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Abstract: Diabetes mellitus is one of the most common metabolic diseases spread all over the world, 
which results in hyperglycemia caused by the breakdown of insulin secretion or insulin action or 
both. Diabetes has been reported to disrupt the functions and dynamics of mitochondria, which 
play a fundamental role in regulating metabolic pathways and are crucial to maintain appropriate 
energy balance. Similar to mitochondria, the functions and the abilities of stem cells are attenuated 
under diabetic condition in several tissues. In recent years, several studies have suggested that the 
regulation of mitochondria functions and dynamics is critical for the precise differentiation of stem 
cells. Importantly, physical exercise is very useful for preventing the diabetic alteration by 
improving the functions of both mitochondria and stem cells. In the present review, we provide an 
overview of the diabetic alterations of mitochondria and stem cells and the preventive effects of 
physical exercise on diabetes, focused on skeletal muscle and the nervous system. We propose 
physical exercise as a countermeasure for the dysfunction of mitochondria and stem cells in several 
target tissues under diabetes complication and to improve the physiological function of patients 
with diabetes, resulting in their quality of life being maintained. 
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1. Introduction 

Diabetes mellitus (DM) is one of the most common metabolic diseases worldwide, and the 
number of patients with DM has continued to increase in recent years. Patients with DM exhibit 
hyperglycemia caused by an impairment in insulin secretion (type 1), insulin action (type 2), or both. 
Type 1 diabetes mellitus (T1DM), which accounts for less than 10% of diabetes cases, is characterized 
by an immune-mediated destruction of β cells in the pancreatic islets of Langerhans, leading to 
insulin deficiency [1]. It is well known that T1DM is developed in childhood and can lead to severe 
long-term complications including retinopathy, neuropathy, and nephropathy [2]. On the other hand, 
type 2 diabetes mellitus (T2DM), which accounts for less than 90% of diabetes cases, involves insulin 
resistance in peripheral tissues and increased levels of blood glucose due to overnutrition 
accompanied by deficient insulin secretion [3,4]. DM is often associated with the development of 
secondary complications in various organs, such as eyes, kidneys, heart, brain, and skeletal muscle [5]. 

The skeletal muscle is notably affected by DM. It has been shown that DM induces atrophy [6–8], 
fiber-type transition from oxidative to glycolytic [9,10], and impaired energy metabolism in skeletal 
muscle [11,12]. These alterations result in skeletal muscle dysfunction, such as muscle weakness and 
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exercise intolerance [8,13]. Additionally, the central nervous system is critically influenced by DM. 
DM has been reported to induce pathological alterations in the nervous system that result in the onset 
of cognitive deficits and increase the risk for vascular complications in the brain [14]. Furthermore, 
DM is associated with vascular dementia, depression and Alzheimer’s disease (AD) [15–19]. These 
disorders may be caused by morphological changes, including white matter leukoaraiosis and 
hippocampal, cortical, and amygdala atrophies in the brains of the patients with DM [20,21]. 

Mitochondria and stem cell dysfunctions are among the multiple factors that can cause 
disturbances to the skeletal muscle and nervous system function in DM. Mitochondria play critical 
roles in regulating metabolic pathways and maintaining appropriate energy balance in tissues. DM 
is associated with reduced mitochondrial function, including decreased mitochondrial numbers [22] 
impaired lipid oxidation [23,24] and excessive production of reactive oxygen species (ROS) [25–27]. 
Additionally, the proliferation and differentiation of skeletal muscle stem cells, termed satellite cells, 
are attenuated in the diabetic skeletal muscle [28–30]. Moreover, the proliferative ability of neural 
stem cells (NSCs) is declined in the hippocampus of T1DM animal models [31,32]. The neurogenesis 
of NSCs is impaired in DM because of decreased expression of the transcription factor NeuroD1 
[32,33]. These mitochondrial and stem cell dysfunctions may disrupt cell homeostasis, resulting in 
the disturbance of skeletal muscle and the brain function in DM.  

It has been reported that the reduced myogenic potential of muscle stem cells is caused by 
mitochondrial dysfunction, including disturbed biogenesis [34] impaired dynamics [35] and high 
levels of ROS [36]. Similarly, precise mitochondrial function regulates the differentiation of NSCs in 
the adult hippocampus [37]. This crosstalk between mitochondria and stem cells may underlie the 
functional alterations in skeletal muscle and the nervous system under the diabetic condition.  

The present review focuses on the diabetic alterations in mitochondrial and adult stem cell 
functions, and to an extent on the relationship between both, in skeletal muscle and the nervous 
system. Furthermore, based on the current body of knowledge, we propose physical exercise as a 
countermeasure for the diabetic complications in skeletal muscle and the brain. 

2. Mitochondrial Dysfunction in Diabetes 

2.1. Mitochondrial Content and Dynamics in Diabetic Muscle 

Skeletal muscle is highly plastic tissue that can adapt to the changes in energy status via changes 
in mitochondrial content. Previous studies examining the relationship between mitochondria and 
insulin resistance have reported that skeletal muscles of patients with T2DM exhibit reduced 
mitochondrial content [22,38,39]. Mitochondrial oxidative capacity is significantly lower in the 
skeletal muscle of insulin-resistant individuals than in that of healthy subjects, and this alteration 
results in increased fat accumulation in skeletal muscle [40]. Disturbed mitochondrial function has 
also been observed in cultured myocytes derived from skeletal muscle of patients with T2DM [41]. 
These findings indicate that mitochondrial content in skeletal muscle is reduced under the diabetic 
condition. Mitochondrial content is controlled by mitochondrial biogenesis (synthesis) [42,43], which 
is induced by various physiological, environmental, and pharmacological stimuli through promoting 
several regulators. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a major 
regulator of mitochondrial biogenesis and function and modulates the expression of some genes 
associated with mitochondrial biogenesis interacting with nuclear respiratory factor 1 (NRF1); NRF1 
promotes the expression of mitochondrial transcription factor A (TFAM), which is the final activator 
in the expression of mitochondrial DNA (mtDNA)-coded genes [44]. Muscle-specific PGC-1α-
knockout mice have been reported to exhibit a oxidative-to-glycolytic muscle fiber-type shift and 
decreased expression of oxidative-related genes [45]. Accordingly, electrotransfection-mediated 
overexpression of PGC-1α in skeletal muscle resulted in increased PGC-1α protein levels, insulin 
sensitivity, and lipid oxidation [46]. Importantly, the expression of PGC-1α is reduced in the skeletal 
muscle of DM patients [22,23,47]; it is therefore supposed that diabetes-induced reduction in 
mitochondrial content is caused by downregulation of PGC-1α in skeletal muscle. PGC-1α binds and 
cooperates with its effectors including estrogen-related receptor α (ERRα) and peroxisome 
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proliferator-activated receptor δ (PPARδ) [48]. The ability of PGC-1α to promote the expression of 
mitochondrial genes is severely impaired in the absence of ERRα [49]. However, the knockout of 
ERRα in skeletal muscle causes no phenotypic alteration in normal condition [50,51], suggesting that 
mitochondrial biogenesis induced by PGC-1α and ERRα is a transient process and that other 
transcription factors may regulate the basal-state levels of mitochondria. Additionally, PPARδ 
increases mitochondrial biogenesis and oxidative metabolism in skeletal muscle. Overexpression of 
PPARδ induced fiber-type transition from glycolytic to oxidative and increased mtDNA copy 
number and mitochondria-related proteins in skeletal muscle [52]. Conversely, muscle-specific 
deletion of PPARδ leaded to oxidative-to-glycolytic fiber-type shift with reduction in mitochondrial 
oxidative phosphorylation and fatty acid oxidation [53]. Obese T2DM patients exhibited decreased 
expression of PPARδ in skeletal muscle [54]. Taken together, diabetes leads to the impairment of 
mitochondrial biogenesis that may be caused by the downregulation of PGC-1α and/or PPARδ, 
resulting in reduced oxidative capacity in skeletal muscle (Figure 1). 

 

Figure 1. Schematic representation of mitochondrial dysfunction in diabetic skeletal muscle. Skeletal 
muscle contains a large volume of mitochondria that produce energy for biological activity. Diabetes 
mellitus induces mitochondrial dysfunction, including decreased biogenesis, impaired quality control 
(e.g., fusion, fission and mitophagy), and excessive ROS production in skeletal muscle, leading to the 
reduction in mitochondrial content and oxidative phosphorylation. 

Mitochondria are dynamic organelles that can flexibly adapt to the changes in cellular energy 
demands owing to continuous network remodeling through the process of fusion and fission [55]. 
Mitochondrial fusion in mammal cells is mediated by three large guanosine triphosphatases 
(GTPases) of the dynamin superfamily: mitofusin 1 (MFN1) and mitofusin 2 (MFN2), which are 
integral proteins in the outer membrane mediating outer-membrane fusion, and optic atrophy-1 
(OPA1), which mediates inner membrane fusion [56]. Skeletal muscle-specific deletion of MFN1 and 
MFN2 causes severe mitochondrial dysfunction and loss of muscle mass, which are associated with 
increased mtDNA point mutations and mtDNA depletion [57]. Similarly, disruption of OPA1 in 
mammal cells by RNA interference (RNAi) blocked mitochondrial fusion, leading to poor cell growth 
and mitochondrial dysfunctions, including decreased mitochondrial membrane potential and 
reduced cellular respiration [58]. This evidence indicates that mitochondrial fusion is essential for 
maintaining mitochondrial quality. Additionally, mitochondrial fission, which is mainly mediated 
by dynamin-related protein 1 (DRP1) and fission protein 1 (Fis1), plays an important role in 

ROS
productionBiogenesis Quality

control

Diabetes
Insulin resistance

Reduced mitochondrial content
Reduced oxidative capacity

Impaired energy metabolism



Int. J. Mol. Sci. 2017, 18, 2147 4 of 23 

 

mitochondrial quality control. DRP1 is a cytosol-located GTPase and is recruited by Fis1 to fission 
sites on the mitochondrial outer membrane to promote membrane division. Downregulation of Drp1 
by RNAi induced mitochondrial dysfunction in various cell lines [59,60], suggesting that 
mitochondrial fission is also required for maintaining mitochondrial quality and quantity. Several 
studies have indicated that DM influences the processes of mitochondrial fusion and fission. Bach et 
al., have shown that f MFN2 expression is lower in skeletal muscle of both non-diabetic obese subjects 
and T2DM patients than in that of healthy subjects [61]. Joseph et al., observed decreased expressions 
of the fusion proteins MFN2 and OPA1 in the skeletal muscle of T2DM patients [62]. Furthermore, 
high-fat diet-induced obese mice have exhibited the upregulation of fission proteins and 
downregulation of fusion proteins in skeletal muscle [63]. However, Pereira et al., have reported that 
OPA1-deficient young mice showed progressive mitochondrial dysfunction and loss of muscle mass, 
while they were tolerant to age- and diet-induced weight gain and insulin resistance through 
mechanisms that involve the activation of secretion of fibroblast growth factor 21 from skeletal 
muscle [64]. This study has suggested that blockage of mitochondrial fusion might increase the 
metabolic rate and improved whole-body insulin sensitivity. According to these results, it is 
supposed that DM probably disturbs mitochondrial dynamics in skeletal muscle (Figure 1), but 
detailed investigation is required to reveal the precise effects of DM on the processes of mitochondrial 
fusion and fission. 

To maintain mitochondrial quality control, poorly functioning mitochondria are selectively 
degraded through mitophagy, which is the selective degradation of mitochondria by autophagy. 
Damaged mitochondria are taken up by autophagosomes, which fuse with lysosomes for catabolism 
of the mitochondria [65]. Mitophagy occurs in response to various alterations, such as changes in 
metabolic state, redox state, and nutrient availability. In mammals, one of the regulatory mechanisms 
of mitophagy is the PTEN-induced putative kinase 1 (PINK1)-PARKIN signaling pathway. PINK1 is 
a serine/threonine kinase that is imported into mitochondria and degraded by the mitochondrial 
rhomboid protease PARL in normal conditions. Mitochondrial depolarization and other stress 
conditions lead to the accumulation of PINK1 on the outer membrane, where PINK1 then 
phosphorylates the E3 ubiquitin ligase PARKIN. Activated PARKIN promotes the degradation of a 
number of mitochondrial proteins, including MFN1 and MFN2, and facilitates mitochondrial 
fragmentation, which enables mitophagy and prevents the re-fusion of poorly functioning 
mitochondria [66]. Alterations in mitophagy induced by DM have been insufficiently investigated. 
However, Scheele et al., have shown that PINK1 expression is significantly lower in skeletal muscle 
of patients with T2DM than in control subjects [67]. This finding suggested that DM might inhibit 
appropriate mitophagy and thus, induce the accumulation of damaged mitochondria in skeletal 
muscle, leading to the disturbance of energy metabolism. Further investigation is required to deepen 
our understanding of alterations in mitochondrial quality control in the diabetic skeletal muscle. 

2.2. Mitochondrial Reactive Oxygen Species (ROS) Production in Diabetic Muscle 

Mitochondria are the principal organelles related to the production of ROS, which are generated 
as inevitable by-products of mitochondrial respiration. ROS include the superoxide anion radical 
(O2•−), hydroxyl radical (OH•), and hydrogen peroxide (H2O2). Excess ROS production in the absence 
of sufficient antioxidant capacity leads to lipid peroxidation and other oxidative stress, including the 
damages to the nuclear and mitochondrial DNA [68]. The relation between excess mitochondrial ROS 
production and skeletal muscle insulin resistance has been well established. By measuring total 
protein carbonylation and plasma H2O2 levels, Bonnard et al., found that oxidative stress in the 
skeletal muscle of T1DM model mice induced by treatment with streptozotocin (STZ) is higher than 
that of control mice. They also showed that obese mice fed a high-fat, high-sucrose diet display 
increased oxidative stress in the skeletal muscle. Moreover, T1DM mice and obese mice exhibited 
mitochondrial dysfunction, including decreased mtDNA copy number, increased number of 
disarrayed cristae, and reduced citrate synthase activity [69]. Anderson et al., reported increased 
mitochondrial H2O2 emission in obese human subjects as compared to healthy subjects, and the intake 
of a high-fat diet increased mitochondrial H2O2 production and oxidative stress in the skeletal muscle 
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of healthy, insulin-sensitive subjects [70]. These findings suggest that DM promotes mitochondrial 
ROS production in skeletal muscle, leading to reduced mitochondrial content and function (Figure 1). 

Approaches to oxidative stress suppression have been analyzed in previous studies. Hoehn et 
al., have demonstrated that genetic overexpression of manganese superoxide dismutase (MnSOD), 
an essential mitochondrial antioxidant enzyme detoxifying superoxide, and supplementation with 
mitochondrial O2•−-targeted antioxidant manganese (III) tetrakis (4-benzoic acid) porphyrin improve 
skeletal muscle insulin resistance in mice fed high-fat diets [71]. Furthermore, genetic overexpression 
of the mitochondria-targeted antioxidant human catalase and chronic intake of SS31, a small 
antioxidant peptide targeted to the mitochondrial inner membrane, resulted in the reduction of 
mitochondrial H2O2 production in skeletal muscle [70]. Thus, mitochondrial ROS production could 
be a causative factor of skeletal muscle insulin resistance and a key therapeutic target for the 
prevention of diabetes-induced mitochondrial dysfunction. 

2.3. Alteration of Mitochondria in Neural Tissues 

Diabetes complication induces mitochondrial dysfunction in neural tissues as well as skeletal 
muscle. Brain mitochondria of STZ-induced diabetic rats display decreased coenzyme Q9 [72], which 
suggests a disturbance of the antioxidant system in diabetic animals. Mastrocola et al., reported that 
brain mitochondria isolated from STZ-induced diabetic rats exhibits the decreased respiratory 
capacity and increased oxidative stress, which contributed to mitochondrial dysfunction by 
decreasing the activities of complex III, IV and V of the respiratory chain and ATP synthesis [73]. In 
addition, Cardoso et al., observed higher levels of malondialdehyde together with increased 
glutathione disulfide reductase and reduced MnSOD activities in hippocampal mitochondria isolated 
from STZ rats. Apart from T1DM, several reports indicate that T2DM or insulin resistance induces 
mitochondrial dysfunction in the brain. An age-related decline in respiratory chain efficiency and an 
uncoupling of oxidative phosphorylation systems have been observed in brain mitochondria of Goto-
Kakizaki rats, a model of T2DM [74]. Carvalho et al., showed that brain mitochondria isolated from 
high-sucrose-induced T2DM mice functioned poorly, including lower respiration and membrane 
potential [75]. In their study, triple-transgenic AD model mice displayed phenotypes similar to T2DM 
mice [75]. Moreover, multiple studies have reported mitochondrial dysfunction in AD animal models 
[76–78]. These studies suggest that AD as a diabetic complication is caused by mitochondrial 
dysfunction due to insulin insensitivity. 

3. Alteration of Stem Cell Function in Diabetes 

3.1. Impairment of Muscle Stem Cell Function in Diabetes 

Resident satellite cells in skeletal muscle contribute to the postnatal maintenance, growth, repair, 
and regeneration of skeletal muscle [79]. In healthy adult muscle, satellite cells are mitotically 
quiescent under normal physiological conditions but are activated in response to stimulation, such 
as muscle injury, to become myoblasts and proliferate extensively [80]. The majority of proliferated 
myoblasts then undergo myogenic differentiation to fuse to existing fibers or to generate new muscle 
fibers, whereas others return to a quiescent state to self-renew and maintain the stem cell pool [81]. 
Satellite cell-depleted mice exhibit poor regeneration after muscle injury [82], suggesting that satellite 
cells are essential for muscle regeneration.  

Satellite cells demonstrate at least two states in skeletal muscle turnover: a quiescent state and 
an activated state. Both quiescent and activated satellite cells express the characteristic marker Pax7, 
whereas only activated satellite cells also express Myf5 and MyoD, which are key transcription factors 
for myogenic lineage progression and differentiation [83]. Although most Pax7+/MyoD+ satellite cells 
proliferate and then differentiate into a myogenic lineage through the downregulation of Pax7, others 
downregulate MyoD expression and withdraw from the cell cycle to return to a quiescent state [81,84]. 
MyoD transcription factor initiates the transcription of myogenin and other muscle-specific genes in 
differentiating myoblasts [85]. Thus, MyoD is regarded a master regulator of myogenesis by 
upregulating the transcription of skeletal muscle-specific genes. 
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Previous studies have shown that DM impairs satellite cell function. Satellite cells derived from 
STZ-induced diabetic mice are unable of myotube formation, resulting in poor regeneration after 
cardiotoxin-induced muscle injury [86]. Diabetic Akita mice also impaired muscle regeneration 
following injury caused by attenuated macrophage infiltration and satellite cell recruitment into 
degenerative muscle fibers [87]. Furthermore, the expression of the myogenic transcription factors 
MyoD and myogenin is reportedly decreased in gastrocnemius muscle from STZ-induced diabetic 
rats [28]. Recently, D’Souza et al., reported that skeletal muscles from human subjects with T1DM as 
well as diabetic animal models exhibit decreased satellite cell content [88]. Fujimaki et al., reported 
that decreases in total satellite cell content and the proportion of activated to total satellite cells in the 
STZ-induced diabetic skeletal muscle [30]. These studies suggest that T1DM leads to satellite cell 
dysfunction, including reductions in the number and myogenic capacity of cells, resulting in poor 
muscle regeneration following injury.  

The effects of T2DM on satellite cell function have been investigated using animal models. 
Nguyen et al., observed decreased proliferation of satellite cells and impaired muscle regeneration in 
transgenic ob/ob and db/db mice, which are common mouse models of T2DM [29]. Peterson et al., 
showed that obese Zucker rats display decreased satellite cell proliferation, with no change in the 
proportion of quiescent satellite cells [89]. This study also indicated declines in MyoD and myogenin 
protein levels in plantaris muscle from obese as compared to lean Zucker rats [89]. Additionally, there 
are some reports on the alteration of satellite cell function under the conditions of hyperglycemia and 
lipotoxicity, which are causes of T2DM. Hu et al., observed impaired muscle regeneration following 
cardiotoxin-induced injury in skeletal muscle from obese mice fed a high-fat diet for 8 months [90]. 
Similarly, shorter-term (3 months or 3 weeks) feeding of a high-fat diet also decreases the regenerative 
capacity through a decline of satellite cell numbers in skeletal muscle [91,92]. The effects of lipid 
overload on muscle regeneration have been investigated using transgenic mice overexpressing 
lipoprotein lipase, which converts triacylglycerol to free fatty acids and glycerol, in skeletal muscle. 
The transgenic mice displayed increased free fatty acid uptake in skeletal muscle and developed 
severe myopathy [93,94]. Ten days after muscle injury, cross-sectional areas of regenerating 
myofibers in the transgenic mice were smaller than those in wild-type control mice [94], indicating 
that lipid accumulation in skeletal muscle impairs regeneration. In addition, satellite cells derived 
from DM patients or model animals exhibit diabetic phenotypic characters, including increased 
expression of inflammatory cytokines [95] reduced lipid oxidation [41] disturbed glucose uptake [96] 
and insulin resistance [97]. According to these findings, impaired myogenic capacity of satellite cells 
may lead to disruption of muscle homeostasis, including atrophy and reduced energy metabolism, 
under diabetes complication (Figure 2). 

The molecular mechanisms underlying satellite cell dysfunction induced by diabetes have been 
extensively investigated. Firstly, excess oxidative stress in the skeletal muscle is one of the candidate 
causes of the satellite cell dysfunction in DM. In both T1DM and T2DM, ROS production in the 
skeletal muscle is elevated as described in the preceding section. Studies have revealed that ROS in 
the skeletal muscle inhibits myogenic progression. Sandiford et al., showed that the overexpression 
of dual oxidase maturation factor 1 (DUOXA1), a member of the nicotinamide adenine dinucleotide 
phosphate oxidase (Nox) family that plays a critical role in ROS generation in a variety of cell types, 
leads to an increased H2O2 level, resulting in the inhibition of differentiation in the myoblast cell line 
C2C12, while a contrary phenotype was observed in a knockdown model of DUOXA1 [36]. Ardite et 
al., demonstrated that depletion of glutathione, an important and versatile antioxidant, in C2C12 cells 
impaired myogenic differentiation as indicated by lower creatine kinase activity, expression of MyoD 
and myosin heavy chain, and myotube formation, through the upregulation of NF-κB [98]. Guttridge 
et al., reported that NF-κB inhibits myogenic differentiation via increased cyclin D1 expression and 
cell proliferation, and decreased MyoD expression [99,100]. On the other hand, some investigators 
have argued that NF-κB is essential for myogenic progression. While NF-κB may regulate 
myogenesis both positively and negatively, further investigations are required for an appropriate 
understanding of its function in satellite cell differentiation. Additionally, ROS induces decreased 
expression of PGC-1α and mitochondrial disruption [101,102], while proper mitochondrial function 
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is essential for muscle regeneration [34,103], indicating that mitochondrial function is closely 
connected with myogenic progression. Together, these findings suggest that oxidative stress 
decreases the myogenic potential of satellite cells in diabetic muscle. 

 
Figure 2. Schematic representation of regulation of stem cell differentiation in skeletal muscle and the 
nervous systems. Skeletal muscle stem cells, termed satellite cells, are mainly in a quiescent state, but 
activated in response to muscle injury or exercise. Activated satellite cells can proliferate, differentiate 
into myoblasts, and then fuse and mature into myofibers. Diabetes mellitus impairs satellite cell 
activation and differentiation via inactivation of Wnt signaling and/or excessive oxidative stress, 
resulting in muscle atrophy and reduced oxidative capacity in skeletal muscle. In adult brain, neural 
stem cells (NSCs) give rise to neuroblasts, which differentiate into mature neuron. The progression of 
NSCs to mature neuron is controlled by Wnt and γ-aminobutyric acid (GABA). Diabetes inhibits the 
activation of Wnt signaling and the expression of GABA transporters, resulting in disturbed 
neurogenesis, which may be associated with cognitive deficits. 

Secondly, diabetes-induced dysfunction of satellite cells is caused by the alteration of Notch and 
Wnt signaling. Notch signaling regulates cell fate and proliferation in satellite cells. The binding of 
notch receptors to their δ/jagged, serrate, or lag2 (DSL) ligands releases the Notch intracellular 
domain [104]. This domain then associates with recombining binding protein-Jĸ, which is a key 
transducer of notch signaling [105,106], and then translocates into the nucleus to promote Hes and 
Hey transcription [84]. Notch signaling blocks differentiation and contributes to maintaining the 
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quiescence of satellite cells [84]. D’Souza et al., showed that notch activity in satellite cells derived 
from wild-type mice is downregulated upon conversion from quiescent to activated state, while in 
Akita diabetic mice, it remains activated under this condition. The authors discussed that the 
hyperactivation of the notch signaling pathway impaired the myogenic capacity of satellite cells in 
T1DM [88]. On the other hand, a previous study demonstrated that the downregulation of Wnt 
signaling activity leads to impaired myogenic differentiation of satellite cells [30]. Wnt is a secreted 
extracellular ligand that binds to Frizzled receptor located in the plasma membrane [107,108], and 
stabilizes β-catenin, which forms a complex with the T-cell factor (TCF)/leukocyte enhancer factor 
(LEF) that translocates into the nucleus to activate the transcription of target genes [109,110]. Wnt 
signaling regulates myogenesis via the modulation of MyoD expression [111]. Fujimaki et al., 
reported that STZ-induced diabetes inhibits satellite cell activation induced by decreased Wnt 
signaling activities, including the gene expressions of Wnt ligands and β-catenin accumulation [30]. 
Although the alteration of notch and Wnt signaling is associated with diabetes-induced dysfunction 
of satellite cells, further investigation is required for a clear understanding of the molecular 
mechanisms underlying impaired satellite cell function in DM. 

3.2. Impairment of Neural Stem Cell Function in Diabetes 

Neurogenesis in the adult mammalian brain is a multistep process, including proliferation of 
neural progenitor cells, fate determination, migration, neuronal maturation, and functional 
integration of newborn cells into the existing neuronal circuitry [112]. NSCs are primarily located in 
two distinct regions of the brain: the subventricular zone (SVZ) of the lateral ventricles and the 
subgranular zone of the hippocampal dentate gyrus (DG). In the SVZ, adult NSCs give rise to 
neuroblasts, which migrate into the olfactory bulb (OB) through the rostral migratory stream and 
then differentiate into mature local interneurons. In the DG, proliferating neuroblasts become 
immature neurons and project their axons into the CA3 region of the hippocampus. These immature 
neurons eventually differentiate into mature neurons and are integrated into the existing 
hippocampal circuitry as functional granule cells. Recent studies have shown that newly formed 
neurons are incorporated into the functional networks of both the OB and the DG, suggesting that 
adult neurogenesis notably affects brain functions associated with learning, memory processing, and 
odor discrimination [113–117]. 

Several studies have demonstrated that Wnt signaling regulates adult neurogenesis. For 
example, Wnt3 is strongly expressed in astrocytes of neurogenic niche and NSCs expressed the major 
components of the Wnt signaling pathway [118,119]. In coculture study of NSCs with hippocampal 
astrocytes, astrocyte-derived Wnts activate neuroblast proliferation and neuronal differentiation 
[118]. Interestingly, NeuroD1, a key transcription factor for neurogenic lineage progression and one 
of the major targets of Wnt signaling, is selectively expressed in dividing neural progenitors and 
immature granule neurons, but not in Sox2-expressing NSCs. Kuwabara et al., reported that the 
NeuroD1 promoter can bind to Sox2 and the TCF/LEF complex. Their study has suggested that 
NeuroD1 transcription is activated by Wnt signaling in NSCs during neurogenesis, while it is 
suppressed by Sox2 when neurogenesis is inhibited [120]. Furthermore, using NeuroD1 conditional 
knockout mice, Gao et al., found that NeuroD1 is required for adult neurogenesis both in vivo and in 
vitro [121]. Our previous study also showed that NeuroD1 directly activates insulin gene expression 
in NSCs from adult hippocampus and OB, resulting in the induction of neuronal differentiation [122]. 
According to these evidences, the Wnt-NeuroD1 axis plays an essential role in neurogenesis in the 
adult hippocampus and OB. 

Accumulating evidence has demonstrated that adult neurogenesis in the brain is disturbed by 
DM. STZ-induced diabetes consistently decreases hippocampal cell proliferation in rodents 
[31,32,123–127]. Decreased immature neurons were observed in STZ-induced diabetic animals 
through Bromodeoxyuridine (BrdU) incorporation analysis [31,32], indicating that neuronal 
differentiation is inhibited by DM. In addition, the proportion of mature neurons in STZ-induced 
diabetic rats has been shown to be either decreased [32] or unchanged [125]. Similar to STZ-induced 
diabetic animals, non-obese diabetic (NOD) mice, which are another model of T1DM developed by 
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the autoimmune destruction of pancreatic β cells [128], exhibit decreased hippocampal cell 
proliferation [129,130] and disturbed neuronal differentiation [130]. Taken together, T1DM models 
consistently show decreased hippocampal cell proliferation and survival, and in some studies, these 
models were also exhibited disturbed neuronal differentiation. Hippocampal neurogenesis has been 
studied in various animal models of T2DM, including db/db mice and Zucker diabetic fatty (ZDF) rats, 
which are leptin-receptor-deficient and are used as models of obesity complicated by diabetes. ZDF 
rats display decreased hippocampal cell proliferation and neuronal differentiation as measured by 
Ki67 or doublecortin immunoreactivity [131]. Similarly, db/db mice show reduced hippocampal cell 
proliferation when compared to control mice [132]. These studies suggest that adult neurogenesis is 
severely impaired in T2DM (Figure 2). 

Our previous study indicated that NeuroD1 and insulin expression is decreased in NSCs derived 
from the hippocampus and OB of STZ-induced diabetic rats, which exhibit loss of neurogenic 
potential of NSCs [33]. Recently, we showed that STZ-induced T1DM induces disturbed neurogenic 
differentiation of NSCs and reduced expression of Wnt3 and NeuroD1 in the OB, resulting in several 
behavioral deficits, including impaired odor discrimination, cognitive dysfunction, and increased 
anxiety [133,134]. The inhibition of Wnt signaling in the DG of adult rats reportedly impairs spatial 
memory and object recognition [134]. These results suggest that diabetes-induced cognitive deficits 
may be attributed to the downregulation of Wnt signaling. Additionally, we have provided evidence 
that DM alters neurotransmitter systems, such as γ-aminobutyric acid (GABA) and glutamate 
transporters. GABA and glutamate are the principal inhibitory and excitatory neurotransmitters, 
respectively, in mammalian central nervous systems, and their transporters modulate adult 
neurogenesis [135–139]. The expressions of GABA transporters (GATs), excitatory amino acid 
transporters, and vesicular glutamate transporter is decreased in the OB of STZ-induced diabetic as 
compared to healthy rats [133]. Furthermore, GAT1 inhibition disturbs Wnt3-induced neuronal 
differentiation of NSCs in vitro [133]. According to this study, the regulation of local GABA and 
glutamate neurotransmitter levels is important for the maintenance of adult neurogenesis and can be 
a therapeutic target to prevent neuronal dysfunction induced by DM that results in cognitive deficits 
(Figure 2). 

4. Mitochondrial Function in Stem Cell Differentiation 

There has been various research on the crosstalk between mitochondria located in mature 
muscle fibers and satellite cell function. Wagatsuma et al., demonstrated that the activity of citrate 
synthase dramatically increased soon after muscle injury when the myoblast began to differentiate 
into myotubes with increased expression of mitochondrial biogenesis-related genes, NRF1, NRF2, 
and TFAM, and myogenic regulatory factors, including MyoD and myogenin [34]. The authors also 
found that pharmacological blocking the synthesis of mitochondrial protein using chloramphenicol 
induces deficient regeneration and muscle fibrosis [34]. LaBarge et al., reported that muscle fiber-
specific ERRα knockout mice exhibits impaired muscle regeneration with reduced mitochondrial 
content and citrate synthase activity compared to wild-type mice [51]. Furthermore, broad-acting 
autophagy inhibitor disturbed functional muscle regeneration and mitochondrial remodeling after 
injury [35], indicating that appropriate degradation of poorly functioning mitochondria by 
mitophagy is important for muscle regeneration. Additionally, oxidative stress decreases myogenic 
potential of satellite cells as described in the preceding section [36,98]. These findings suggest that 
mitochondrial function may be critical for precise differentiation of satellite cells in adult skeletal 
muscle. 

It has also been reported that mitochondria in stem cells regulates their differentiation. As for 
skeletal muscle stem cells, Kim et al., have shown that C2C12 myoblasts treated with the 
mitochondrial division inhibitor mdivi-1, a specific inhibitor of DRP1 GTPase activity, display 
extensive formation of elongated mitochondria along with increased apoptosis. Mdivi-1-treated 
C2C12 myotubes showed dose-dependent reduction in mtDNA copy number, mitochondrial mass, 
and membrane potential, indicating disturbed mitochondrial biogenesis during myogenic 
differentiation. Furthermore, mdivi-1 treatment significantly inhibited myotube formation in both 
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C2C12 and primary myoblasts, suggesting that DRP1-dependent mitochondrial division is required 
for successful myogenic differentiation [140]. In the case of NSCs, Rharass et al., have demonstrated 
that mitochondrial ROS produced from human neural progenitors by growth factor depletion 
activate Wnt/β-catenin signaling, leading to neuronal differentiation. The authors also found that low 
levels of ROS suppress the activation of Wnt/β-catenin signaling owing to blockade of the Wnt 
effector Dishevelled, which resulted in notable impairment of neuronal differentiation [141]. The 
authors suggested that mitochondrial ROS may contribute to the precise adult neurogenesis. 
Beckervordersandforth et al., found that TFAM-deficient NSCs display a severe defect in neurogenic 
lineage progression [142]. The decreased neurogenic capacity is exhibited in PINK1-deleted NSCs 
[143]. Taken together, diabetes-induced inhibition of stem cell differentiation may occur through 
disturbed function of mitochondria. To verify this hypothesis, detailed studies on whether or not 
diabetes can induce mitochondrial dysfunction in stem cells are needed. 

5. Preventive Effects of Physical Exercise on Diabetic Alterations 

5.1. Response of Mitochondria in Diabetic Muscle to Exercise 

Physical exercise can change mitochondrial content, shape, and function in skeletal muscle [144]. 
Firstly, mitochondrial biogenesis in skeletal muscle is enhanced by exercise. Endurance exercise 
stimulates mitochondrial biogenesis [145,146], which has been largely attributed to the cumulative 
effects of each bout of exercise sustained training [147,148]. PGC-1α expression responds to physical 
exercise as the muscle adapts to metabolic demands, which leads to mitochondrial biogenesis [43,149]. 
Both acute exercise and long-term training reportedly increase the expression of PGC-1α protein in 
the skeletal muscle [150,151]. However, it remains unclear whether exercise- and training-induced 
promotion of mitochondrial biogenesis requires for functioning PGC-1α. A study using PGC-1α-
knockout mice showed that PGC-1α is not essential for the training-induced increase in the 
expressions of mitochondrial proteins, such as ALSA1, Cox1, and cytochrome C [152]. Additionally, 
muscle-specific PGC-1α-knockout mice exhibit exercise capacity and exercise-induced mitochondrial 
biogenesis similar to that of their wild-type littermates [153]. Therefore, other factors likely regulate 
the mitochondrial biogenesis accompanying with exercise and training. Exercise-induced 
mitochondrial biogenesis occurs along with an increase in mtDNA copy number. Interestingly, 
protein expression of TFAM is elevated in the skeletal muscle of both animals [154–156] and human 
[157] following endurance exercise. This upregulation of TFAM has been also observed in in vitro 
studies using contractile models of myotubes [158,159]. Based on these evidences, it is supposed that 
TFAM regulates mtDNA transcription and contributes to the increased expression of mitochondrially 
encoded genes resulting in the promotion of mitochondrial biogenesis in response to physical 
exercise [43]. Exercise-induced mitochondrial biogenesis has been observed in diabetic as well as 
healthy skeletal muscle. Patients with T2DM have shown to respond to endurance training with 
increases in insulin sensitivity and mitochondrial protein contents in the skeletal muscle [24,160]. 
Other styles of exercise training, including strength and concurrent training, have been also reported 
to increase the mitochondrial content in skeletal muscle of patients with T2DM [161,162]. 
Furthermore, a study mimicking exercise stimulation via electrotransfection of PGC-1α into rat 
skeletal muscle indicated increased PGC-1α protein content, mtDNA copy number, and 
mitochondrial enzyme activities, together with improvement of insulin sensitivity in the skeletal 
muscle [46]. These results suggest that exercise-induced upregulation of PGC-1α has beneficial effects 
on mitochondrial function in the diabetic muscle. Physical exercise also activates AMP-activated 
protein kinase (AMPK), which is activated under the condition of decreased ATP/AMP ratio such as 
exercise [163] and caloric restriction [164]. Importantly, AMPK phosphorylates and activates PGC-1α 
to promote the expression of mitochondria-related genes [165,166]. Acute exercise induced AMPK 
activation in skeletal muscle of T2DM patients [167], suggesting that the activation of the AMPK–
PGC-1α axis may contribute to exercise-induced mitochondrial biogenesis. Additionally, exercise 
promotes the expression of PPARδ in skeletal muscle. Luquet et al., reported that 6 weeks of moderate 
exercise induces the accumulation of PPARδ protein in skeletal muscle [168]. Four months of low-
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intensity exercise training upregulated the expression of PPARδ with improvement of insulin 
sensitivity in skeletal muscle of T2DM patients [169]. Recently, specific PPARδ agonists have been 
reported to be effective to improve metabolic syndrome. Specific PPARδ agonist GW501516 reduced 
adiposity and improved insulin sensitivity in skeletal muscle of db/db mice or obese mice fed a high-
fat diet [170,171]. Because PPARδ agonist and AMPK agonist upregulated metabolic genes and 
enhanced endurance capacity without exercise [172], they can be exercise mimetics. These findings 
suggest that AMPK–PPARδ pathway may be a therapeutic target for treatment of DM. Altogether, 
physical exercise can be an effective measure for DM patients to increase mitochondrial content with 
enhanced oxidative capacity in skeletal muscle. 

Secondly, physical exercise also contributes to mitochondrial quality control in skeletal muscle. 
Kitaoka et al., demonstrated that the expressions of the mitochondrial fusion proteins MFN1, MFN2, 
and OPA1 is increased in skeletal muscle following electrical stimulation-induced resistance exercise 
training [173]. Similarly, swimming endurance training induces increased protein levels of 
mitochondrial fusion genes [174], suggesting that exercise training can accelerate mitochondrial 
fusion. Additionally, the expression of Fis1 and the activation of DRP1 are elevated after or during 
acute exercise [175], indicating that physical exercise increases mitochondrial fission in the skeletal 
muscle. Furthermore, 6 weeks of exercise training increased PINK1 mRNA expression in human 
skeletal muscle [176], and PARKIN protein was decreased in the fasted state following acute exercise, 
which suggests that exercise promotes mitophagy [177]. Although these studies suggest that exercise 
training contributes to mitochondrial quality control, further investigation is needed to verify the 
effects of exercise on the improvement of mitochondrial quality in the diabetic muscle. 

Thirdly, exercise training and muscle contraction lead to increased ROS production and 
oxidative stress [178,179]. Although excessive ROS can damage contractile proteins and organelles in 
the skeletal muscle [180], moderate oxidative stress plays important roles in muscle signaling and 
maintaining muscle homeostasis [181,182]. Indeed, healthy wild-type mice treated with antioxidants 
exhibited mitochondrial dysfunction leading to exercise intolerance [183]. Thus, balanced ROS 
production is critical for maintaining cellular function. In a previous study, 10 weeks of aerobic 
training suppressed excess mitochondrial H2O2 production in skeletal muscle of the patients with 
T2DM, leading to improved mitochondrial respiration [184]. Oxidative stress during exercise 
maintains mitochondrial fitness [185,186] and induces molecular regulators of insulin sensitivity and 
antioxidant defense [187]. Taken together, physical exercise may contribute to the inhibition of 
excessive ROS production in the skeletal muscle under diabetes complication. Future research needs 
clinical studies because there is still a gap between basic research and clinical application [188]. 

5.2. Effects of Exercise on Muscle Stem Cell Function 

A number of studies have shown that physical exercise has positive effects on satellite cells. 
Satellite cell number have been reported to increase in animal models after acute or chronic exercise 
[189,190]. This increment in the satellite cell number is also observed in human skeletal muscle. The 
long-term effect of exercise on satellite cell number is apparent in the skeletal muscle of well-trained 
power lifters, who have 70% more satellite cells than the control subjects [191]. The increased number 
of satellite cells after exercise training gradually reduces during detraining [192], suggesting that a 
continuation of exercise is required for maintaining an abundant pool of satellite cells in skeletal 
muscle. Effective methods of exercise for increasing or maintaining the pool of satellite cells are still 
investigated [193,194]. Recently, Fujimaki et al., showed that the number of satellite cells in diabetic 
mice that performed treadmill running for 4 weeks was larger than that in control mice [30]. This 
suggests that exercise contributes to recovery of satellite cell numbers in DM. 

Physical exercise is useful to increase not only satellite cell number but also satellite cell function. 
Four weeks of voluntary wheel running led to upregulation of Wnt signaling, which regulates to the 
activation and myogenic progression of satellite cells in skeletal muscle, in diabetic mice [111]. 
Consistent with this study, Aschenbach et al., demonstrated that acute treadmill running upregulates 
β-catenin through GSK-3β inactivation [195]. Moreover, functional overload, a model of resistance 
training that leads to muscle hypertrophy, induced β-catenin activation in the plantaris muscle [196]. 
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Using chromatin immunoprecipitation assays, Fujimaki et al., demonstrated that the exercise-
induced upregulation of Wnt signaling directly modulates the chromatin structures of the Myf5 and 
MyoD and facilitates their transcription in adult satellite cells, resulting in increased mRNA 
expression of these genes and the satellite cell activation [111]. Furthermore, satellite cells derived 
from hypertrophic muscle induced by functional overload had improved their proliferative ability 
and myogenic capacity [197]. Fujimaki et al., further showed that the proportion of activated to total 
satellite cells is decreased in STZ-induced diabetic muscle as compared to healthy muscle. However, 
running exercise increased the proportion of activated satellite cells in diabetic muscle as well as 
healthy muscle through the upregulation of Wnt signaling [30], indicating that exercise inhibits the 
disturbance of satellite cell activation by DM. These results suggest that exercise can be a 
countermeasure for the dysfunction of satellite cells in the skeletal muscle under diabetes 
complication. 

5.3. Effects of Exercise on Adult Neurogenesis 

Physical exercise positively affects adult neurogenesis as well as myogenesis. Van Praag et al., 
demonstrated that voluntary running exercise promotes cell proliferation, cell survival, and 
neurogenesis in the DG of adult mice [198]. Exercise-induced increases in neurogenesis in the DG of 
the hippocampus have been reported in young, adult, and aged animals [199–204]. Furthermore, 
physical exercise improves the cognitive functions in aged mice and humans. These results suggest 
that exercise-enhanced adult neurogenesis leads to the improvement of cognitive functions. There 
are few reports on the preventive effects of exercise on neuronal dysfunctions in diabetes. Although 
physical exercise did not particularly affect body weight and blood glucose in STZ-induced diabetic 
rats, the reduction of hippocampal cell proliferation by DM was inhibited by exercise [205]. In 
addition, forced treadmill running increased hippocampal cell proliferation and differentiation, 
which are disturbed in the hippocampus of ZDF rats [206,207]. Physical exercise recovers cognitive 
deficits in STZ-induced diabetes as indicated by novel object recognition task, step-down avoidance 
task, and 8-arm radial maze testing [208,209]. These studies provide evidence that physical exercise 
improves adult neurogenesis and cognitive deficits in diabetes, suggesting that exercise can 
contribute to the recovery of diabetic complications in the central nervous system. 

Recently, the molecular mechanisms underlying the exercise-induced promotion of cell 
proliferation and adult neurogenesis in the hippocampus have been gradually revealed. Exercise 
modulates the expressions of Wnt signaling-related genes in the hippocampus [210]. We previously 
demonstrated that running exercise induces enhanced expression of Wnt3 in the astrocytes of the DG 
and increases the population of Wnt3-expressing cells in both young and aged mice [211]. 
Furthermore, Mir et al., reported that exercise-induced neurogenesis depends on the novel 
RIT1/Akt/Sox2 cascade in the hippocampus. The author showed that gene deletion of RIT1, a Ras-
related GTPase that is expressed throughout the central nervous system, blocks both exercise-
induced and Insulin-like growth factor-1 (IGF-1)-dependent cell proliferation and differentiation of 
NSCs in the hippocampus. The study also demonstrated that IGF-1-dependent activation of Sox2, 
which is involved in the maintenance and proliferation of NSCs, is regulated by RIT1-Akt signaling 
and this cascade contributes to the proliferation and differentiation of NSCs in the hippocampal DG 
[212]. Additionally, vascular endothelial growth factor secreted by skeletal muscle has been 
suggested to regulate hippocampal blood flow and neurogenesis [213]. Although physical exercise 
may promote neurogenesis in diabetes via these regulators, further investigation is required for a 
detailed understanding of the mechanism of the preventive effects of exercise on neuronal 
dysfunction in DM. 

6. Conclusions 

The present review described diabetes-related alterations of mitochondria and stem cells in the 
skeletal muscle and central nervous system. In both skeletal muscle and the brain, diabetes induces 
mitochondrial dysfunction, including decreased mitochondrial respiration, reduced oxidative 
phosphorylation, and increased oxidative stress. Diabetes also interferes with stem cell function. The 
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number and differentiation ability of satellite cells are decreased in diabetic skeletal muscle, which 
may be induced by the excess ROS production and/or inactivation of the notch and Wnt signaling 
pathways. Adult neurogenesis is also disturbed in the brain in case of diabetic complication via the 
downregulation of Wnt signaling. Because some reports indicate that precise differentiation of 
muscle and neural stem cells is controlled by mitochondrial function, the disturbances of myogenesis 
and neurogenesis may be induced by mitochondrial dysfunction in diabetes. Importantly, exercise is 
very useful for preventing/improving diabetic alterations in the skeletal muscle and central nervous 
system. Physical exercise leads to increased mitochondrial content and oxidative capacity in both 
healthy and diabetic muscle, and can block excessive ROS production induced by diabetes. 
Additionally, lineage progression of satellite cells and NSCs is accelerated by physical exercise 
through the upregulation of Wnt signaling. Although more investigation is required for a thorough 
understanding of diabetes-related alterations and biological mechanisms in various tissues, the 
current literature as presented in this review clearly suggests physical exercise to be a valuable 
measure for DM patients to prevent diabetic complications as well as to maintain or improve their 
quality of life. 
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