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Abstract: The clinical significance of regulatory T cells (Treg) and tumor-associated macrophages
(TAM) in the tumor microenvironment of human bladder cancer remains unclear. The aim of this
study is to explore their relevance to oncological features in non-muscle invasive bladder cancer
(NMIBC). We carried out immunohistochemical analysis of forkhead box P3 (FOXP3, Treg maker),
CD204 (TAM marker), and interleukin-6 (IL6) using surgical specimens obtained from 154 NMIBC
patients. The Treg and TAM counts surrounding the cancer lesion and IL6-positive cancer cell
counts were evaluated against clinicopathological variables. We focused on the ability of the Treg
and TAM counts around the cancer lesion to predict outcomes after adjuvant intravesical Bacille
Calmette–Guérin (BCG) treatment. High Treg counts were associated with female patients, older age,
T1 category, and high tumor grade. TAM count was significantly correlated with Treg count and with
IL6-positive cancer cell count. In our analysis of 71 patients treated with BCG, high counts of Treg
and TAM were associated with shorter recurrence-free survival, and the former was an independent
predictor of recurrence. Poor response to intravesical BCG was associated with Treg and TAM in
the tumor microenvironment. Disrupting the immune network can be a supplementary therapeutic
approach for NMIBC patients receiving intravesical BCG.
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1. Introduction

Urothelial carcinoma (UC) of the bladder is a heterogeneous disease in terms of its clinical
and biological aspects [1]. Among non-muscle invasive bladder cancer (NMIBC) patients, several
factors such as age, T category, tumor grade, tumor size, and multiplicity are recognized to predict
the risk of intravesical recurrence and progression after transurethral resection of bladder tumor
(TURBT) [2,3]. Despite advancements in detection technologies, surgical techniques, and adjuvant
intravesical treatment, clinical management of high-risk diseases remains challenging [4,5].

Intravesical administration of Bacille Calmette–Guérin (BCG) is a standard treatment for
carcinoma in situ (CIS) and an adjuvant option for T1 and high-risk Ta tumors following TURBT [6].
However, a delay in radical cystectomy (RC) leads to shortened cancer-specific survival as compared
to immediate RC at the time of NMIBC [7]. Thus, there is an urgent need for biomarkers to
identify patients who will benefit from intravesical BCG or should undergo immediate RC. Although
possible mechanisms underlying BCG-induced antitumor activity and relevant molecules have been
studied [8–10], they are not fully understood. Briefly, BCG is internalized into urothelial cells through
the formation of a complex with fibronectin, followed by antigen presentation to BCG-specific CD4+
T-cells by antigen-presenting cells. Pro-inflammatory cytokines such as interleukin-6 (IL6) and
interferon-γ are secreted to recruit a Th1-induced immunoreaction with the recognition of cancer cells
through the activation of macrophages, CD8+ T-cells, and natural killer cells.

Several previous studies have demonstrated that the pre-BCG baseline status of Th1/Th2 balance,
regulatory T cell (Treg) recruitment, and tumor-associated macrophage (TAM) polarization in the
tumor microenvironment could influence the clinical response to BCG [10–12]. In light of the sparse
data on the clinical significance of Treg/TAM and their relevance to oncological outcomes of NMIBC
treated with intravesical BCG—especially in Japanese patients—this study was conducted with the
goal of improving patient care.

2. Results

2.1. Association of Treg and TAM in the Cancerous Area with Baseline Characteristics

Treg and TAM significantly differed in their localization patterns (Figure 1A). Most of the Treg
cells localized in the stroma around the cancer lesion regardless of tumor stage and grade, whereas
TAM had a tendency to infiltrate into the tumor area in high-grade tumors compared to low-grade
tumors. In an analysis of 154 tumors, the median counts per high power field (HPF) of Treg and TAM
were eight (interquartile range [IQR], 3–15) and 23 (IQR 16–33), respectively. The appropriate cutoff
points of Treg and TAM count have not been established yet, especially in bladder UC. The cutoff
values for separating low counts and high counts for Treg and TAM were set as 10 and 25 respectively,
based on the median values. With these thresholds, high counts of Treg and TAM were found in
68 (44%) and 62 (41%) out of 154 tumors, respectively. The clinicopathological variables and their
association with Treg and TAM in 154 patients with NMIBC are outlined in Table 1. High Treg count
was associated with female patients (p = 0.001), older age (p = 0.024), T1 category (p < 0.001), high tumor
grade (p < 0.001), and the presence of CIS (p = 0.011), whereas the count of TAM was not associated
with any variable (Table 1).

Table 1. Clinicopathologic variables and association with Treg and TAM in primary NMIBC.

Variables N
Treg (FOXP3+ Cell) TAM (CD204+ Cell)

Low High p Value Low High p Value

Total 154 (100%) 86 (56%) 68 (44%) − 92 (59%) 62 (41%) −
Sex 0.0012 0.45
Male 137 (89%) 83 (61%) 54 (39%) 78 (57%) 59 (43%)
Female 17 (11%) 3 (18%) 14 (82%) 8 (47%) 9 (53%)
Age at initial TURBT
categorical 0.056 0.75
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Table 1. Cont.

Variables N
Treg (FOXP3+ Cell) TAM (CD204+ Cell)

Low High p Value Low High p Value

<60 18 (12%) 15 (83%) 3 (17%) 11 (61%) 7 (39%)
60 to 70 55 (36%) 34 (62%) 21 (38%) 32 (58%) 23 (42%)
>70 81 (52%) 43 (53%) 38 (47%) 43 (53%) 38 (47%)
Continuous
median (IQR) 71 (65−76) 69 (63−76) 73 (69−79) 0.024 71 (64−76) 71 (68−77) 0.22
T category <0.001 0.25
Ta 68 (44%) 52 (76%) 16 (24%) 41 (60%) 27 (40%)
T1 73 (47%) 30 (41%) 43 (59%) 36 (49%) 37 (51%)
Tis 13 (9%) 10 (77%) 3 (23%) 9 (69%) 4 (31%)
Tumor grade <0.001 0.16
Low 71 (46%) 53 (75%) 18 (25%) 44 (62%) 27 (38%)
High 83 (54%) 39 (47%) 44 (53%) 42 (51%) 41 (49%)
Tumor architecture 0.98 0.69
Papillary 134 (87%) 80 (60%) 54 (40%) 74 (55%) 60 (45%)
Non-papillary 20 (13%) 12 (60%) 8 (40%) 12 (60%) 8 (40%)
Multiplicity 0.64 0.71
Single 88 (57%) 54 (61%) 34 (39%) 48 (55%) 40 (45%)
Multiple 66 (43%) 38 (58%) 28 (42%) 38 (58%) 28 (42%)
Tumor size 0.45 0.99
Less than 3 cm 119 (77%) 73 (61%) 46 (39%) 69 (58%) 50 (42%)
3 cm or more 35 (23%) 19 (54%) 16 (46%) 17 (49%) 18 (51%)
CIS 0.011 0.29
No 91 (59%) 62 (68%) 29 (32%) 54 (59%) 37 (41%)
Yes 63 (41%) 30 (48%) 33 (52%) 32 (51%) 31 (49%)
LVI (in T1 tumor, n = 73) 0.66 0.93
Negative 49 (67%) 21 (43%) 28 (57%) 24 (49%) 25 (51%)
Positive 24 (33%) 9 (38%) 15 (62%) 12 (50%) 12 (50%)
Intravesical adjuvant
therapy 0.65 0.37

No 64 (42%) 41 (64%) 23 (36%) 40 (62%) 24 (38%)
BCG 71 (46%) 40 (56%) 31 (44%) 36 (51%) 35 (49%)
Chemotherapy 19 (12%) 11 (58%) 8 (42%) 10 (53%) 9 (47%)

Treg, regulatory T cell; TAM, Tumor-associated macrophage; NMIBC, non-muscle invasive bladder cancer; TURBT,
transurethral resection of bladder tumor; IQR, interquartile range; CIS, Carcinoma in situ; LVI, lymphovascular
invasion; BCG, Bacillus Calmette-Guerin.
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Figure 1. Immunohistochemical quantification of regulatory T cells, tumor-associated macrophages, 
and IL6-positive urothelial carcinoma cells. (A )  Representative expression status of FOXP3, CD204, 
and IL6 in human bladder cancer tissues. Images were captured at 100× (FOXP3) or 200× (CD204 and 
IL6) magnification. Black arrowheads in the FOXP3 and CD204 images indicate positive-stained 
immune cells that exist in the stroma near the cancer cells or filtrate to the tumors. Scale bars, 200 μm. 
The interrelationship between (B )  the Treg counts and TAM counts,  (C )  the Treg counts and the 
percentage of IL6+ cancer cells,  and (D )  the TAM counts and the percentage of IL6+ cancer cells were 
examined using Spearman’s correlation. HPF, high power field; Treg, regulatory T cell; TAM, tumor-
associated macrophage; UC, urothelial carcinoma. 
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Figure 1B). The count of TAM, but not Treg (p = 0.42, Figure 1C), positively correlated with counts of 
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developed progression after a median follow-up period of 83 (IQR 61–115) months. To examine the 
relevance of the studied variables and prognosis, we performed univariate and multivariate analyses 
for recurrence-free survival (RFS) and progression-free survival (PFS) (Table 2). High counts of Treg 
and TAM and low tumor grade were associated with shorter recurrence-free survival in the 
univariate analysis (Figure 2A,B,D,E), while high count of Treg (p = 0.001, hazard ratio (HR) = 3.07, 
vs. low count) and low tumor grade (p = 0.01, HR = 0.27, vs. high tumor grade) were identified as 
independent predictors for recurrence. An additional analysis revealed that a high count of Treg was 
an independent predictor for progression (p = 0.021, HR = 3.43, vs. low count), whereas high counts 
of TAM showed marginal association with short PFS in the univariate analysis (p = 0.052, HR = 3.35, 
vs. low count). When patients were stratified into three groups according to the counts of Treg and 
TAM, 26 (37%) patients exhibited low counts of both, 24 (34%) exhibited a high count of either Treg 
or TAM, and the remaining 21 (29%) exhibited high counts of both. Both RFS and PFS decreased 
dramatically as the number of high counts of immune cells increased (Figure 2C,F). 

Figure 1. Immunohistochemical quantification of regulatory T cells, tumor-associated macrophages,
and IL6-positive urothelial carcinoma cells. (A) Representative expression status of FOXP3,
CD204, and IL6 in human bladder cancer tissues. Images were captured at 100× (FOXP3) or
200× (CD204 and IL6) magnification. Black arrowheads in the FOXP3 and CD204 images indicate
positive-stained immune cells that exist in the stroma near the cancer cells or filtrate to the tumors.
Scale bars, 200 µm. The interrelationship between (B) the Treg counts and TAM counts, (C) the Treg
counts and the percentage of IL6+ cancer cells, and (D) the TAM counts and the percentage of IL6+
cancer cells were examined using Spearman’s correlation. HPF, high power field; Treg, regulatory
T cell; TAM, tumor-associated macrophage; UC, urothelial carcinoma.

2.2. Correlation among Treg, TAM, and IL6 in the Bladder Tumor Microenvironment

IL6 is one of the major pro-inflammatory cytokines in the tumor microenvironment, and promotes
cancer progression and therapeutic resistance [13]. To investigate the correlation between Treg,
TAM, and IL6+ UC cells, the Spearman correlation coefficient was analyzed among the three markers.
There was a weak positive correlation between the counts of Treg and TAM (p < 0.001, Figure 1B).
The count of TAM, but not Treg (p = 0.42, Figure 1C), positively correlated with counts of IL6+ cancer
cells (p = 0.001, Figure 1D).

2.3. Prognostic Role of Baseline Treg and TAM in NMIBC Treated with Intravesical BCG

In the analysis of 71 patients treated with intravesical BCG, 40 (56%) had recurrence and 17 (24%)
developed progression after a median follow-up period of 83 (IQR 61–115) months. To examine the
relevance of the studied variables and prognosis, we performed univariate and multivariate analyses
for recurrence-free survival (RFS) and progression-free survival (PFS) (Table 2). High counts of Treg
and TAM and low tumor grade were associated with shorter recurrence-free survival in the univariate
analysis (Figure 2A,B,D,E), while high count of Treg (p = 0.001, hazard ratio (HR) = 3.07, vs. low count)
and low tumor grade (p = 0.01, HR = 0.27, vs. high tumor grade) were identified as independent
predictors for recurrence. An additional analysis revealed that a high count of Treg was an independent
predictor for progression (p = 0.021, HR = 3.43, vs. low count), whereas high counts of TAM showed
marginal association with short PFS in the univariate analysis (p = 0.052, HR = 3.35, vs. low count).
When patients were stratified into three groups according to the counts of Treg and TAM, 26 (37%)
patients exhibited low counts of both, 24 (34%) exhibited a high count of either Treg or TAM, and the
remaining 21 (29%) exhibited high counts of both. Both RFS and PFS decreased dramatically as the
number of high counts of immune cells increased (Figure 2C,F).
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Figure 2. Kaplan–Meier plots for 71 patients treated with intravesical BCG. Intravesical recurrence-
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Survival curves according to the Treg count, low (<10 cells/HPF) vs. high (≥10 cells/HPF); (B,E) 
survival curves according to the TAM count, low (<25 cells/HPF) vs. high (≥25 cells/HPF); (C,F) 
survival curves according to the number of immune cells with high counts (0, blue; 1, green; 2, red). 
The log-rank test was used for comparison. Treg, regulatory T cell; TAM, tumor-associated 
macrophage.Author 1, A.B. Title of Thesis. Level of Thesis, Degree-Granting University, Location of 
University, Date of Completion. 

Figure 2. Kaplan–Meier plots for 71 patients treated with intravesical BCG. Intravesical recurrence-free
survival (A–C) and progression-free survival (D–F) after initial TURBT are plotted. (A,D) Survival
curves according to the Treg count, low (<10 cells/HPF) vs. high (≥10 cells/HPF); (B,E) survival
curves according to the TAM count, low (<25 cells/HPF) vs. high (≥25 cells/HPF); (C,F) survival
curves according to the number of immune cells with high counts (0, blue; 1, green; 2, red).
The log-rank test was used for comparison. Treg, regulatory T cell; TAM, tumor-associated macrophage.
Author 1, A.B. Title of Thesis. Level of Thesis, Degree-Granting University, Location of University,
Date of Completion.
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Table 2. The prognostic factors for recurrence and progression in 71 NMIBC patients treated with BCG.

Variables N

Intravesical Recurrence-Free Survival Progression-Free Survival

Univariate Multivariate † Univariate Multivariate †

HR 95% CI p Value HR 95% CI p Value HR 95% CI p Value HR 95% CI p Value

Sex
Male 63 (89%) 1 1
Female 8 (11%) 0.64 0.24–1.72 0.52 NA 1.24 0.25–6.21 0.98 NA
Age
≤70 37 (52%) 1 1
>70 34 (48%) 1.05 0.56–1.97 0.91 NA 1.88 0.73–4.86 0.22 NA
T stage
Ta or isolated Tis 30 (42%) 1 1
T1 41 (58%) 1.20 0.64–2.26 0.69 NA 1.29 0.49–3.40 0.81 NA
Tumor grade
Low 13 (18%) 1 1 1
High 58 (82%) 0.68 0.26–0.96 0.04 0.81 0.24–1.16 0.10 1.85 0.56–6.09 0.48 NA
Multiplicity
Single 38 (54%) 1 1
Multiple 33 (46%) 0.74 0.39–1.39 0.78 NA 1.20 0.46–3.15 0.46 NA
Tumor size
<3 cm 52 (73%) 1 1
≥3 cm 19 (27%) 0.76 0.38–1.52 0.58 NA 1.05 0.39–2.87 0.89 NA
Concomitant CIS
No 22 (31%) 1 1
Yes 49 (69%) 0.48 0.24–1.06 0.097 NA 2.48 0.91–6.74 0.14 NA
Treg
Low 31 (44%) 1 1 1 1
High 40 (56%) 2.53 1.32–4.86 0.001 3.07 1.55–6.07 0.001 3.38 1.29–8.88 0.027 3.43 1.20–9.74 0.021
TAM
Low 35 (49%) 1 1 1 1
High 36 (51%) 2.31 1.27–4.30 0.029 1.39 0.68–2.84 0.37 3.35 1.29–8.66 0.052 2.50 0.79–8.02 0.12
IL6+ UC cells
Low 32 (45%) 1 1
High 39 (55%) 1.36 0.73–2.56 0.22 NA 1.39 0.53–3.61 0.54 NA

NMIBC, non-muscle invasive bladder cancer; BCG, Bacillus Calmette-Guerin; HR, hazard ratio; CI, confidence interval; CIS, Carcinoma in situ; Treg, regulatory T cell;
TAM, Tumor-associated macrophage; UC, urothelial carcinoma; † Multivariate Cox regression analysis; NA, not analyzed.
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3. Discussion

This study demonstrates the association between poor responses to intravesical BCG and both Treg
and TAM in the tumor microenvironment of human bladder UC. Although it has been decades since
intravesical BCG was first introduced for bladder UC treatment in 1976 [14], no molecular biomarkers
are available in clinical settings for predicting responses. There is currently little clinical evidence
about associations between these tumor-supporting immune cells and resistance to intravesical BCG.
A recent report by Pichler et al. investigated the baseline immune environment in NMIBC treated with
intravesical BCG by IHC analysis using a total of 10 antibodies. The authors concluded that increased
counts of CD4+ and GATA3+ T-cells were associated with prolonged RFS, whereas high counts of
TAM and Treg were associated with shortened RFS [10]. Suriano et al. performed detailed population
analyses of macrophages in the bladder tumor environment using dual immunofluorescence staining
using CD68/iNOS (M1 polarization) and CD68/CD163 (M2 polarization) combinations, suggesting
a prognostic value of TAM infiltration for RFS in patients with NMIBC treated with intravesical
BCG [12]. One of the major drawbacks in both of these reports is the limited number of patients
(only 40 each), which did not allow for multivariate analysis providing reliable prognostic values.
Moreover, the topical immune environment, response pattern toward exposure of BCG, and the strains
of BCG used can vary among races and countries. Therefore, we conducted the present study to
explore the relevance to oncological features in a larger sample size and a Japanese cohort.

Immune cells in the tumor area or in the stroma around the tumor area can influence survival,
with either poor or improved prognosis and with either sensitivity or resistance to treatment, depending
on their subsets and polarization [10]. Muscle-invasive bladder cancer (MIBC) patients with FOXP3
expression in tumor cells showed shorter survival compared to those with negative cancers [15].
Another report demonstrated that an elevated FOXP3/CD8 ratio in tumor tissues was an independent
predictor of poor prognosis after RC [16]. In a multivariate analysis of MIBCs, a high count of CD68+
TAM was correlated with high T category, high-grade cancer [17], and higher risk of cancer-specific
death when adjusted for CD3 [18]. Although extensive studies on muscle-invasive bladder cancer
have been conducted, there is little information on NMIBC, especially about its response to intravesical
BCG. The present study demonstrated that high counts of Treg and TAM acted as a predictor of poor
prognosis with a 2.5-fold and 2.3-fold higher risk of recurrence and a 3.38-fold and 3.35-fold higher risk
of progression in univariate analysis, respectively (Table 2). These results strongly suggest a possible
relationship between resistance to BCG and Treg/TAM in the tumor microenvironment.

Treg plays crucial roles in the evasion of antitumor immunity and escape from response to
treatments in various malignancies, leading to poor oncological outcomes [10,19,20]. BCG treatment is
known to cause Th1-polarized immunomodulation [21]. Treg can suppress effector mechanisms of
the immune response in vaccination models. However, simultaneous inhibition of Th2 polarization
and Tregs could promote host-protective immunity [22] and BCG-induced vaccination response using
a mouse model through enhanced Th1 polarization [23]. Many studies have demonstrated that
TAM cells are markedly present in various malignancies and involved in promoting neoangiogenesis
and producing immunoregulatory and immunosuppressive cytokines, culminating in worsened
oncological outcomes [24]. Previous studies have stated that the predominant locations of TAM are the
stroma and lamina propria [10,25]. However, our analysis showed that a large number of TAM localize
in the tumor area in high-grade tumors compared to low-grade tumors. Ayari et al. demonstrated that
CD68+ TAM in the stroma or within tumor nests were found to have no predictive value for outcomes
after intravesical BCG [26]. Further studies with larger sample sizes are needed to clarify the influence
of the predominant location of Treg and TAM on prognostic significance.

IL6 is one of the major pro-inflammatory cytokines in the tumor microenvironment, and exhibits
tumor-supporting activities [13,27,28]. In the present study, we examined the correlation between
Treg/TAM and IL6 in the bladder tumor microenvironment. There was a positive correlation between
the count of TAM and IL6+ UC cells, whereas significant correlation was not observed between the
counts of Treg and IL6+ UC cells (Figure 1C,D). This finding is consistent with evidence from previous
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studies. Hasita et al. investigated the significance of TAM and Treg in patients with intrahepatic
cholangiocarcinoma, demonstrating that IL6 production from tumor cells was correlated with the
number of infiltrating TAMs, but not with the numbers of Treg cells or vessels [27]. This result
supports the idea that IL6 is one of the vital molecules that differentiates macrophages. Another report
by Hinz et al. revealed that specific down-regulation of FOXP3 with small interfering RNA in the
pancreatic carcinoma cell line Panc89 resulted in the up-regulation of IL6 and IL8 via the activation of
nuclear factor-κB (NF-κB), providing evidence for the control of inflammatory cytokine production
by FOXP3 [28]. IL8 promotes angiogenesis and growth of cancer cells. However, the biological
significance of FOXP3-mediated suppression of IL6 and IL8 production in malignant diseases is not
fully understood.

The present study has several limitations. The first is its retrospective nature with potential
selection bias; for example, some patients were excluded because of aggressive treatment
(immediate radical cystectomy for T1 disease). Second, tumor tissue analysis was performed by
immunohistochemistry (IHC) with possible technical biases, for example specimen fixation, antigen
retrieval, antibody binding, color development, and quantification, which may affect the interpretation.
Third, this study includes 71 patients, which is considered to be a relatively low sample size. Because
low sample size constitutes a limitation of the work and to acknowledge this issue, further study
including additional tumors and patients is needed to verify our results.

4. Materials and Methods

4.1. Data Collection of the Patients

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of the Nara Medical University (Project identification code:
1630, accepted: 21 August 2017). In total, 154 patients with newly diagnosed NMIBC undergoing
TURBT between 2004 and 2013 were enrolled in this study. Clinical information was retrieved
from medical charts. All hematoxylin and eosin-stained specimens obtained by initial TURBT were
reassessed independently by two experienced uropathologists (Keiji Shimada and Noboru Konishi) to
determine T category (2010 American Joint Committee on Cancer TNM Staging system), tumor grade
(2004 WHO classification), CIS, and lymphovascular invasion. Follow-up was performed according to
our institutional protocol [29].

4.2. Immunohistochemical Staining and Quantification

IHC staining of paraffin-embedded, formalin-fixed tissue blocks was performed using the
Histofine SAB-PO kit (Nichirei Co., Tokyo, Japan) as previously described [30,31]. Briefly, the sections
were autoclaved for 10 min in 0.01 M citrate buffer (pH 6.0) for antigen retrieval. The primary antibodies
were monoclonal mouse anti-FOXP3 (dilution 1/100; Ref. ab20034, Abcam, Cambridge, MA, USA),
monoclonal mouse anti-MRS-A (CD204) (dilution 1/2000; Ref. KT022; Trans Genic Inc., Kobe, Japan),
and polyclonal rabbit anti-IL6 (dilution 1/500; Ref. sc-1265, Santa Cruz, Dallas, TX, USA).

FOXP3-positive Treg was quantified as previously described [32]. Lymphocytes exhibiting nuclear
immunostaining for FOXP3 in the cancerous area were counted in at least five independent HPFs
(400×, 0.0625 µm2). The mean count of each patient was determined by dividing the sum by the
number of assessed fields. Similarly, CD204−positive TAM in the cancerous area was counted [30].
To quantify the expression level of IL6 in the UC cells, immunoreactive tumor cells were counted
in at least five independent fields, and the percentage of positive cells was calculated by dividing
that number by the total counted UC cells (1–100%) [30]. The median values (IQR) of total count
cells for the quantification of the FOXP3-positive Treg, CD204-positive TAM, and IL6+ cells were
185 (132–125), 185 (132–125), and 221 (158–291), respectively. Evaluation was carried out by two trained
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investigators (M.M. and Y.T.) in a blind manner, without knowledge of the patients’ outcome or other
clinicopathological characteristics.

4.3. Adjuvant Intravesical Therapy for NMIBC after TURBT

TURBT was carried out according to a standardized procedure used by all surgeons at the single
institute [29]. Because of the study’s retrospective nature, the criteria, dosage, and scheme for adjuvant
intravesical therapy were not consistent between patients, and depended on the physician’s decision.
In general, patients with high-risk NMIBC, such as those positive for concomitant CIS, T1 category,
and high-grade tumors, were treated with intravesical BCG. A substantial number of patients were
given intravesical BCG as initial adjuvant therapy. The schedule for intravesical BCG consisted of
weekly instillations for 6–8 consecutive weeks of Immunobladder (BCG Tokyo 172 strain; Japan BCG
Laboratory Tokyo, Japan) or ImmuCyst (Connaught strain; Sanofi, Paris, France; currently not being
supplied as of October 2017). A single immediate post-TURBT chemotherapy instillation and/or
maintenance chemotherapy instillation using anthracyclines or mitomycin-C was given to a subset of
the cohort.

4.4. Statistical Analysis

The clinicopathological characteristics were compared using the Mann–Whitney U test and
Fisher’s exact test as appropriate. The interrelationships among the studied parameters were
examined using the Spearman correlation coefficient and linear regression analysis. RFS and
progression-free survival were calculated from the date of TURBT for the initial TURBT to the
date of intravesical recurrence and progression, respectively. Progression was defined as recurrent
disease when there was invasion into the muscularis propria (≥T2), lymph node involvement, and/or
occurrence of distant metastases. Survival rates were analyzed using the Kaplan–Meier method
and compared using the log-rank test for univariate analysis. Multivariate analysis was used to
identify independent prognostic variables using a stepwise Cox proportional hazards regression
model. IBM SPSS version 21 (SPSS, Inc., Chicago, IL, USA) and PRISM software version 7.00
(GraphPad Software, Inc., San Diego, CA, USA) were used for statistical analyses and data plotting,
respectively. Statistical significance in this study was set at p < 0.05, and all reported p values
were two-sided.

5. Conclusions

We explored the clinical significance of Treg and TAM in the bladder tumor environment,
suggesting that the immunological response to intravesical BCG is a complicated mechanism involving
multiple subpopulations of immune cells. Moreover, IL6 production from UC cells might play a key
role in the induction of TAM and the protection of the cancer cells from BCG treatment. Therefore,
disrupting the recruitment of Treg and TAM, in combination with conventional intravesical BCG could
be a potential therapeutic approach. Randomized control trials are required to determine the true
clinical benefit.
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Abbreviations

BCG Bacille Calmette–Guérin
CIS Carcinoma in situ
FR Hazard ratio
FOXP3 Forkhead box P3
HPF High-power microscopic fields
IHC Immunohistochemistry
IL6 Interleukin-6
LVI Lymphovascular invasion
MIBC Muscle-invasive bladder cancer
NF-κB Nuclear factor-κB
NMIBC Non-muscle invasive bladder cancer
PFS Progression-free survival
RC Radical cystectomy
RFS Recurrence-free survival
TAM Tumor-associated macrophage
TURBT Transurethral resection of bladder tumor
Treg Regulatory T cell
UC Urothelial carcinoma

References

1. Miyake, M.; Fujimoto, K.; Hirao, Y. Active surveillance for nonmuscle invasive bladder cancer.
Investig. Clin. Urol. 2016, 57 (Suppl. S1), S4–S13. [CrossRef] [PubMed]

2. Fernandez-Gomez, J.; Madero, R.; Solsona, E. Predicting nonmuscle invasive bladder cancer recurrence and
progression in patients treated with bacillus Calmette-Guerin: The CUETO scoring model. J. Urol. 2009, 182,
2195–2203. [CrossRef] [PubMed]

3. Sylvester, R.J.; van der Meijden, A.P.; Oosterlinck, W. Predicting recurrence and progression in individual
patients with stage Ta T1 bladder cancer using EORTC risk tables: A combined analysis of 2596 patients
from seven EORTC trials. Eur. Urol. 2006, 49, 466–477. [CrossRef] [PubMed]

4. Witjes, J.A.; Compérat, E.; Cowan, N.C.; De Santis, M.; Gakis, G.; Lebret, T.; Ribal, M.J.; Van der Heijden, A.G.;
Sherif, A.; European Association of Urology. EAU guidelines on muscle-invasive and metastatic bladder
cancer: Summary of the 2013 guidelines. Eur. Urol. 2014, 65, 778–792. [CrossRef] [PubMed]

5. Reis, L.O.; Moro, J.C.; Ribeiro, L.F.; Voris, B.R.; Sadi, M.V. Are we following the guidelines on non-muscle
invasive bladder cancer? Int. Braz. J. Urol. 2016, 42, 22–28. [CrossRef] [PubMed]

6. Lamm, D.L.; Blumenstein, B.A.; Crawford, E.D. A randomized trial of intravesical doxorubicin and
immunotherapy with bacilli Calmette-Guerin for transitional-cell carcinoma of the bladder. N. Engl. J. Med.
1991, 325, 1205–1209. [CrossRef] [PubMed]

7. Raj, G.V.; Herr, H.; Serio, A.M.; Donat, S.M.; Bochner, B.H.; Vickers, A.J.; Dalbagni, G. Treatment paradigm
shift may improve survival of patients with high risk superficial bladder cancer. J. Urol. 2007, 177, 1283–1286.
[CrossRef] [PubMed]

8. Kitamura, H.; Tsukamoto, T. Immunotherapy for urothelial carcinoma: Current status and perspectives.
Cancers 2011, 3, 3055–3071. [CrossRef] [PubMed]

9. Abebe, F. Is interferon-gamma the right marker for bacilli Calmette-Guérin-induced immune protection?
The missing link in our understanding of tuberculosis immunology. Clin. Exp. Immunol. 2012, 169, 213–219.
[CrossRef] [PubMed]

10. Pichler, R.; Fritz, J.; Zavadil, C.; Schäfer, G.; Culig, Z.; Brunner, A. Tumor-infiltrating immune cell
subpopulations influence the oncologic outcome after intravesical Bacillus Calmette-Guérin therapy in
bladder cancer. Oncotarget 2016, 7, 39916–39930. [CrossRef] [PubMed]

11. Nunez-Nateras, R.; Castle, E.P.; Protheroe, C.A.; Stanton, M.L.; Ocal, T.I.; Ferrigni, E.N.; Ochkur, S.I.;
Jacobsen, E.A.; Hou, Y.X.; Andrews, P.E.; et al. Predicting response to bacillus Calmette-Guérin (BCG) in
patients with carcinoma in situ of the bladder. Urol. Oncol. 2014, 32, e23–e30. [CrossRef] [PubMed]

http://dx.doi.org/10.4111/icu.2016.57.S1.S4
http://www.ncbi.nlm.nih.gov/pubmed/27326406
http://dx.doi.org/10.1016/j.juro.2009.07.016
http://www.ncbi.nlm.nih.gov/pubmed/19758621
http://dx.doi.org/10.1016/j.eururo.2005.12.031
http://www.ncbi.nlm.nih.gov/pubmed/16442208
http://dx.doi.org/10.1016/j.eururo.2013.11.046
http://www.ncbi.nlm.nih.gov/pubmed/24373477
http://dx.doi.org/10.1590/S1677-5538.IBJU.2015.0122
http://www.ncbi.nlm.nih.gov/pubmed/27136464
http://dx.doi.org/10.1056/NEJM199110243251703
http://www.ncbi.nlm.nih.gov/pubmed/1922207
http://dx.doi.org/10.1016/j.juro.2006.11.090
http://www.ncbi.nlm.nih.gov/pubmed/17382713
http://dx.doi.org/10.3390/cancers3033055
http://www.ncbi.nlm.nih.gov/pubmed/24212945
http://dx.doi.org/10.1111/j.1365-2249.2012.04614.x
http://www.ncbi.nlm.nih.gov/pubmed/22861360
http://dx.doi.org/10.18632/oncotarget.9537
http://www.ncbi.nlm.nih.gov/pubmed/27221038
http://dx.doi.org/10.1016/j.urolonc.2013.06.008
http://www.ncbi.nlm.nih.gov/pubmed/24055426


Int. J. Mol. Sci. 2017, 18, 2186 11 of 12

12. Suriano, F.; Santini, D.; Perrone, G.; Amato, M.; Vincenzi, B.; Tonini, G.; Muda, A.; Boggia, S.; Buscarini, M.;
Pantano, F. Tumor associated macrophages polarization dictates the efficacy of BCG instillation in non-muscle
invasive urothelial bladder cancer. J. Exp. Clin. Cancer Res. 2013, 32, 87. [CrossRef] [PubMed]

13. Kumari, N.; Dwarakanath, B.S.; Das, A.; Bhatt, A.N. Role of interleukin-6 in cancer progression and
therapeutic resistance. Tumour Biol. 2016, 37, 11553–11572. [CrossRef] [PubMed]

14. Morales, A.; Eidinger, D.; Bruce, A.W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial
bladder tumors. J. Urol. 1976, 116, 180–183. [CrossRef]

15. Winerdal, M.E.; Marits, P.; Winerdal, M.; Hasan, M.; Rosenblatt, R.; Tolf, A.; Selling, K.; Sherif, A.; Winqvist, O.
FOXP3 and survival in urinary bladder cancer. BJU Int. 2011, 108, 1672–1678. [CrossRef] [PubMed]

16. Horn, T.; Laus, J.; Seitz, A.K.; Maurer, T.; Schmid, S.C.; Wolf, P.; Haller, B.; Winkler, M.; Retz, M.;
Nawroth, R.; et al. The prognostic effect of tumour-infiltrating lymphocytic subpopulations in bladder
cancer. World J. Urol. 2016, 34, 181–187. [CrossRef] [PubMed]

17. Boström, M.M.; Irjala, H.; Mirtti, T.; Taimen, P.; Kauko, T.; Ålgars, A.; Jalkanen, S.; Boström, P.J.
Tumor-Associated Macrophages Provide Significant Prognostic Information in Urothelial Bladder Cancer.
PLoS ONE 2015, 10, e0133552. [CrossRef] [PubMed]

18. Sjödahl, G.; Lövgren, K.; Lauss, M.; Chebil, G.; Patschan, O.; Gudjonsson, S.; Månsson, W.; Fernö, M.;
Leandersson, K.; Lindgren, D.; et al. Infiltration of CD3+ and CD68+ cells in bladder cancer is subtype
specific and interacts the outcome of patients with muscle-invasive tumors. Urol. Oncol. 2014, 32, 791–797.
[CrossRef] [PubMed]

19. Mahmoud, S.M.; Paish, E.C.; Powe, D.G.; Macmillan, R.D.; Lee, A.H.; Ellis, I.O.; Green, A.R. An evaluation
of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res. Treat. 2011,
127, 99–108. [CrossRef] [PubMed]

20. Shimizu, K.; Nakata, M.; Hirami, Y.; Yukawa, T.; Maeda, A.; Tanemoto, K. Tumor-infiltrating FOXP3+
regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in
resected non-small cell lung cancer. J. Thorac. Oncol. 2010, 5, 585–590. [CrossRef] [PubMed]

21. Ponticiello, A.; Perna, F.; Maione, S.; Stradolini, M.; Testa, G.; Terrazzano, G.; Ruggiero, G.; Malerba, M.;
Sanduzzi, A. Analysis of local T lymphocyte subsets upon stimulation with intravesical BCG: A model to
study tuberculosis immunity. Respir. Med. 2004, 98, 509–514. [CrossRef] [PubMed]

22. Bhattacharya, D.; Dwivedi, V.P.; Maiga, M.; Maiga, M.; Van Kaer, L.; Bishai, W.R.; Das, G. Small
molecule-directed immunotherapy against recurrent infection by Mycobacterium tuberculosis. J. Biol. Chem.
2014, 289, 16508–16515. [CrossRef] [PubMed]

23. Bhattacharya, D.; Dwivedi, V.P.; Kumar, S.; Reddy, M.C.; Van Kaer, L.; Moodley, P.; Das, G. Simultaneous
inhibition of T helper 2 and T regulatory cell differentiation by small molecules enhances Bacillus
Calmette-Guerin vaccine efficacy against tuberculosis. J. Biol. Chem. 2014, 289, 33404–33411. [CrossRef]
[PubMed]

24. Pollard, J.W. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer
2004, 4, 71–78. [CrossRef] [PubMed]

25. Takayama, H.; Nishimura, K.; Tsujimura, A.; Nakai, Y.; Nakayama, M.; Aozasa, K.; Okuyama, A.;
Nonomura, N. Increased infiltration of tumor associated macrophages is associated with poor prognosis of
bladder carcinoma in situ after intravesical bacillus Calmette-Guerin instillation. J. Urol. 2009, 181, 1894–1900.
[CrossRef] [PubMed]

26. Ayari, C.; LaRue, H.; Hovington, H.; Decobert, M.; Harel, F.; Bergeron, A.; Têtu, B.; Lacombe, L.; Fradet, Y.
Bladder tumor infiltrating mature dendritic cells and macrophages as predictors of response to bacillus
Calmette-Guérin immunotherapy. Eur. Urol. 2009, 55, 1386–1395. [CrossRef] [PubMed]

27. Hasita, H.; Komohara, Y.; Okabe, H.; Masuda, T.; Ohnishi, K.; Lei, X.F.; Beppu, T.; Baba, H.; Takeya, M.
Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma.
Cancer Sci. 2010, 101, 1913–1919. [CrossRef] [PubMed]

28. Hinz, S.; Pagerols-Raluy, L.; Oberg, H.H.; Ammerpohl, O.; Grüssel, S.; Sipos, B.; Grützmann, R.; Pilarsky, C.;
Ungefroren, H.; Saeger, H.D.; et al. FOXP3 expression in pancreatic carcinoma cells as a novel mechanism of
immune evasion in cancer. Cancer Res. 2007, 67, 8344–8350. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/1756-9966-32-87
http://www.ncbi.nlm.nih.gov/pubmed/24423367
http://dx.doi.org/10.1007/s13277-016-5098-7
http://www.ncbi.nlm.nih.gov/pubmed/27260630
http://dx.doi.org/10.1016/S0022-5347(17)58737-6
http://dx.doi.org/10.1111/j.1464-410X.2010.10020.x
http://www.ncbi.nlm.nih.gov/pubmed/21244603
http://dx.doi.org/10.1007/s00345-015-1615-3
http://www.ncbi.nlm.nih.gov/pubmed/26055646
http://dx.doi.org/10.1371/journal.pone.0133552
http://www.ncbi.nlm.nih.gov/pubmed/26197470
http://dx.doi.org/10.1016/j.urolonc.2014.02.007
http://www.ncbi.nlm.nih.gov/pubmed/24794251
http://dx.doi.org/10.1007/s10549-010-0987-8
http://www.ncbi.nlm.nih.gov/pubmed/20556505
http://dx.doi.org/10.1097/JTO.0b013e3181d60fd7
http://www.ncbi.nlm.nih.gov/pubmed/20234320
http://dx.doi.org/10.1016/j.rmed.2003.12.003
http://www.ncbi.nlm.nih.gov/pubmed/15191035
http://dx.doi.org/10.1074/jbc.M114.558098
http://www.ncbi.nlm.nih.gov/pubmed/24711459
http://dx.doi.org/10.1074/jbc.M114.600452
http://www.ncbi.nlm.nih.gov/pubmed/25315774
http://dx.doi.org/10.1038/nrc1256
http://www.ncbi.nlm.nih.gov/pubmed/14708027
http://dx.doi.org/10.1016/j.juro.2008.11.090
http://www.ncbi.nlm.nih.gov/pubmed/19237175
http://dx.doi.org/10.1016/j.eururo.2009.01.040
http://www.ncbi.nlm.nih.gov/pubmed/19193487
http://dx.doi.org/10.1111/j.1349-7006.2010.01614.x
http://www.ncbi.nlm.nih.gov/pubmed/20545696
http://dx.doi.org/10.1158/0008-5472.CAN-06-3304
http://www.ncbi.nlm.nih.gov/pubmed/17804750


Int. J. Mol. Sci. 2017, 18, 2186 12 of 12

29. Miyake, M.; Gotoh, D.; Shimada, K.; Tatsumi, Y.; Nakai, Y.; Anai, S.; Torimoto, K.; Aoki, K.; Tanaka, N.;
Konishi, N.; et al. Exploration of risk factors predicting outcomes for primary T1 high-grade bladder cancer
and validation of the Spanish Urological Club for Oncological Treatment scoring model: Long-term follow-up
experience at a single institute. Int. J. Urol. 2015, 22, 541–547. [CrossRef] [PubMed]

30. Miyake, M.; Hori, S.; Morizawa, Y.; Tatsumi, Y.; Nakai, Y.; Anai, S.; Torimoto, K.; Aoki, K.; Tanaka, N.;
Shimada, K.; et al. CXCL1-Mediated Interaction of Cancer Cells with Tumor-Associated Macrophages and
Cancer-Associated Fibroblasts Promotes Tumor Progression in Human Bladder Cancer. Neoplasia 2016, 18,
636–646. [CrossRef] [PubMed]

31. Miyake, M.; Hori, S.; Morizawa, Y.; Tatsumi, Y.; Toritsuka, M.; Ohnishi, S.; Shimada, K.; Furuya, H.;
Khadka, V.S.; Deng, Y.; et al. Collagen type IV alpha 1 (COL4A1) and collagen type XIII alpha 1 (COL13A1)
produced in cancer cells promote tumor budding at the invasion front in human urothelial carcinoma of the
bladder. Oncotarget 2017, 8, 36099–36114. [CrossRef] [PubMed]

32. Schwarz, S.; Butz, M.; Morsczeck, C.; Reichert, T.E.; Driemel, O. Increased number of CD25+ FOXP3+
regulatory T cells in oral squamous cell carcinomas detected by chromogenic immunohistochemical double
staining. J. Oral Pathol. Med. 2008, 37, 485–489. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/iju.12749
http://www.ncbi.nlm.nih.gov/pubmed/25857336
http://dx.doi.org/10.1016/j.neo.2016.08.002
http://www.ncbi.nlm.nih.gov/pubmed/27690238
http://dx.doi.org/10.18632/oncotarget.16432
http://www.ncbi.nlm.nih.gov/pubmed/28415608
http://dx.doi.org/10.1111/j.1600-0714.2008.00641.x
http://www.ncbi.nlm.nih.gov/pubmed/18355177
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Association of Treg and TAM in the Cancerous Area with Baseline Characteristics 
	Correlation among Treg, TAM, and IL6 in the Bladder Tumor Microenvironment 
	Prognostic Role of Baseline Treg and TAM in NMIBC Treated with Intravesical BCG 

	Discussion 
	Materials and Methods 
	Data Collection of the Patients 
	Immunohistochemical Staining and Quantification 
	Adjuvant Intravesical Therapy for NMIBC after TURBT 
	Statistical Analysis 

	Conclusions 

