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Abstract: Colochirus robustus, a species of sea cucumber, has long been used in East and Southeast Asia 
as nutritious food as well as for certain medicinal purpose. Studies have shown a number of biological 
functions associated with consumption of sea cucumber, many of which are attributed to its major 
component, sea cucumber peptides (SCP). However, how SCP impacts immune system, which is 
critical for host defense, has not been defined. To address this issue, in the present study, we conducted 
comprehensive analysis of immune function after oral administration of SCP (0, 25, 50, and 75 mg/kg 
body weigh) for eight weeks in C57BL/6 mice. We found that SCP treatment significantly enhanced 
lymphocyte proliferation, serum albumin (ALB) levels, and the natural killer (NK) cell activity. 
Moreover, SCP promoted functions of helper T cells (Th) as indicated by increased production of Th1 
type cytokines of Interleukin (IL)-1β, IL-2, Interferon (IFN)-γ and TNF-α and Th2 type cytokines (IL-
4, IL-6, and IL-10). To determine the effective components, SCP was hydrolyzed into 16 types of 
constituent amino acids in simulated gastrointestinal digestion and these hydrolytic amino acids 
(HAA) were used for the mechanistic studies in the in vitro models. Results showed that HAA 
enhanced lymphocyte proliferation and production of IL-2, IL-10 and IFN-γ. Furthermore, CD3ζ 
(CD3ζ) and ζ-chain-associated protein kinase 70 (ZAP-70), the signaling molecules essential for 
activating T lymphocytes, were significantly up-regulated after HAA treatment. In summary, our 
results suggest that SCP is effective in enhancing immune function by activating T cells via impacting 
CD3ζ- and ZAP-70-mediated signaling pathway. 
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1. Introduction 

Sea cucumber (Colochirus robustus), which belongs to Echinodermata, Holothuroidea, 
Aspidochirotida, has long been used as a tasty, nutritious food as well as a medicinal remedy in some 
Asian countries (China, Korea and Japan) because of their various health benefits [1,2]. Sea cucumber 
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has been known to improve wound healing and reduce arthritis pain, thus it is widely used in folk 
medicine for many centuries in China [3,4]. Previous studies have demonstrated that sea cucumber 
has several bioactivities, such as anti-microbial, anti-oxidant, anti-cancer, anti-angiogenic, anti-
hypertension anti-coagulant, and anti-inflammatory functions [5,6]. These proposed therapeutic 
properties and potential health benefits of sea cucumbers can be attributed to the presence of 
bioactive compounds including vitamins, minerals, cerebrocides, peptides, and lectins, as well as 
some unique molecules such as chondroitin sulfates, polysaccharides, sterols, cerebrosides, and 
saponins [7]. Thus far, however, little attention has focused on the bioactivities of the constituent 
compounds in sea cucumber, especially for the peptides. 

Peptides originated from food proteins can be developed into nutraceuticals which are natural 
and safe alternatives to synthetic drugs [8]. Peptides, containing 3–20 amino acids in length, form 
protein primary structure with molecular weight distribution at 100–2000 Da [9]. Multiple biological 
properties of peptides have been reported, which include anti-microbial and anti-oxidant activities, 
and as angiotensin-converting enzyme (ACE) inhibitors [10]. Peptides extracted from scorpion 
venom are effective in recovering immuno-surveillance and intervening immune escape of lung 
cancer through multi-pathway [11]. Moreover, it has been reported that the peptides from Pleurotus 
eryngii mycelium may be a potential functional food with immunomodulation activity [12]. Recently, 
Song et al. [13] demonstrated that SCP exerted anti-inflammatory function through inhibiting NF-κB 
and MAPK activation and inducing HO-1 expression in macrophages. While these results suggest 
that SCP may modulate innate immune cell functions, it is still elusive as for whether SCP can impact 
functions of specific immune responses, the more efficient arm of immune system. 

A host’s specific immune responses to pathogens include both cellular and humoral immunity. 
The humoral immune response is induced by B cells and cell-mediated immune defense by T cells 
[14,15]. It is generally known that plant lectin Concanavalin A (Con A) or T cell receptor (TCR) 
antibodies anti-CD3/CD28 stimulate T cell proliferation, whereas bacterial endotoxin 
lipopolysaccharide (LPS) stimulates B cell proliferation. Although many cell types participate in 
immunoregulation, Th lymphocytes play a critical role in regulating immune responses. Th cells can 
be further classified into several subsets, including Th1 and Th2, according to differences in their 
corresponding cytokine expression profiles [16]. Upon TCR stimulation, the ζ-chain interacts with 
the Src-family tyrosine kinases Lck and Fyn, becomes phosphorylated on its immunoreceptor 
tyrosine-based activation motifs (ITAM), and recruits the Syk-family protein tyrosine kinase (PTK) 
ZAP-70 [17]. The most important member of the CD3 family is CD3ζ, to which ZAP-70 binds. CD3ζ 
and ZAP-70 can facilitate the lymphocyte to proliferate and secrete cytokines. 

Given all this, in this study, after we defined the effect of SCP from Colochirus robustus on T cell 
effector functions in the in vivo model, we further investigated effect of SCP on T cell activation with 
a focus on signaling molecules CD3ζ and ZAP-70 in the in vitro model to help understand the 
working mechanism of SCP. 

2. Results 

2.1. Effect of Sea Cucumber Polypeptides (SCP) on the Body Weight 

Oral gavage of SCP was well tolerated by mice and no abnormal behavior and side effects were 
observed throughout the experiment. During the first two weeks of the study, animals in all groups 
had a slight weight loss of 0.2–0.3 g, probably due to the intragastric excitability (Figure 1). After that, 
body weight steadily increased throughout the study with a comparable rate across all groups so that 
no treatment-related difference was observed. 
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Figure 1. Body-weight change of C57BL/6 mice treated with oral administration of sea cucumber 
polypeptides (SCP). Mice received daily oral gavage of SCP at 0, 25, 50 or 75 mg/kg body weight for 
eight weeks. Values are means ± SD, n = 10. There was no a significant between control group and SCP 
group by repeated measures ANOVA (p < 0.05). BW, body weight. 

2.2. Molecular Weight Distribution and Amino Acid Composition  

As shown in Table 1, molecular weight distribution of SCP ranged from 100 to 2000 Da (94%) 
(Table 1). Analysis of amino acid composition of SCP indicated that glycine was the most abundant 
amino acid present in SCP (18.54 g per 100 g protein), followed by glutamic acid, alanine, arginine, 
and aspartic acid, accounting for 11.23, 9.75, 7.55, and 6.92 g per 100 g protein, respectively (Table 2).  

Table 1. Molecular weight distribution of Sea Cucumber Polypeptides (SCP). 

Molecular Weight Range %
<100 1.50 

100~300 28.50 
300~600 30.00 

600~1000 20.00 
1000~2000 15.50 
2000~3000 3.00 

>3000 1.50 

Table 2. Amino acid composition of SCP. 

Amino Acid g/100 g Protein 
Gly 18.54 
Glu 11.23 
Ala 9.75 
Arg 7.55 
Asp 6.92 
Pro 5.90 
Thr 4.68 
Ser 4.50 
Leu 4.39 
Val 3.83 
Lys 3.33 
Ile 2.29 
Tyr 2.10 
Phe 1.80 
Met 1.77 
His 1.57 
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2.3. Effect of SCP on Cellular Composition of Spleen 

Compared to the control, mice treated with 75 mg/kg SCP showed a significant increase in 
percent CD4+ and CD8+ cells, and mice treated with SCP 50 or 75 mg/kg also showed a higher percent 
B cells (CD45R+) and NK cells (NK 1.1+) (Table 3). There was no significant difference in percent 
regulatory T cells (CD4+/CD25+) between mice treated with SCP and the control. 

Table 3. Effect of oral administration with the SCP on lymphocyte cell phenotype of C57BL/6 mice. 

Group(mg/kg BW) CD4+ T cells (%) CD8+ T cells (%) B Cells (%) NK (%) Treg (%) 
0 29.24 ± 3.32 b 15.61 ± 2.91 b 55.12 ± 3.71 a 2.23 ± 0.46 a 3.34 ± 0.68 a 

25 28.11 ± 3.12 a 14.96 ± 2.37 a 55.52 ± 4.34 a 2.41 ± 0.62 a 3.21 ± 0.53 a 
50 29.55 ± 3.73 b 15.37 ± 2.14 ab 56.78 ± 5.16 b 2.96 ± 0.77 b 3.28 ± 0.76 a 
75 30.47 ± 4.21 c 16.16 ± 2.74 c 56.43 ± 4.83 b 3.37 ± 0.85 c 3.14 ± 0.52 a 

Values are means ± SD, n = 10. For each variable, means in a row without a common letter differ by 
one-factor ANOVA, p < 0.05. NK: natural killer; BW: body weight. 

2.4. Effect of SCP on Lymphocyte Proliferation and Serum Albumin (ALB) Levels 

Anti-CD3/CD28-induced lymphocyte proliferation was significantly enhanced in mice treated 
with SCP at all doses (25, 50, 75 mg/kg) with highest increase seen in those receiving 50 mg/kg SCP 
(p < 0.05) (Figure 2A). A very similar pattern of enhancement related to SCP treatment was also 
observed in the proliferative response of lymphocytes induced by T cell mitogen Con A (p < 0.05) 
(Figure 2B). We also found that SCP treatment enhanced B cell proliferation elicited by B cell mitogen 
LPS in a dose-dependent pattern up to 50 mg/kg, after which the increase leveled off (p < 0.05) (Figure 
2C). Serum ALB concentrations were higher in a dose-dependent manner in SCP-treated groups 
compared to the control group (Figure 3). 

 

Figure 2. Effect of oral SCP administration on lymphocyte proliferation. C57BL/6 mice treated with SCP at 
0, 25, 50, or 75 mg/kg body weight for eight weeks. Splenocytes isolated from these mice were stimulated 
with: CD3/CD28 (A); Concanavalin A (Con A) (B); or lipopolysaccharide (LPS) (C) for 72 h, and cell 
proliferation was quantified. Values are means ± SD, n = 10. For each variable, means in a row without a 
common letter significantly differ as determined by one-factor ANOVA, p < 0.05. BW: body weight 
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Figure 3. Effect of SCP on ALB concentration in C57BL/6 mice. Mice received daily oral gavage of SCP 
at 0, 25, 50, or 75 mg/kg body weight for eight weeks. Serum ALB was measured by enzyme linked 
immunosorbent assay (ELISA) kits. Values are means ± SD, n = 10. For each variable, means in a row 
without a common letter significantly differ as determined by one-factor ANOVA, p < 0.05. 

2.5. Effect of SCP on Natural Killer (NK) Cell Activity 

The cytotoxic activity of NK cells takes part in tumor cell elimination. The cytotoxic activity of 
splenocytes against NK cell-sensitive K562 cells was measured using an Accuri C6 flow cytometer. 
The cytotoxic activity of SCP-treated mice was significantly higher than that of phosphate buffer 
solution (PBS)-treated mice in a dose-dependent manner (p < 0.05) (Figure 4). 

 

Figure 4. Effect of SCP on natural killer (NK) cells activity in C57BL/6 mice. Mice received daily oral 
gavage of SCP at 0, 25, 50 or 75 mg/kg body weight for eight weeks. NK activity was determined as 
percent cytolytic killing of K562 cells (target cells) by splenocytes (effector cells) using a flow 
cytometry method. Values are means ± SD, n = 10. For each variable, means in a row without a 
common letter significantly differ as determined by one-factor ANOVA, p < 0.05. 

2.6. Effect of SCP on Cytokine Production 

Overall, SCP-treated mice had higher CD3/CD28-stimulated production of IL-2, IL-4, IL-6 and 
TNF-α than those in the control group (Table 4), while IFN-γ was higher only in high dose of SCP 
treatment (75 mg/kg BW). In addition, higher cytokine production was found in Con A-stimulated 
cultures from SCP-treated mice compared to the control mice, and it appeared that the effect of SCP 
was more pronounced in 50 mg/kg BW than in lower (25 mg/kg BW) or higher (75 mg/kg BW) group 
(Table 5). LPS-stimulated production of IL-1β, IL-6 and TNF-α was higher in SCP groups with similar 
dose-related pattern as seen in Con A-stimulated cultures (Table 6). 
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Table 4. Effect of oral administration with the SCP on CD3/CD28-induced cytokines 
production by lymphocyte of C57BL/6 mice. 

Group  
(mg/kg BW) 

IL-2 pg/mL IL-4 pg/mL IL-6 pg/mL IL-10 pg/mL TNFα pg/mL IFNγ pg/mL 

0 310.4 ± 28.1 a 62.3 ± 6.1 a 44.5 ± 3.8 a 425.3 ± 51.2 c 215.7 ± 16.5 b 204.2 ± 17.1 c 
25 412.8 ± 32.7 b 110.5 ± 8.2 b 61.5 ± 5.5 c 386.4 ± 32.5 a 228.1 ± 18.2 c 140.6 ± 10.7 a 
50 488.1 ± 25.7 c 130.1 ± 7.9 c 65.4 ± 4.7 d 414.9 ± 49.1 b 240.1 ± 27.3 d 157.4 ± 16.3 b 
75 400.2 ± 34.1 b 100.9 ± 5.6 b 50.3 ± 4.1 b 429.5 ± 46.4 c 203.6 ± 13.2 a 228.3 ± 25.2 d 

Values are means ± SD, n = 10. For each variable, means in a row without a common letter differ by 
one-factor ANOVA, p < 0.05. IFN: Interferon. 

Table 5. Effect of oral administration with the SCP on Concanavalin A (Con A)-induced cytokines 
production by lymphocyte of C57BL/6 mice.  

Group 
(mg/kg BW) IL-2 pg/mL IL-4 pg/mL IL-6 pg/mL IL-10 pg/mL TNFα pg/mL IFNγ pg/mL 

0 182.2 ± 25.3 b 12.1 ± 0.9 a 26.3 ± 2.1 b 70.9 ± 5.6 a 551.5 ± 22.4 a 58.3 ± 4.3 a 
25 157.6 ± 19.1 a 16.3 ± 1.8 c 22.1 ± 1.3 a 72.4 ± 3.2 a 575.1 ± 31.6 b 72.2 ± 5.1 b 
50 207.3 ± 32.4 c 16.6 ± 1.6 c 30.2 ± 3.1 c 125.5 ± 10.8 c 641.4 ± 56.3 d 100.2 ± 15.2 d 
75 189.5 ± 23.6 b 13.3 ± 1.4 b 31.1 ± 2.5 c 80.2 ± 7.5 b 592.3 ± 41.1 c 84.4 ± 8.6 c 
Values are means ± SD, n = 10. For each variable, means in a row without a common letter differ by 
one-factor ANOVA, p < 0.05. 

Table 6. Effect of oral administration with the SCP on lipopolysaccharide (LPS)-induced cytokines 
production by lymphocyte of C57BL/6 mice.  

Group (mg/kg BW) IL-1β pg/mL IL-6 pg/mL TNFα pg/mL 
0 129.2 ± 10.1 a 53.2 ± 3.8 a 140.6 ± 34.3 a 
25 134.5 ± 17.3 a 61.7 ± 5.8 c 159.9 ± 51.2 c 
50 157.8 ± 26.2 b 67.7 ± 8.1 d 202.3 ± 62.5 d 
75 131.1 ± 12.7 a 56.2 ± 4.9 b 149.4 ± 44.3 b 

Values are means ± SD, n = 10. For each variable, means in a row without a common letter differ by 
one-factor ANOVA, p < 0.05. 

2.7. Effect of Hydrolytic Amino Acids (HAA) on Lymphocyte Proliferation 

To verify that SCP-derived HAA (consisted of 16 types of amino acids) contribute to the 
immuno-enhancing effect of SCP on lymphocyte proliferation, we stimulated splenocytes with anti-
CD3/CD28 in the presence of HAA at 0, 0.25, 0.5 and 1 mg/mL. The results showed that HAA 
significantly enhanced lymphocyte proliferation (Figure 5). 

 

Figure 5. Effect of in vitro HAA supplementation on CD3/CD28-induced lymphocyte proliferation. 
Splenocytes isolated from C57BL/6 mice were incubated in the presence of HAA at 0, 0.25, 0.5, or 1 
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mg/mL for 4 h and then cells were stimulated by anti-CD3 (5 mg/mL)/anti-CD28 (1 mg/mL) for 72 h. 
Cell proliferation was measured by Cell Counting Kit-8(CCK-8) assay. Values are means ± SD, n = 10. 
Means in a row without a common letter significantly differ as determined by one-factor ANOVA, p 
< 0.05.  

2.8. Effect of HAA on Cytokine Production 

For the same reason, we also determined effect of in vitro HAA supplementation on cytokine 
production in comparison with SCP. Similarly, we found that HAA enhanced IL-2 (Figure 6A), IL-10 
(Figure 6B), and IFN-γ (Figure 6C) production in splenocytes stimulated with anti-CD3/CD28. 

 

Figure 6. Effect of in vitro HAA supplementation cytokine production. Splenocytes isolated from 
C57BL/6 mice were incubated in the presence of HAA at 0, 0.25, 0.5 or 1 mg/mL for 4 h and then 
stimulated by CD3 /CD28 for 48 h. Cell-free supernatant was used to measure production of: 
Interleukin (IL)-2 (A); IL-10 (B); and IFN-γ (C) by ELISA. Values are means ± SD, n = 10. Means in a 
row without a common letter significantly differ as determined by one-factor ANOVA, p < 0.05.  

2.9. Effect of HAA on CD3ζ and ζ-chain-associated protein kinase 70 (ZAP-70) Expressions 

CD3ζ and ZAP-70 expressions in T cells are essential steps and thus are used as relevant 
indicators for T cell activation. To determine whether HAA-induced enhancement in T cell 
proliferation and cytokine production are related to early activation events in T cells, we tested 
expression of CD3ζ (Figure 7A,C) and ZAP-70 (Figure 7B,D) in splenocytes stimulated by anti-
CD3/CD28 in the presence of HAA. The results indicated that HAA significantly upregulated CD3ζ 
and ZAP-70 expression. 
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Figure 7. Effect of in vitro HAA supplementation on expression of: CD3ζ (A) and ζ -chain-associated 
protein kinase 70 (ZAP-70) (B) Splenocytes were incubated in the presence of HAA at 0, 0.25, 0.5, or 1 
mg/mL for 4 h and then stimulated by CD3/CD28 for 48 h. CD3ζ and ZAP-70 expression was 
determined using flow cytometry; (A,B) Statistical summary of CD3ζ and ZAP-70 expression 
presented as mean fluorescence intensity (MFI), respectively; (C,D) Representative histograms for 
CD3ζ and ZAP-70, respectively. Values are means ± SD, n = 10. Means in a row without a common 
letter significantly differ as determined by one-factor ANOVA, p < 0.05. 

3. Discussion 

Previous studies demonstrated that SCP, a 100–2000 Da biological compound, has a wide 
spectrum of biological effects, including ACE-inhibitory [8], anti-hypertensive [18,19], and 
antioxidant activities [20]. While very limited information has suggested that SCP may possess 
bioactivity in modulating immune function [21], there is a lack of comprehensive verification about 
this and, in particular, the working mechanism for the proposed immuno-stimulatory properties of 
SCP has not been well elucidated. In this study, we demonstrated that oral administration of SCP 
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increased serum albumin concentrations, lymphocyte proliferation, NK cell activity, and cytokine 
production, which may be associated with upregulated signaling of CD3ζ and ZAP-70 as indicated 
in the in vitro mechanistic experiments. These results suggest that SCP may have a potential of 
serving as a nutraceutical to improve immune system functions. 

Lymphocyte proliferation is one of the effective immune responses of T- and B-lymphocytes 
upon stimulation (such as infection). It has been shown that acidic or neutral peptide fractions 
stimulated lymphocyte proliferation [22]. In the in vivo study, we robustly stimulated T lymphocyte 
proliferation with anti-CD3/CD28 (Figure 2A) and Con A (Figure 2B), and B lymphocyte proliferation 
with LPS (Figure 2C). T-cell-mediated immune response is indispensable for intracellular, in 
particular the Th cells-derived cytokines that are thought to play a key role in immune function [23]. 
Th1 type cells are responsible for cell-mediated immune response, while Th2 type cells promote 
humoral response [24]. The functions of these subsets of Th cells are defined by the cytokines they 
predominantly produce, for example, IL-2, IFN-γ, and TNF-α by Th1 type cells in contrast to IL-4, IL-
6, and IL-10 by Th2 type cells [25]. In this study, we found that oral SCP administration increased 
production of both Th1 and Th2 cytokines. Together, these results suggest that SCP may potentially 
promote both cellular and humoral immune functions by increasing T cell expansion and secretion 
of Th1 and Th2 cytokines. 

Cytotoxic activity of immune cells is import defense against infectious diseases and cancer [26]. 
NK cells are a group of specialized cytotoxic lymphocyte characterized by their ability to 
spontaneously kill tumor cells and virus-infected cells [27,28]. This function of NK cells is mediated 
and regulated by the immunoregulatory cytokines produced by NK cells themselves as well as other 
cells such as T cells [29,30]. Consistent with the results of by He et al, who reported that sea cucumber 
oligopeptides improved NK cell activity [21], in the current study, we observed that oral SCP 
administration significantly increased NK cell activity. Since we also found an increase in the 
percentage of NK cells in splenocytes used NK activity assay, it is possible that increased NK activity 
is largely attributed to increased number of NK cells after SCP treatment. The positive effect of SCP 
on NK cells suggests that SCP may enhance this innate immune response to potentially prevent viral 
infection and strengthen the surveillance for tumor development. 

ALB is an abundant multifunctional non-glycosylated, negatively charged plasma protein, and 
its biological functions include ligand-binding and transporting, antioxidant activity, regulating 
enzymatic activity, and maintaining colloid osmotic pressure and substance metabolism [31]. Health 
care practitioners have used the ALB level as an index to evaluate nutrition status, specifically protein 
nutrition status [32]. In this study, we found that oral SCP administration resulted in an elevation in 
blood ALB concentrations (Figure 3). Deficiency in dietary protein or amino acids is known to impair 
immune function and increase the susceptibility to infection in both animals and humans. Amino 
acids are important energy substrates for immune cells, and they are essential for intact functions of 
immune cells because of their distinct facilitative characteristic [33]. These amino acids include 
arginine, leucine, isoleucine, valine, glutamine, lysine, threonine, and tryptophan. Increasing 
evidence have shown that dietary supplementation of specific amino acids to animals and humans 
with malnutrition and infectious disease can improve their immune status, thereby reducing 
morbidity and mortality [34]. Arginine supplementation has been reported to enhance T cell response 
to mitogens [35]. High levels of glutamine, which can result from damaged tissues, modulate 
lymphocyte proliferation and production of IL-2, IL-10 and IFN-γ in response to stimuli by 
polarization of the T helper effector response [36,37]. It has been shown that high doses of arginine 
increase IL-4, IL-10 and TNF-α secretion of T cells, increased concentrations of lysine and leucine 
promote IL-10 secretion and proliferative activity of T cells, and threonine enhances TNF-α secretion 
[38]. SCP contains many important amino acids (Table 1), which can be released after SCP is 
hydrolyzed in a simulated gastrointestinal digestion system in the in vitro study. Using the amino 
acids (HAA) generated from SCP digestion in the in vitro study, we found that HAA improved the 
lymphocyte proliferation (Figure 5), and production of IL-2 (Figure 6A), IL-6 (Figure 6B), and IFN-γ 
(Figure 6C). These results of the in vitro studies further support the results of lymphocyte 
proliferation (Figure 2) and cytokines production (Table 4) in the in vivo study. Thus, we speculate 



Int. J. Mol. Sci. 2017, 18, 2110  10 of 15 

 

that SCP may enhance the immune function of mice by increased intestinal absorption of the amino 
acids derived from SCP. 

At present, the underlying mechanism about immunomodulatory effect of SCP remains unclear. 
Activation of T lymphocytes is induced by binding of MHC-associated peptides with TCR, 
transduction of CD3-complex, and expression of CD3ζ and ZAP-70 molecules. The T cell receptor ζ 
chain (CD3ζ) is the principal signal transduction element of the T cell antigen receptor (TCR) [39]. 
CD8+ T lymphocytes from chagasic donors display reduced proliferative capacity, which might be 
associated with CD3ζ down-regulation [40]. ZAP-70 is essential for TCR-mediated activation of 
mature T cells, and it also plays a critical role in T cell maturation. A recent study has demonstrated 
that deletion of ZAP-70 affects CD2- and CD3-mediated proliferation as well as cytokines production 
of TNF-α and IFN-γ in T cells [41]. In this study, our results showed that HAA could enhance CD3ζ 
(Figure 7A) and ZAP-70 (Figure 7B) expression in vitro. T cell proliferation is known to depend on 
the presence of amino acids in culture and TCR complex expression [42]. Conversely, amino acids 
depletion causes diminished T cell proliferation, cytokine production, and CD3ζ chain expression 
[43]. T cells cultured in the absence of amino acids exhibit a sustained down-regulation of CD3ζ 
preventing the normal expression of TCR, a decreased proliferation, and a significantly diminished 
production of IFN-γ, IL-5, and IL-10 [44]. Taken together, our results suggest that SCP-induced 
immuno-enhancement may be because that SCP is digested in the intestine to release its constituent 
amino acids, which are absorbed into the body and induce up-regulation of CD3ζ and ZAP-70 
leading to enhanced T cell proliferation and cytokine production. 

4. Materials and Methods 

4.1. Reagents 

The body wall of sea cucumber (Colochirus robustus) was obtained from Ningbo Bofeng 
Biological Science and Technology Co., Ltd (Ningbo, China). RPMI-1640 medium and fetal bovine 
serum (FBS) were from Hyclone (Logan, UT, USA). Con A, trypan blue, Dimethyl sulfoxide (DMSO), 
and LPS were from Sigma (St. Louis, MO, USA). Cell Counting Kit-8(CCK-8) was from Dojindo 
(Kumamoto, Kyushu, Japan). K562 cell line (Human chronic myelocytic leukemia) was from 
Bioscience-iCell (Shanghai, China). 5(6)-Carboxyfluorescein diacetate N-succinimidyl ester (CFSE), 
all primary antibodies, and ELISA kits were purchased from eBioscience (SanDiego, CA, USA). 

4.2. Preparation of Sea Cucumber Polypeptides (SCP) 

SCP was obtained as previously described with some modifications [13]. The fresh body wall of 
sea cucumber (Colochirus robustus) was rinsed with deionized water. The body wall of sea cucumber 
was dried and pulverized in order to obtain the powder. The powder was added to PBS and the 
Flavourzyme of 1% of the body mass of sea cucumber. Then the solution was hydrolysed for 12 h 
(50 °C, pH 6.8~7.2). The solution was boiled at 90 °C for 10 min to stop enzyme reaction. Subsequently, 
the solution was added into a 3-fold volume of ethanol solution for 24 h. The supernatant solution of 
peptides was obtained by centrifugation at 4500 rpm for 25 min. The peptides solution was purified 
by G10 gel chromatography. Finally, after freeze-dried, SCP was stored at −20 °C until use.  

4.3. Analysis of Amino Acid Composition and Molecular Weight Distribution 

Amino acid composition was measured by an automatic amino acid analyzer following the 
protocol previously described [45]. The molecular weight distribution of SCP was determined using 
high performance size exclusion chromatography (HPSEC) as previously described [46]. Briefly, the 
concentrated SCP dispersion was diluted with 30 volumes (v/v) of 90% Me2SO, and an aliquot of 50 
μL was injected into an HPSEC system with Me2SO as the mobile phase. The raw data were collected 
using Millennium software and then exported to and processed in MS Excel. 

4.4. Animal Treatment 
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Six-week-old male C57BL/6 mice weighed 18–22 g were purchased from the Laboratory Animal 
Centre at the West China Center of Medical Sciences, Sichuan University (Chengdu, China). After 2-
week of acclimation, mice were randomly divided into four groups (10/group) to receive daily gavage 
of PBS (control), SCP in PBS at 0.25, 0.50, or 0.75 g/kg body weight for 8 week. Mice were individually 
housed in wire-bottomed cages with free access to drinking water and the AIN-93 diet. 
Environmentally controlled animal rooms provided a constant temperature at 24 °C, relative 
humidity at 60–70%, and a 12-h-light/-dark cycle (7:00 am/7:00 pm). All procedures of handling the 
animals were conformity with the National Institutes of Health (NIH) guidelines (Pub. No. 85-23, 
revised on 1 September 1996) and was approved by Animal Care and Use Committee of the Sichuan 
Agricultural University. 

4.5. Hydrolytic Amino Acids (HAA) Preparation 

SCP (100 mg) was added to a hydrolysis tube and then sealed with 50 mL of 6 mol/L HCl 
solutions. After the hydrolysis tube was incubated at 110 °C in an incubator for 24 h, the solution was 
concentrated by rotary evaporator to remove HCl solutions. The resulting dried free amino acids 
were collected with constant volume PBS as HAA to be used for the in vitro study. 

4.6. Analysis of Splenocyte Phenotype 

After mice were sacrificed by CO2 asphyxiation, spleens were aseptically removed and placed 
in sterile plates containing RPMI 1640. Single cell suspensions were isolated by gently disrupting 
spleens, and passed through a 200-mesh stainless steel sieve. After red blood cells were removed 
using red blood cell lysis buffer (8.29 g/L NH4Cl, 1 g/L KHCO3 and 37.2 mg/L Na2EDTA), splenocytes 
were washed twice and then suspended in 1 mL complete RPMI-1640 medium containing 10% (v/v) 
FBS, 100 kU/L penicillin and 100 mg/L streptomycin. Cell viability was assessed by the trypan blue 
exclusion method. 

To determine the cellular composition of spleen, 1 × 106 splenocytes were blocked with 0.5 μL 
Anti-CD16/32 (Fcγblock) (0.5 mg/mL) for 30 min at 4 °C, followed by 3 times of wash with PBS. 
Splenocytes were then stained in 3 sets of combinations: FITC-conjugated anti-mouse CD3, PE-
conjugated anti-mouse CD4 and APC-conjugated anti-mouse CD8 to identify total T cells, CD4+, and 
CD8+ T cells; APC-conjugated anti-mouse CD45R, FITC-conjugated anti-mouse CD3, and PE-
conjugated anti-mouse NK1.1 were used to identify B cells and natural killer cells; FITC-conjugated 
anti-mouse-CD4, and PE-conjugated anti-mouse-CD25 were used to identify regulatory T cells. 
Stained cells were analyzed by an Accuri C6 flow cytometer (BD Accuri Cytometers, NJ, USA) and 
acquired data were analyzed using CFlow software (BD Accuri Cytometers, NJ, USA). 

4.7. Lymphocyte Proliferation Assay 

The lymphocyte proliferation was performed as previously described [47]. Briefly, splenocytes 
(1 × 105 cells/well) in 96-well flat-bottom plates (Costar® Assay Plate, Corning Incorporated, Corning, 
New York, NY, USA) were cultured with or without the presence of T cell mitogen Con A at 1.5 mg/L, 
LPS at 1 mg/L, or plate-coated anti-CD3 (5 mg/L) plus soluble anti-CD28 (1 mg/L) (CD3/CD28). Plates 
were incubated for 72 h at 37 °C and 5% CO2. During the last 4 h, 10 μL/well of CCK-8 solution was 
added to plates. The absorbance was measured at 450 nm using a Synergy HT plate reader (BIO-TEK, 
Winooski, VT, USA). 

For the in vitro lymphocyte proliferation assay, splenocytes isolated from C57BL/6 mice were 
incubated with HAA at concentrations of 0, 0.25, 0.5, and 1 mg/mL for 4 h before stimulated by anti-
CD3 (5 mg/L)/anti-CD28 (1 mg/L) for 72 h. Cell proliferation was measured as OD 570 nm using a 
plate reader. 

4.8. Serum Albumin (ALB) Concentration Assay 

At the end of the 8-week oral SCP administration, blood samples were collected into EDTA 
Eppendorf tubes by retro-orbital venous plexus puncture from mice under anesthesia. Blood samples 
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were centrifuged at 2000 rpm for 5 min at 4 °C and obtained serum samples were stored at −80 °C. 
ALB concentrations were measured using sandwich ELISA kits following the manufacturer’s 
instructions. The absorbance of the solutions was measured at 450 nm using a plate reader. 

4.9. Measurement of Cytokines 

Splenocytes (1 × 106 cells/well) in 24 well plates were cultured in the presence of Con A (1.5 mg/L) 
or anti-CD3 (5 mg/L)/anti-CD28 (1 mg/L) for 72 h at 37 °C in 5% CO2 for cytokines IL-2, IL-4, IL-6, IL-
10, IFN-γ, and TNF-α production, or in the presence of LPS (1 mg/L) for 72 h for IL-1β, IL-6 and TNF-
α. Cell-free supernatants were collected at the end of incubation and stored at −20 °C for later analysis. 
Cytokine production was measured using sandwich ELISA kits following the manufacturer’s 
instructions. 

For the in vitro cytokine production assay, splenocytes were incubated with HAA at 0, 0.25, 0.5, 
or 1 mg/mL for 4 h before being stimulated by CD3 (5 mg/L)/CD28 (1 mg/L) for 48 h for examining 
IL-2, IL-10, and IFN-γ production. 

4.10. Natural Killer (NK) Cell Activity Assay 

NK cell activity was determined as previously described with some modifications [14,48]. Briefly, 
K562 cells as target cells were labeled with CFSE (2.5 μM). The splenocytes were used as the effector 
cells. Splenocytes and K562 cells were mixed at ration 50:1 (effector: target) in 96-well plates. After 
mixed cells were incubated for 4 h at 37 °C and 5% CO2, 0.25 μL PI solution (1 mg/mL) was added 
into each well and incubation continued for additional 10 min. CFSE-stained cells and PI-stained cells 
were determined by an Accuri C6 flow cytometer. NK cells activity was calculated using the 
following formula: NK cells activity (%) = [dead K562 Cells (%) − spontaneously dead K562 Cells (%)] 
× 100/[100 − spontaneously dead K562 target cells (%)]. 

4.11. CD3ζ and ZAP-70 Expression 

CD3ζ and ZAP-70 expression was measured using a protocol as previously described [49]. In 
brief, splenocytes (5 × 106 cells/ml) were pre-incubated with RPMI/10% FBS at 4 °C for 10 min and 
HAA (0, 0.25, 0.5, 1 mg/mL) was added to incubation for 4 h before stimulated by CD3 (5 mg/L)/CD28 
(1 mg/L) for 48 h. Cells were stained with PerCP-Cy5.5 conjugated anti-CD3 for 30 min at 4 °C. After 
washed 3 times, cells were incubated in permeabilization buffer for 10 min. Cells were then re-
suspended in PBS, and stained with anti-CD3ζ-FITC or anti-ZAP-70-FITC antibody at 4 °C for 2 h, 
followed by washing 5 times before analysis. Analysis was performed using CFlow software and 
expression levels of CD3ζ and ZAP-70 were measured as mean fluorescence intensity (MFI) and 
percent of positive cells. 

4.12. Statistical Analysis 

All results were expressed as the mean ± standard deviation (S.D.). Statistical analysis was 
conducted using SPSS software version 23.0 (SPSS Inc., Chicago, IL, USA). One-factor analysis of 
variance (ANOVA) was used to analyze the data. Values with p < 0.05 were considered statistically 
significant. 

5. Conclusions 

In summary, in this study, we have shown that oral SCP administration can enhance immune 
response in mice. This effect of SCP may be associated with increased intake of SCP-derived amino 
acids which upregulate signaling pathways involving CD3ζ and ZAP-70 activation. These results 
suggest that SCP has a promising potential as a functional food to improve body’s immune function 
and resistance to infection. Future studies are needed to confirm these findings and, more 
importantly, to determine its translational value in disease prevention and application in humans. 
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On the other hand, the mechanistic study presented here represents only a preliminary attempt and 
further expansion to this end is warranted. 
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