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Abstract: Maintenance of mesenchymal stem cells (MSCs) requires a tissue-specific 
microenvironment (i.e., niche), which is poorly represented by the typical plastic substrate used for 
two-dimensional growth of MSCs in a tissue culture flask. The objective of this study was to address 
the potential use of collagen-based medical devices (HEMOCOLLAGENE®, Saint-Maur-des-Fossés, 
France) as mimetic niche for MSCs with the ability to preserve human MSC stemness in vitro. With 
a chemical composition similar to type I collagen, HEMOCOLLAGENE® foam presented a porous 
and interconnected structure (>90%) and a relative low elastic modulus of around 60 kPa. Biological 
studies revealed an apparently inert microenvironment of HEMOCOLLAGENE® foam, where 80% 
of cultured human MSCs remained viable, adopted a flattened morphology, and maintained their 
undifferentiated state with basal secretory activity. Thus, three-dimensional HEMOCOLLAGENE® 
foams present an in vitro model that mimics the MSC niche with the capacity to support viable and 
quiescent MSCs within a low stiffness collagen I scaffold simulating Wharton’s jelly. These results 
suggest that haemostatic foam may be a useful and versatile carrier for MSC transplantation for 
regenerative medicine applications. 

Keywords: stem cell niche; medical device; regenerative medicine; biocompatibility; paracrine 
activities 
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1. Introduction 

In the organism, adult stem cells guarantee the maintenance and repair of tissues and organs. 
Among them, mesenchymal stem cells (MSCs) are emerging as hopeful candidates for cell-based 
therapy of numerous diseases (i.e., myocardial infarction, Crohn’s disease, Graft versus host disease, 
osteoarthritis, etc.) [1,2]. Indeed, along with their differentiation potential and the production of 
several humoral factors, MSCs are thought to exert regenerative effects by increasing healing rates, 
modulating inflammation and immune response, promoting angiogenesis, and enhancing tissue 
remodelling [3]. 

Adult tissues, such as bone marrow and adipose tissue, have proven to be sources for effective 
MSCs; however, several disadvantages exist, including availability and invasive and painful 
procedures required for their isolation. In addition, the health status and the age of the donor may 
affect MSC expansion capability, function, and/or survival after transplantation [4]. Consequently, 
scientists are looking for stable, safe, and highly accessible stem cell sources with great potential for 
regenerative medicine. Since 2004, human MSCs derived from umbilical cord Wharton’s jelly (WJ-
MSCs) have become popular in the regenerative medicine community, due to the ease of cell 
harvesting from scraps of perinatal tissues, which is neither painful nor invasive [5,6]. In addition, 
their primitive nature sheds light on their significant high proliferation capability and increased in 
vitro expansion ability when compared to adult MSCs [7]. 

In the natural environment, stem cells reside in a niche, a microenvironment regulating MSC 
quiescence, self-renewal, and differentiation. MSCs are isolated from their niche (typically composed 
of extracellular matrix, niche cells, and secreted stimulants such as growth factors, chemokines, and 
cytokines), and are traditionally expanded in culture plastic in a two-dimensional (2D) monolayer. 
However, one of the major limitations in using MSCs ex vivo is that they lose their fundamental 
properties, such as quiescence and multipotency, limiting their usefulness. The preservation of MSCs 
in the natural environment is unique, and researchers have been trying to understand how nature 
maintains the MSCs’ fundamental features. 

Advances in material sciences have garnered interest in providing a temporary three-
dimensional environment (scaffold) for MSCs, allowing the diffusion of nutrients to ensure cell 
survival [8]. However, success of these structures is strongly dependent on their structural and 
mechanical features; ensuring stem cell interactions with the surrounding environment [9,10]. 
Naturally-derived polymers, such as collagen, are appealing for biological applications due to their 
enzymatic degradation and proven safety through long-term applications in clinical trials [11]. 

In light of these thoughts, we address the potential use of collagen-based medical devices 
(HEMOCOLLAGENE®) as WJ-MSCs in vitro niche model. Composition, structure, and mechanical 
properties of HEMOCOLLAGENE® foam were first investigated before assessment of WJ-MSCs 
behaviour and morphology once seeded in HEMOCOLLAGENE®. The potency of 
HEMOCOLLAGENE® as an inert WJ-MSCs niche was confirmed through MSC basal cytokines 
production and maintenance of their undifferentiated state, revealing that HEMOCOLLAGENE® 
presents suitable properties as a scaffold for WJ-MSCs culture. 

2. Results and Discussion 

Collagen-based foams are the most used materials in medical applications. In the present study, 
we selected bovine collagen foam, manufactured by Septodont (Saint-Maur-des-Fossés, France), as a 
carrier for stem cell-based therapy. The company´s main product, a foam-like collagen scaffold 
(HEMOCOLLAGENE®), has already been used in dental surgery as a haemostatic device since 1999. 
HEMOCOLLAGENE® was first characterized in terms of chemical composition. Fourier transform 
infrared (FTIR) spectroscopy analysis revealed three main peaks at 1237 cm−1, 1544 cm−1, and 1630 
cm−1 (Figure 1, red line) characteristics of amide III, II, and I, respectively, matching with the spectra 
of type I collagen (Figure 1, black line). Additional FTIR spectra attributed to collagen were given in 
Table S1 in the Supporting Information. A further deep biochemical characterization, performed by 
ion exchange chromatography, showed that HEMOCOLLAGENE® foam had close similarities with 
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type I collagen with a high amount of glycine, followed by proline, alanine, and hydroxyproline in 
each specimen (Table 1). 

 
Figure 1. Composition of HEMOCOLLAGENE®. Spectra obtained by Fourier transform infrared 
(FTIR) spectroscopy showing similarities of HEMOCOLLAGENE® foam (red line) with type I 
collagen (black line). 

Table 1. Amino acid content assessed by ion exchange chromatography (residue numbers/1000). 

Amino-Acid HEMOCOLLAGENE® Type I Collagen 
(Reference) 

Hydroxyproline 91.2 101.4 
Aspartic acid 49.7 49.7 

Threonine 19.4 18.9 
Serine 33.7 28.8 

Glutamic acid 75.2 72.1 
Proline 126.8 117.3 
Glycine 322.5 327.5 
Alanine 106.5 114.8 
Valine 23.8 20.9 

Methionine 3.1 7.5 
Isoleucine 13.5 11.9 
Leucine 26.9 25.8 
Tyrosine 2.0 2.0 

Phenylalanine 14.7 13.9 
Hydroxylysine 6.3 6.5 

Lysine 24.6 26.3 
Histidine 5.3 5 
Arginine 54.6 49.7 

From a structural viewpoint, HEMOCOLLAGENE® exhibited a high interconnectivity and 
micro/macroporous morphology as depicted in the scanning electron microscopy (SEM) and cross-
histological section results (Figure 2A,B). Macro-pore diameters were estimated to be 150 to 500 μm. 
The total porosity assessed by the mercury intrusion porosimetry method [12] was high, about 95%. 
The pore access distribution from 165 μm to 3 nm showed a mean radius corresponding to the main 
peak on Figure 2C of around 9 μm. The pore threshold determined by the intersection of the two 
tangents of the cumulative intrusion curve was around 6.5 μm (Figure 2D). These values, close to each 
other, showed that the porous network of HEMOCOLLAGENE® was unimodal and that the pore 
threshold was significant. To our knowledge, in regenerative medicine applications, porous structures 
with radii around 150 μm and high porosity (>90%), along with well-interconnected open pores, are 
required for allowing cell infiltration and efficient nutrient and oxygen diffusion into the structure [8]. 
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In addition to having suitable architecture, 3D cell carrier foam must exhibit appropriate 
physical properties to accommodate cell survival. Indentation experiments were used to explore the 
mechanical features of HEMOCOLLAGENE® foams (Figure 3). The values for the Young’s modulus 
were 69.6 kPa and 62.3 kPa for foams at indentation rates of 1 mm/min and 10 mm/min, respectively. 
No significant difference was observed between the identified moduli at the different speeds, 
indicating no pronounced viscoelastic effect. The obtained values fall well within the values reported 
in the literature for 3D cell carrier foam [13,14]. 

 
Figure 2. Structure of HEMOCOLLAGENE®. (A) Representative scanning electron microscopy image 
(SEM, scale bar indicates 1 mm); (B) Hematoxylin-Eosin-Saffron (HES) staining of paraffin-embedded 
HEMOCOLLAGENE® cross-section (scale bar indicates 500 μm); (C,D) Pore distribution obtained by 
mercury intrusion porosimetry showing the mean radius on the incremental curve and the pore 
threshold on the cumulative curve. 

 
Figure 3. Mechanical features of HEMOCOLLAGENE®. Force-displacement responses obtained 
using indentation tests at 1 mm/min (n = 4) and 10 mm/min (n = 4). The Young’s modulus has been 
identified using the Hertz model. No significant difference was observed between the two different 
testing speeds. 
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The above results highlighted that HEMOCOLLAGENE® foams possess the carrier-required 
criteria for stem cell based therapy [8]. In the following the results of assays involving the association 
of HEMOCOLLAGENE® foam with MSCs are presented. A sufficient number of WJ-MSCs from six 
human umbilical cords were expanded within approximately eight weeks. To reduce heterogeneity 
of the extracted cell populations [15], WJ-MSCs from three passages with fibroblast-like spindle 
shapes on culture plastic were used (Figure S1A,B in supporting information section). Moreover, 
these cells expressed the putative mesenchymal markers CD 44, CD 73, CD 90, and CD 105, but not 
the hematopoietic markers CD 34, CD 14, and HLA-DR (Figure S1C in the Supplementary Materials). 
These results, in agreement with previous studies, confirmed their MSC phenotype [16]. 

WJ-MSCs were injected in HEMOCOLLAGENE® foam at density of 8 × 104 cells/foam and placed 
in 24-well treated-chamber culture to avoid cell migration from foam to plastic. Cytocompatibility of 
HEMOCOLLAGENE® was firstly monitored by WST-1 (water-soluble tetrazolium salt-1) assay, DNA 
quantification and Zombie® labelling after 4, 7, and 10 days of culture, using independent foam for 
each test and time point. While WST-1 and DNA quantification did not show significant variation of 
measured values, Zombie® labelling revealed a cell survival rate of around 80% over the experimental 
time (Figure 4). 

 
Figure 4. Cell viability over the time of the study. (A,B): Histogram reflecting WST-1 assay and DNA 
quantification, respectively; and (C): Flow cytometry results obtained after Zombie® labelling. Kinetic 
study performed after 4, 7, and 10 days of culture showing live and non-proliferating WJ-MSCs 
cultured within HEMOCOLLAGENE® foam (n = 6, Mann and Whitney test). 

These results indicated that HEMOCOLLAGENE® foams are a suitable environment for stem 
cell culture. It is generally accepted that an increase in the WST-1 optical density at 450 nm and in 
DNA values reflects a proliferating state of cells; in our study, the number of WJ-MSCs in 
HEMOCOLLAGENE® foam remained stable over the culture time, a signature of the non-
proliferating state. Moreover, the high survival rate reflected non-toxic culture conditions; meeting 
the basic requirements of tissue engineering scaffolds [11]. In addition to cell survival, a uniformity 
of cell distribution within scaffolds is required for 3D culture systems. A general WJ-MSCs 
distribution within HEMOCOLLAGENE® up to 10 days of culture was given by HES and Masson’s 
trichrome staining (Figure 5). Histological cross-sections showed randomly-distributed WJ-MSCs 
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embedded within the fibrous extracellular matrix (Figure 5A,B, yellow arrow). Few apoptotic WJ-
MSCs revealed by cleaved caspase-3 immunohistochemistry were detected in the inner region of the 
foam (Figure 5C, red arrow), strengthening the Zombie® results. Finally, we noticed the absence of 
squamous cells within the HEMOCOLLAGENE® foam, the absence of glycosaminoglycane synthesis, 
and the absence of mineralization nodules, signature of the absence of spontaneous cell 
differentiation into adipose, cartilaginous and bone lineage, respectively. 

 
Figure 5. Cell distribution and apoptosis after 10 days of culture. (A,B) Haematoxylin-eosin-saffron 
(HES) and Masson’s trichrome staining of paraffin-embedded cellularized HEMOCOLLAGENE® 
cross-sections, respectively. HES staining showing nuclei in blue (yellow arrow) and collagen in 
orange. Masson’s trichrome staining, showing collagen in green and nuclei in brown (yellow arrow); 
and (C) cleaved caspase-3 immunohistochemistry showing few apoptotic cells (red arrow) within 
HEMOCOLLAGENE®. (Scale bars indicate 40 μm). 

The low percentage of apoptotic/necrotic cells within foam might be attributed to the 
preservation of porosity and pore interconnectivity over the culture time, allowing mass transfer 
exchanges between foam and culture medium (i.e., nutriment diffusion and cell metabolite release). 
Furthermore, pore size and pore interconnectivity influence cell shape. Cells residing in open-pore 
scaffold exhibit an elongated shape in contrast to closed-pore scaffold where cells adopt a rounded 
morphology [8,17]. A deeper investigation of WJ-MSCs morphology within HEMOCOLLAGENE® 
foam was performed by SEM and CLSM experiments. SEM imaging showed that WJ-MSCs adopted 
flattened morphology within HEMOCOLLAGENE® pores (Figure 6). These observations were 
further supported by CLSM micrographs of Phalloidin® stained cytoskeleton, showing actin bundles 
of aligned long filaments and highly elongated morphology. These results clearly demonstrate that 
WJ-MSCs establish physical interactions with the HEMOCOLLAGENE® foam. 

 
Figure 6. Cell morphology after 10 days of culture. (A,B) Over and closer (rectangle) scanning electron 
microscopy views (scale bars indicate 100 and 50 μm, respectively), highlighting cell distribution 
within pores (white arrows); (C,D) Over and closer Imaris 3D views of cytoskeleton-labelled cells 
(scale bars indicate 30 and 10 μm, respectively), showing actin bundles and highly-elongated cell 
morphology. 
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Cell spreading is a complicated process, which, besides biophysical cues (mechanical and 
structure), is also associated with the chemical composition of materials [8]. MSCs have been shown 
to possess a strong attachment to type I collagen through arginine-glycine-aspartate (RGD) binding 
domains with the cell membrane integrins [18,19]. Gathering HEMOCOLLAGENE® composition and 
porosity (Figures 1 and 2), the expected high cellular bond is confirmed. During experimental studies, 
we noticed that WJ-MSC-loaded HEMOCOLLAGENE® foams shrank drastically (Figure S2), which 
could be due to their enzymatic degradation. However, the lack of significant variation of the 
hydroxyproline rate in the supernatant (12, 16, 18, and 21 μM, after 1, 4, 7, and 10 days of culture, 
respectively, versus 12,680 μM for totally hydrolyzed foam), suggests a possible mechanical 
instability of HEMOCOLLAGENE® foams or active contractile forces generated by WJ-MSCs [20]. 

Mesenchymal stem cells within niches respond to biochemical, structural, and mechanical cues 
from their surrounding microenvironment, affecting their constitutive cytokines secretion/self-
renewal/differentiation, thus contributing to tissue homeostasis [21]. The present study was designed 
to determine if WJ-MSCs cultured with HEMOCOLLAGENE® foams maintain a constitutive 
secretory profile. Therefore, their ability to regulate and release cytokines, over the experimental time, 
such as IL-6, IL-8, IL-10, and vascular endothelial growth factor (VEGF), was followed at mRNA (i.e., 
IL6, CXCL8, IL10, and VEGFA) and protein levels by qRT-PCR and ELISA, respectively. 

Among quantified cytokines, only IL-6 and IL-8 were detected in supernatants, whereas no 
regulation of IL6 and CXCL8 was noticed, suggesting a constitutive secretion of these cytokines over 
the kinetic study (Figure 7). While IL-6 and IL-8 releases were constant over the experimental time, 
we were able to distinguish a slight increase at day 7 (Figure 7A–D). Related to an anti-inflammatory 
profile, neither IL10 regulation nor IL-10 release in supernatant were detected, probably due to the 
absence of a pro-inflammatory environment stimuli [22]. Despite a significant down-regulation of 
VEGFA at day 10, released VEGF was not detected in the culture supernatant over the time (Figure 
7E), suggesting that VEGF production is under the detection threshold of the kit or VEGF is 
accumulated within the cell cytoplasm. Finally, as bone is composed of type I collagen, we looked for 
the BMP-2 release in the medium, which was not detected in the supernatant over the study time. 

IL-6 and IL-8 are currently described as pro-inflammatory cytokines, but in our experiments, their 
basal level secretion suggests that HEMOCOLLAGENE® represents an “inert” environment for WJ-
MSCs and cell supports secretory function. While the basic biological role of IL-8 is attracting and 
activating neutrophils, Boyden migration assays did not show significant increase in the recruitment of 
neutrophils by WJ-MSC loaded-HEMOCOLLAGENE® conditioned media compared to cell-free 
HEMOCOLLAGENE® conditioned media (Figure S3), confirming both the neutral role of 
HEMOCOLLAGENE® foam and constitutive IL-8 cytokine production of WJ-MSCs cultured in 
HEMOCOLLAGENE®. IL-6 cytokine is described to maintain the “stemness” of MSCs [23,24]. 
Therefore, the expression of NT5E, THY1 and ENG (genes corresponding to CD 73, CD 90, and CD 105, 
respectively) was followed by qRT-PCR after 4, 7, and 10 days of culture. With respect to stem cell 
associated markers, WJ-MSCs cultured in HEMOCOLLAGENE® did not show any gene variations over 
the time (Figure 8A–C), suggesting a role of HEMOCOLLAGENE® in maintaining WJ-MSCs under the 
undifferentiated state. Furthermore, once placed on plastic culture, WJ-MSCs were able to migrate and 
proliferate without any cell damage and spontaneous differentiation (Figure 8D–F). 
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Figure 7. Cell paracrine activity over the time of the study. (A,B) Histograms of IL-6 and IL-8 ELISA 
quantification, respectively, showing non-significant production of related proteins; (C–E) 
Histograms of IL6, CXCL8, and VEGFA qRT-PCR analysis, showing non-significant regulation of IL6 
and CXCL8, and significant VEGFA down-regulation (n = 6, Mann and Whitney statistical test, p < 0.05 
for four versus 10 days of culture). 

 
Figure 8. Cell phenotype over the time of the study. (A–C) Histograms of NT5E (CD 73), THY1 (CD 
90), and ENG (CD 105) qRT-PCR analysis, respectively, showing non-significant regulation of MSCs 
markers; (D) WJ-MSC migration on plastic; (E) WJ-MSC morphology after passage; and (F) flow 
cytometry results obtained after Zombie® labelling of amplified cells (n = 6, Mann and Whitney 
statistical test). 

  



Int. J. Mol. Sci. 2017, 18, 2210 9 of 15 

 

3. Materials and Methods 

3.1. Materials 

A haemostatic medical device named HEMOCOLLAGENE® foam was provided from 
Septodont, France. According to the manufacturer, HEMOCOLLAGENE® is made of bovine non-
denatured collagen and obtained by a freeze-dried process. 

3.1.1. Scanning Electron Microscopy (SEM) 

Foam morphology was investigated by SEM with a LaB6 electron microscope (JEOL JSM-
5400LV), on sputter-coated foam with thin gold–palladium film (JEOL ion sputter JFC 1100, Croissy 
Sur Seine, France). Images were acquired from secondary electrons at a primary beam energy of 10 
kV. 

3.1.2. Fourier Transform Infrared (FTIR) 

FTIR spectra were obtained by a Fourier transform infrared-attenuated total reflection (FTIR-
ATR, Vertex 70 spectrometer, Bruker, Ettlingen, Germany) using a DTGS detector. Type I collagen 
from bovine (medical grade; Symatese, Lyon, France) was used as control. 

3.1.3. Ion Exchange Chromatography 

Amino acid composition of HEMOCOLLAGENE® foam was determined by ion exchange 
chromatography (HITACHI 8800 analyzer, Science Tec, Tokyo, Japan). One milligram of foam was 
hydrolysed in HCl 6 M at 110 °C for 18 h. Dried hydrolysates obtained under nitrogen stream 
evaporation were then resuspended in 100 μL of a buffer composed of lithium 13.86 mM, lithium 
citrate 55 mM, citric acid 207 mM, ethanol 6% (v/v), and thiodiglycol 1% (v/v) pH 2.8. Type I collagen 
from bovine (medical grade; Symatese) was used as control. The chromatography was performed 
according to the manufacturer’s instructions. Amino acid composition was expressed as residue 
numbers per 1000. 

3.1.4. Mercury Intrusion Porosimetry 

Pore access radii distribution and the total porosity of HEMOCOLLAGENE® foam were 
assessed by mercury intrusion porosimetry (Micromeretics AutoPore IV 9500, Hexton, UK). The 
measured pore access radius ranges from 165 μm (0.005 MPa) to 0.003 μm (274 MPa). Thus, pores 
larger or thinner than these sizes are not considered by this technique. The incremental curve gives 
the mean pore radius for which the intrusive volume is maximal. The cumulative curve allows 
plotting the pore threshold that corresponds to the pore access allowing filling of the main part of the 
porous network. When both radii are close, the pore distribution can be considered as unimodal. 

3.1.5. Micro-Indentation 

Mechanical properties were explored by a custom micro-indentation setup (LEMTA), as 
proposed in the literature [25]. HEMOCOLLAGENE® foam was placed on an electrical balance used 
as a force sensor, and compressed with a spherical indenter (radius r = 0.75 mm). Indentation speeds 
of 1 mm/min (n = 4) and 10 mm/min (n = 4) were used. 

The force applied to the foam was then measured as a function of the applied displacement u of 
the spherical indenter (Figure 9). A simple Hertz contact model was used to fit with the experimental 
force-displacement curves using a least-square method, and the Young’s modulus E of the foam was 
identified with this model: = 169   
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Figure 9. Micro-indentation tests performed on HEMOCOLLAGENE® foam. (a) Global view of the 
indentation test on a typical specimen (10 × 10 × 10 mm); (b) Zoom of the spherical indenter (radius = 
0.75 mm). 

3.2. Biological Experiments 

3.2.1. Cell Culture 

Mesenchymal stem cells were enzymatically isolated from fresh human umbilical cords 
obtained after full-term births as previously described [5] and amplified at a density of 3 × 103 cell/cm2 
in α-MEM culture medium (Lonza, Saint Quentin, France) supplemented with 10% decomplemented 
FBS, 1% Penicillin/Streptomycin/Amphotericin B, and 1% Glutamax (v/v, Gibco, Villebon-sur-Yvette, 
France), and maintained in a humidified atmosphere of 5% CO2 at 37 °C with a medium change every 
three days. Human umbilical cord harvesting was approved ethically and methodologically by our 
local research institution and was conducted with informed patients (written consent, non-
opposition) in accordance with the usual ethical legal regulations (Article R 1243-57). All procedures 
were done in accordance with our authorization and registration number DC-2014-2262 given by the 
National “Cellule de Bioéthique”. At third passage, Wharton’s jelly mesenchymal stem cells (WJ-
MSCs) were characterized by flow cytometry (FACSCalibur; BD Bioscience, le Pont de Claix, France) 
through the expression of CD 73, CD 90, CD 44, CD 105, CD 34, CD 14, and HLA-DR (BD, le Pont de 
Claix, France), Table S2 in Supplementary Materials) and then used in our experimental procedure 
at the fourth passage. 

WJ-MSCs suspension (8 × 104 cells) were injected with a 1 mL syringe and through a 21 G needle, 
in the middle of HEMOCOLLAGENE® foam. After 4 h of incubation at 37 °C, WJ-MSCs loaded 
HEMOCOLLAGENE® foams were transferred to 24-well coated plates preventing any cell migration 
and adhesion (Nunclon Sphera, Thermo scientific, Villebon-sur-Yvette, France). WJ-MSC-loaded 
HEMOCOLLAGENE® foam was cultured in 1 mL of α-MEM culture medium and changed after 1, 4, 
7, and 10 days of culture. Supernatants after 4, 7, and 10 days were collected, centrifuged at 250× g, 
and conserved at −20 °C (conditioned media). 

3.2.2. WST-1 

Mitochondrial activity, followed by WST-1 cell proliferation assay (Roche Diagnostics, Meylan , 
France), was performed after 4, 7, and 10 days of WJ-MSCs culture in HEMOCOLLAGENE® foam in 
accordance with the manufacturer protocol. Absorbance was measured at 440 nm using a FLUOstar 
Omega microplate reader (BMG Labtech, Champigny-sur-Marne, France) against a background 
control as blank. A wavelength of 750 nm was used as the reference wavelength. 

3.2.3. DNA Quantification 

DNA quantification was performed on extracted DNA after 4, 7, and 10 days of WJ-MSCs culture 
in HEMOCOLLAGENE® foam, using a MasterPureTM DNA Purification Kit (Epicentre, 
Biotechnologies, Strasbourg, France) in accordance with the manufacturer’s protocol. The quantity of 
extracted DNA was assessed by measuring the absorbance at 260 nm (Nanodrop, Thermo Scientific, 
Villebon-sur-Yvette, France) and the 260/280 nm absorbance ratio for all measured samples was 
between 1.8 and 2. 
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3.2.4. Zombie® Labeling 

Cell membrane integrity was assessed by Zombie® labelling (Ozyme, Montigny-le-Bretonneux, 
France) in accordance with the manufacturer’s protocol. Labelled cells within HEMOCOLLAGENE® 
foams were released using collagenase treatment for 5 min, fixed with 4% (w/v) paraformaldehyde 
(Sigma-Aldrich, Guyancourt, France), and analysed by an LSRFortessa flow cytometer (BD Bioscience, 
France). 

3.2.5. SEM 

SEM was performed after 10 days of culture on fixed WJ-MSCs loaded HEMOCOLLAGENE® 
foam with 2.5% (w/v) glutaraldehyde (Sigma-Aldrich) at room temperature for 1 h. Samples were 
dehydrated in graded ethanol solutions from 50% to 100% and in hexamethyldisilazane (Sigma, 
France) for 10 min. After air-drying at room temperature, samples were immersed in liquid nitrogen, 
fractured, then sputtered with a thin gold–palladium film under a JEOL JFC 1100 ion sputter and 
viewed using a LaB6 electron microscope (JEOL JSM-5400 LV, France). Images were acquired from 
secondary electrons at a primary beam energy of 20 kV. 

3.2.6. Confocal Laser Scanning Microscopy (CLSM) 

Confocal laser scanning microscopy (CLSM) was performed for visualization of Phalloidin®-
labelled cytoskeletons after 10 days of culture of WJ-MSCs loaded HEMOCOLLAGENE® foam. 
Samples were fixed in 4% (w/v) paraformaldehyde (Sigma-Aldrich, France) at 37 °C for 10 min and 
permeabilized with 0.5% (v/v) Triton X-100 for 5 min. Then, Phalloidin® coupled to AlexaFluor® 488 
(Invitrogen, 1:100 dilution in 0.1% Triton X-100) was incubated for 30 min at room temperature, 
rinsed twice, and labelled cytoskeletons were imaged by CLSM (Zeiss microscopy, Oberkochen, 
Germany, objectives × 20 and × 63). 

3.2.7. Histology and Immunohistochemistry 

Cell distribution and apoptotic cells were assessed by histology and immunohistochemistry, 
respectively. After 10 days of culture, WJ-MSCs loaded HEMOCOLLAGENE® foams were fixed in 
4% (w/v) paraformaldehyde for 1h and paraffin embedded after ethanol dehydration using a 
Shandon Excelsior Tissue Processor (Thermo Fisher Scientific, Waltham, MA, USA). Five micrometer 
thick sections were performed on paraffin-embedded samples (rotation microtome AP280, Leica 
Microsystems). Hematoxylin-eosin-saffron (HES) and Masson’s trichrome staining were performed 
separately on consecutive tissue sections and images were taken using a scanner iScan Coreo AU 
(Roche Ò Ventana). For immunohistochemistry, after deparaffinization, sections were incubated with 
the Cell Conditioner 1 (EDTA, pH 8.4) for 64 min, followed by preprimary peroxidase inhibition and 
incubation with the primary antibody anti-cleaved Caspase-3 (rabbit polyclonal, Cell Signaling 
Technology, Danvers, MA, USA) at a 1:600 dilution at 37 °C for 32 min on the automated staining 
instrument BenchMark XT (Ventana Medical System). Then, the staining reaction was performed 
using the UltraView Universal DAB v3 Kit (Ventana Medical System, Tucson, AZ, USA). The 
counterstain and post-counter-stain comprised haematoxylin and bluing reagent. Images were taken 
using an iScan Coreo AU scanner. 

3.2.8. ELISA Quantification 

Cytokine and growth factor releases were assessed by ELISA. The quantification of IL-6, IL-8, 
IL-10, and VEGF proteins at 4, 7, and 10 days in conditioned supernatants was assessed using 
respectively human IL-6, IL-8, IL-10 and human VEGF Duoset® (R&D systems, Lille, France). 
Absorbance was measured at 450 nm with correction of non-specific background at 570 nm according 
to the manufacturer’s instructions. 
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3.2.9. Chemotaxis Assay 

Neutrophil migration assay was followed by Boyden chamber chemotaxis assay. Neutrophils 
were collected as previously described [26]. Conditioned media from WJ-MSCs loaded 
Hemocollagene® foam cultured for 4, 7, and 10 days were deposited on the lower compartment, 
whereas 5 × 104 neutrophils were seeded on a polycarbonate membrane (5 μm pores, Nucleopore 
Track-etch membrane, Whatman, Maidstone, UK) in the upper compartment. After 45 min of 
incubation at 37 °C in 5% CO2, non-migrating neutrophils were removed from the top of the 
membrane and migrated cells at the bottom were stained with May-Grünwald Giemsa (RAL555 kit) 
and imaged (Axiovert 200M microscope, Zeiss, Oberkochen, Germany, Objective × 40). Conditioned 
media from cell-free Hemocollagen® foam cultured for 4, 7, and 10 days were used as control. 

3.2.10. Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) 

Mesenchymal markers, cytokines, and growth factor gene expressions were assessed by qRT-
PCR. After 4, 7, and 10 days of culture in Hemocollagene® foams, total RNAs of WJ-MSCs were 
extracted using MasterPureTM RNA Purification Kit (Epicentre® Biotechnologies, Strasbourg, 
France) in accordance with the manufacturer protocol. RNA purity was assessed by measuring the 
absorbance ratio at 260/280 nm (Nanodrop 2000C, Thermo Scientific, France), which was comprised 
between 1.8 and 2. Total RNAs (500 ng) were reverse transcribed into cDNA using a high-capacity 
cDNA reverse transcription kit (Applied Biosystems, Villebon-sur-Yvette, France) following the 
manufacturer instructions. Ten nanograms of reverse transcription product were amplified by qRT-
PCR on a StepOne Plus TM system (Applied Biosystems, Villebon-sur-Yvette, France). Using this 
approach, the transcriptional levels of RPS18 (internal control), NT5E, THY1, and ENG 
(corresponding to CD73, CD90, CD105 MSC markers, respectively), IL6, CXCL8, IL10 (corresponding 
to IL-6, IL-8, IL-10 cytokines, respectively), and VEGFA (vascular endothelial growth factor) were 
determined using the double strand-specific Power SYBR® Green dye system (Applied Biosystems, 
Villebon-sur-Yvette, France). After a first denaturation step at 95 °C for 10 min, qRT-PCR reactions 
were performed according to a thermal profile that corresponds to 40 cycles of denaturation at 95 °C 
for 15 s, annealing and extension at 60 °C for 1 min. Data collection was performed at the end of each 
annealing/extension step. The third step that consists in a dissociation process is performed to ensure 
the specificity of the amplicons by measuring their melting temperature (Tm). Data analysis was 
performed with the StepOneTM Software v2.3 (Applied Biosystems, Villebon-sur-Yvette, France). 

3.3. Statistical Analysis 

All the results were obtained with six independent umbilical cords. Results were represented on 
histograms as mean ± standard error of the mean using GraphPad Prism version 5.00 for Windows, 
(GraphPad Software, San Diego, CA USA, www.graphpad.com). All statistical analyses were 
performed using GraphPad Prism version 5.00 and, for Mann and Whitney tests, a value of p < 0.05 was 
accepted as statistically significant (rejection level of the null-hypothesis of equal means). 

4. Conclusions 

The mesenchymal stem cell niche represents a microenvironment regulating MSCs’ quiescence, 
self-renewal, and differentiation. Thus, an ideal scaffold would keep MSCs under an undifferentiated 
state until host-derived paracrine signals induce their activation and commitment. In this work, the 
association of a dense and porous clinical haemostatic device with human MSCs was proposed as a 
versatile in vitro MSCs niche presenting suitable intrinsic properties (i.e., composition, porosity, and 
elastic modulus) for human MSC cultures. Biological investigations revealed an apparently inert 
microenvironment of HEMOCOLLAGENE® foam, where cells are able to remain viable, in an 
undifferentiated state with basal cytokine secretion. 

MSCs are used in regenerative medicine in two contexts: autologous and allogeneic [27,28]. 
Integration of autologous MSCs into the damaged tissues is sought, whereas a long-term integration 
of allogeneic MSCs is not expected, even if MSCs express only low levels of the histocompatibility 
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markers. Their paracrine activity along with activation of resident stem cells and mobilization of 
circulating ones into the damaged tissues are, thus, relevant [29]. In view of application of 
HEMOCOLLAGENE® as a useful WJ-MSC carrier in the regenerative medicine field, additional 
studies under in vitro and in vivo mimicking pathological conditions (i.e., hypoxic and/or 
inflammatory stimuli) are required to identify whether host derived paracrine signals could stimulate 
regenerative properties of WJ-MSCs loaded in HEMOCOLLAGENE®. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/10/2210/s1. 
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Abbreviations 

3D Three-Dimensional 
MSCs Mesenchymal Stem Cells 
WJ-MSCs Wharton Jelly-Derived Mesenchymal Stem Cells 
IL Interleukin 
SEM Scanning Electron Microscopy 
CLSM Confocal Laser Scanning Microscopy 
FTIR Fourier Transform Infrared spectra 
CD Cluster of Differentiation 
qRT-PCR Quantitative Real Time Polymerase Chain Reaction 
HES Hematoxylin-Eosin-Saffron 
WST-1 Water-Soluble Tetrazolium Salt-1 
DNA Deoxyribonucleic Acid 
VEGF Vascular Endothelial Growth Factor 
ELISA Enzyme-Linked Immunosorbent Assay 
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