Oil, Pennyroyal, and Menthol

Menthol is prepared from corn mint or peppermint, or is made synthetically. Menthol is
administered topically to treat minor muscle and joint pain by causing the skin to feel cool and
then warm, distracting patients from feeling deeper pain [198]. Pennyroyal (Mentha pulegium) is native
to Europe, North Africa, and the Middle East. Another species (Hedeoma pulegioides) is native to North
America. Pennyroyal is traditionally used in cooking and as an abortifacient. It is also used for colds,
pneumonia, and dyspepsia [22,159,199]. Pulegone and menthol cause hepatotoxicity when orally
administered to rats [164,167]. Pennyroyal oil causes hepatotoxicity in humans and in mice [159–162].
Menthone, a component of peppermint oil, caused hepatotoxicity in rats treated with it for 28 days by
oral gavage [165]. Pugelone is metabolized to menthofuran by oxidation of the allylic methyl group,
followed by an intramolecular cyclization reaction to from a hemiketal, and subsequent dehydration
to form a furan [22]. Purified CYP2E1, CYP1A2, and CYP2C19 oxidized pulegone to menthofuran.
Then subsequently oxidized menthofuran to 2-hydroxymenthofuran, an intermediate in the formation
of mintlactone and isomintlactone [23].

Menthofuran is a monoterpene that is found in several species of mint plants and is oxidized by
cytochrome P450 enzymes to hepatotoxic metabolites. The metabolism of menthofuran requires
CYP1A2, CYP2E1, and CYP2C19 [22]. These cytochrome P450 enzymes oxidize menthofuran
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to 2-hydroxymenthofuran, which arises from a dihydrodiol produced from a furan epoxide and
is an intermediate in the formation of mintlactone and isomintlactone [22]. The metabolites of
menthofuran identified in human and rat liver microsomes that may be responsible for hepatotoxicity,
are a γ-ketoenal and epoxides formed by oxidation of the furan ring, which form conjugates
with hepatic proteins. CYP1A2, CYP2B6, and CYP3A4 are responsible for the formation of GSH
conjugates in human liver fractions [24]. The proteins adducted in rat livers are serum albumin,
aldehyde dehydrogenase (ALDH2), malate dehydrogenase (MDH1), and ATP synthase subunit d [166].
The activities of ALDH and ATP complex V were both decreased [166]. Inhibition of cytochrome P450
enzymes with SKF-525A, metyrapone, piperonyl butoxide, and carbon disulfide prevented or reduced
the hepatoxicity of pugelone [200].

CYP2A6 is the major cytochrome P450, which is involved in the oxidative metabolism of menthol
in human liver microsomes to form (+)-(1S,3S,4S)- and (−)-(1R,3R,4R)-trans-p-methane-3,8-diol
derivatives [201]. (−)-Menthol inhibits CYP2A13 and CYP2A6 [32,33]. Additionally, the monoterpene
(R)-(+)-pulegone causes increases in the marker of liver injury, glutamate pyruvate transaminase,
in mice treated with pulegone that are mitigated by pretreatment with disulfiram and cimetidine,
inhibitors of CYP2E1 and CYP1A2, respectively [163]. Additionally, menthol may affect the metabolism
of pharmaceuticals. Pretreatment of mice with menthol increased the clearance of warfarin and the
expression of Cyp2c protein, with a concomitant increase in Car nuclear translocation [202]. Peppermint
oil, menthol, and methyl acetate reversibly inhibited the metabolism of nifedipine. Peppermint oil
also increased the AUC of felodipine in human liver microsomes containing CYP3A4 [55]. In addition
to direct toxicity resulting from pulegone metabolism mediated by the P450 system, components
found that peppermint oil, pennyroyal oil, and menthol may directly affect the P450 system, leading to
modulations and toxicity of concomitant herbal supplements and pharmaceuticals.

3.3.5. Camphor

Camphor was traditionally prepared from the wood of the camphor laurel
(Cinnamomum camphora), which is native to Asia. Camphor is now predominantly produced
from turpentine and is used in such products as Vicks VapoRub™. Camphor products are usually
applied topically to reduce dermatologic complaints and the symptoms of respiratory tract
disease [203,204]. (−)-Camphor is a bicyclic monoterpene that is found in the essential oil produced
from dalmation sage and is metabolized by CYP2A6 of bacteria overexpressing the human protein [205].
Camphor may be hydroxylated by cytochrome P450 enzymes [206]. In fact, hepatotoxicity of camphor
applied topically has been reported in an infant [158]; however, the toxicity may not be ascribable
directly to topical administration and could have resulted from unobserved ingestion.

3.3.6. Germander

Germander (Teucrium chamaedrys and other species of the genus Teucrium) is used to treat
gallbladder disease, fever, diarrhea, gout, and for weight loss [207–209]. Germander is banned
in France, and its use is restricted in the US and Canada [210]. Germander is associated with
hepatotoxicity in humans [78,124,125]. The furanoneoclerodane diterpene teucrin A is thought
to be responsible for the toxicity of germander, the activation of which in rats [211] and isolated
rat hepatocytes [212] led to covalent modification of hepatic proteins. Indeed, pretreatment with
phenobarbital, a CAR activator, increased the hepatotoxicity of teurcin A [157], which is activated
by cytochrome P450 enzymes and is required for hepatocellular damage in mice. This is concerning
because the method of preparation of germander decoctions can affect the concentration of teucrin
A [213]. Teucrin A and teuchamaedryn A were found to be hepatotoxic to isolated rat hepatocytes,
and this toxicity was decreased by co-treatment with a CYP3A inhibitor [156]. The toxicity was
associated with the formation of reactive metabolites that covalently bound hepatic proteins [156].
These proteins were further identified and were found to be mostly of mitochondrial and endoplasmic
reticulum origin, and were abducted by the 1,4-enedial derivative of teucrin A to lysine and
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cysteine residues [211]. The hepatotoxicity of Germander, mediated by teucrin A-adduct formation
may be mediated by the P450 system. This is concerning due to reports of hepatotoxicity in
humans [61,153,154], as well as its potential use in combinations of other herbal supplements and
pharmaceutics that may potentiate adduct formation and subsequent toxicity.

3.3.7. Pyrrolizidine Alkaloids

Pyrrolizidine alkaloids (PAs) and their N-oxides are found in approximately 3% of flowering
plants. These plants are predominantly members of the Asteraceae, Boraginaceae, Compositae,
and Fabaceae families, and can also be Senecio, Heliotropium, Crotalaria, and Symphytium
species [214,215]. PAs contain pyrrolizidine, two fused penta rings with nitrogen at position 4.
Pyrrole derivatives that react with DNA may cause injury to hepatic vasculature and liver
parenchyma [216,217]. (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine–derived DNA
adducts cause hepatocarcinoma in rats and are formed from riddelline and monocrotaline by
human or rat liver microsomes [218]. Senecionine, monocrotaline, adonifoline, and isoline can be
conjugated to glucuronic acid by UGTs in human liver microsomes [219]. 9-Glutahionyl-6,7-dihydro-1-
hydroxymethyl-5H-pyrrolizine was detected as conjugated to glutathione in human liver microsomes
and in the bile of rats treated that were with the pyrrolizidine alkaloids isoline, retrorsine,
and monocrotaline [220]. Monocrotaline caused severe liver and moderate renal toxicity in mice;
the degree of toxicity was abrogated by pretreatment with ketoconazole, a CYP3A4 inhibitor [168].
Correspondingly, the presence of N-oxide metabolites of monocrotaline was decreased by pretreatment
with ketoconazole. Dehydromonocrotaline and dehydrorectronecine are metabolites of monocrotaline.
Dehydromonocrotaline and dehydrorectronecine, but not monocrotaline, caused toxicity in human
hepatic sinusoidal endothelial cells and HepG2 cells [168,169]. Retrorsine inhibits the activity
of CYP3A4, as measured by testosterone hydroxylation [37]. The hepatotoxicity of PAs and
their derivatives is mediated by the P450 system and care should be exercised when herbal
supplements containing these compounds are used in combination with other herbal supplements
and pharmaceuticals that induce the P450 system.

4. Discussion

Herbal supplement use can lead to HILI due to interactions with the P450 system.
These interactions may not be predicted until a series of reports of HILI associated with the use of
a particular herbal supplement leads to an investigation of potential interactions. Unlike prescription
drugs regulated by the FDA (and international agencies), the potential of herbal supplements to
induce or inhibit P450 enzymes is not investigated before the supplements are made available to the
general population. This lack of information before a supplement is marketed is compounded by
the difficulties in event-reporting and history-taking concerning herbal supplement use. Difficulty
in assigning an etiologic designation to a particular xenobiotic in patients with positive histories
of multi-pharmaceutical, multi-supplement, or mixed pharmaceutical and supplement regimens
complicates what “post-marketing” reporting is available. Many networks for reporting exist,
but are weakened by difficulties of self-reporting of herbal supplement use by patients and by poor
history-taking. However, careful history-taking by physicians may prevent an interaction from taking
place and identify the likely offending agent.

Previous articles have discussed herbal supplements and HILI, but this review has focused on
herbal supplements that may interact with the P450 system to exacerbate the toxicity of other drugs or
to cause toxicity themselves [221–224]. Herbal supplements may contribute to HILI by inhibiting P450
enzyme activity, inducing P450 gene transcription, or being metabolized by P450 enzymes without
affecting their levels or activity. The inhibition of P450 enzymes may contribute to HILI by increasing
the exposure of a toxic compound that is metabolized by P450 enzymes. Catechins in green tea,
terpenes in black cohosh and cranberry, geniposide and genipin in Gardenia, fucomarins in grapefruit
juice, and Echinacea extract may inhibit the activity or decrease the expression of cytochrome P450
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enyzmes (Table 1). The induction of P450 genes may contribute to HILI by increasing the exposure
of a toxic parent compound that is formed by P450 metabolism or by the release of ROS. Hyperforin
in St. John’s Wort, multiple compounds that are found in Gingko biloba, piperine in black and white
pepper, diallyl sulfide in garlic, and grapeseed extract increase P450 expression (Tables 1 and 2).
The metabolism of herbal supplements by P450 enzymes may contribute to HILI by resulting in
the production of a toxic parent compound. Most of the compounds discussed here are terpenes,
pyrrolizidine alkaloids, and ginsenosides.

Careful analysis of existing literature combined with extensive history-taking concerning the use
of herbal supplements can help to prevent herb-drug interactions and HILI. The recognition of and
reporting of HILI events by physicians can lead to greater knowledge of potential interactions and
hepatotoxicity, enabling them to better educate patients of the dangers of some combinations.
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