Supplementary Materials: Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae

Alfons Penzkofer, Ulrike Scheib, Katja Stehfest and Peter Hegemann

S1. Amino Acid Sequence

The amino acid sequence of the here investigated recombinant synthesized rhodopsin CaRh is displayed in Figure S1. It was added MS at the N-terminus and ENLYFQGVDHHHHHH at the Cterminus to the Rh domain of the full-length CaRhGC protein. Its apoprotein molar mass is $M_{\mathrm{pr}}=$ $45484.94 \mathrm{~g} \mathrm{~mol}^{-1}$. It contains $14 \mathrm{Tyr}, 12 \mathrm{Trp}$, and 26 Phe residues.

10	20	30	40	50	60
MSMKDKDNNL	RGACSGCSCP	EYCYSPTSTL	CDDCKCSVTK	HPIVEQPLTR	NGSFRSSGAS
70	80	90	100	110	120
LLPSPSQPNI	KVTGSSTASS	NANMRNRQNN	SLSVSNVRST	SSASSSNVSS	PANSRPGSPS
130	140	150	160	170	180
KQSALQQYQT	NIADMWSWDM	MLSTPSLKFL	TGQFIMWAIL	TVAGAFYALF	IQERQAYNRG
190	200	210	220	230	240
WADIWYGYGA	FGFGIGIAFS	YMGFAGARNP	EKKALSLCLL	GVNIIAFSSY	ILIMLRLTPT
250	260	270	280	290	300
IEGTLSNPVE	PARYLEWIAT	CPVLILLISE	ITQADHNAWG	VVFSDYALVV	CGFFGAVLPP
310	320	330	340	350	360
YPWGNLFNIL	SCAFFSFVVY	SLWRSFTGAI	NGETPCNIEV	NGLRWTRFST	VTTWTLFPLS

WFAFTSGMLS FTMTEASFTM IDIGAKVFLT LVLVNSTVEN LYFQGVDHHH HHH

Figure S1. Amino acid sequence of CaRh

S2. Absorption Cross-Section Determination

The absorption cross-section spectrum shape $\sigma_{a, \mathrm{CaRh}}(\lambda)$ of CaRh (solid curve in top part of Figure S2) is equal to the absorption coefficient shape $\alpha_{a}(\lambda)$ of Figure 1. The absolute absorption cross-section spectrum $\sigma_{a, C a R h}(\lambda)$ of CaRh is determined by setting the absorption cross-section of CaRh at $\lambda=270 \mathrm{~nm}$ equal to the apoprotein Trp, Tyr, and Phe absorption cross-section contribution $\sigma_{26 \mathrm{~F}+14 \mathrm{Y}+12 \mathrm{w}(270 \mathrm{~nm})}$ and some estimated retinal absorption cross-section contribution [S1]. The involved absorption cross-section spectra of Phe, Tyr, and Trp were taken from [13]. The apoprotein
absorption cross-section spectrum $\sigma_{26 \mathrm{~F}+14 \mathrm{Y}+12 \mathrm{~W}}$ of CaRh is shown by the dashed curve in the top part of Figure S2. It was calculated as the sum of the absorption cross-section spectra of 26 Phe, 14 Tyr , and 12 Tr residues present in one apoprotein. The CaRh molecule number density was determined by
$N_{\text {CaRh }}=\frac{\alpha_{a, \text { apo }}(270 \mathrm{~nm})}{\sigma_{26 F+14 Y+12 W}(270 \mathrm{~nm})}=\frac{\alpha_{a, \text { CaRh }}(270 \mathrm{~nm})-\alpha_{\text {arectinal }}(270 \mathrm{~nm})}{\sigma_{26 F+14 Y+12 W}(270 \mathrm{~nm})}$,
and the absorption cross-section spectrum of CaRh was set to

$$
\begin{equation*}
\sigma_{a, C a R h}(\lambda)=\frac{\alpha_{a, C a R h}(\lambda)}{N_{C a R h}} . \tag{S2}
\end{equation*}
$$

The values used in the calculations were $\alpha_{\mathrm{a}, \mathrm{CaRh}}(270 \mathrm{~nm})=17.22 \mathrm{~cm}^{-1}, \alpha_{\mathrm{a}, \text { retinal }}(270 \mathrm{~nm})=1.8 \mathrm{~cm}^{-1}$, and

Figure S2. Absorption cross-section spectra. Curves are identified by the legends.
The absorption cross-section spectrum $\sigma_{a, C a R h, f r e s h, ~ d a r k-a d a p t e d ~ s t a t e ~}(\lambda>310 \mathrm{~nm})$ is the absorption cross-section spectrum of PRSB in CaRh for $\lambda>310 \mathrm{~nm}$. The determination of $\sigma_{a, \mathrm{CaRh}, \text { heat-denatured }}$ is described in section 2.2.1 of the main text. The main band with absorption maximum at 384 nm is
the $\mathrm{S}_{0}-\mathrm{S}_{1}$ absorption cross-section band of RSB in heat-denatured CaRh. The absorption cross-section spectrum $\sigma_{a, C a R h_{a 1}}(\lambda)$ is the absorption cross-section spectrum of CaRh in its light-adapted ground-state la1 (Gla1). Its determination is described in section S7. $\sigma_{a, C a R h_{l a 1}}(\lambda>310 \mathrm{~nm})$ is caused by the excitation of PRSBall-trans,laa. The absorption cross-section spectrum $\sigma_{a, \text { CaRh2 }}(\lambda)$ is the absorption cross-section spectrum of CaRh in its light-adapted state la2 ($\mathrm{CaRh}_{\mathrm{laz}}$). Its determination is described in section $S 7$. The main band with absorption maximum at 365 nm is the $\mathrm{S}_{0}-\mathrm{S}_{1}$ absorption cross-section band of $\mathrm{RSB}_{13 \text {-cis }}$ in CaRhla2.

S3. Nano-Cluster Size of a Fresh Centrifuged CaRh Sample

The nano-cluster size of fresh CaRh is determined analogous to the description in [6] and [S2]. The scattering cross-section σ_{s} is obtained from the scattering coefficient α_{s} by $\sigma_{s}=\alpha_{s} / N_{\text {carh. }}$. For the sample used in Figure 1, at $\lambda=632.8 \mathrm{~nm}$ it is $\alpha_{s}(\lambda)=\alpha_{s}\left(\lambda_{0}\right)\left(\lambda_{0} / \lambda\right)^{\gamma}=0.0702 \mathrm{~cm}^{-1}\left(\lambda_{0}=800 \mathrm{~nm}, \alpha_{s}\left(\lambda_{0}\right)=\right.$ $\left.0.046 \mathrm{~cm}^{-1}, \gamma=1.8\right)$ and $\sigma_{s}(\lambda)=1.40 \times 10^{-18} \mathrm{~cm}^{2}\left(N_{\text {CaRh }}=5.01 \times 10^{16} \mathrm{~cm}^{-3}\right)$.

The scattering cross-section σ_{s} is theoretically given by [7]
$\sigma_{s}=M_{s c a} \sigma_{R, m}=\beta_{m} \tilde{M} \sigma_{R, m}$
where $M_{s c a}=\beta_{m} \tilde{M}$ is the aggregation scattering enhancement factor, β_{m} is the degree of aggregation (average number of protein molecules per cluster particle), \tilde{M} is the total Mie scattering function ($\tilde{M} \leq 1$ decreasing with increasing aggregate size [7]), and $\sigma_{\mathrm{R}, \mathrm{m}}$ is the monomer Rayleigh scattering cross-section. The monomer Rayleigh scattering cross-section is given by [7]
$\sigma_{R, m}(\lambda)=\frac{8 \pi}{3} \frac{4 \pi^{2} n_{s}^{4}}{\lambda^{4}} V_{m}^{2}\left(\frac{n_{p r}^{2}-n_{s}^{2}}{n_{p r}^{2}+2 n_{s}^{2}}\right)^{2}=\frac{8 \pi}{3} \frac{4 \pi^{2} n_{s}^{4}}{\lambda^{4}}\left(\frac{M_{p r}}{N_{A} \rho_{p r}}\right)^{2}\left(\frac{n_{p r}^{2}-n_{s}^{2}}{n_{p r}^{2}+2 n_{s}^{2}}\right)^{2}$.

Thereby n_{s} is the refractive index of the solvent (water buffer) at wavelength λ, n_{pr} is the refractive index of the protein at wavelength $\lambda, V_{m}=M_{p r} /\left(N_{A} \rho_{p r}\right)$ is the volume of one protein molecule, M_{pr} is the molar mass of the protein monomer ($M_{\mathrm{pr}}=45484.94 \mathrm{~g} \mathrm{~mol}^{-1}$ for CaRh apoprotein), $N_{\mathrm{A}}=$ $6.022142 \times 10^{23} \mathrm{~mol}^{-1}$ is the Avogadro constant, and ρ_{pr} is the mass density of the protein (typical value for proteins is $\rho_{\mathrm{pr}} \approx 1.412 \mathrm{~g} \mathrm{~cm}^{-3}[\mathrm{~S} 3]$). These numbers give a protein monomer volume of $V_{\mathrm{m}} \approx$ $53.49 \mathrm{~nm}^{3}$ and a protein monomer radius of $a_{m}=\left[3 V_{m} /(4 \pi)\right]^{1 / 3} \approx 2.34 \mathrm{~nm}$. At $\lambda=632.8 \mathrm{~nm}$ there is $n \mathrm{~s}$ $=1.332$ and $n_{\mathrm{pr}} \approx 1.589$ [S4] giving $\sigma_{\mathrm{R}, \mathrm{m}}(632.8 \mathrm{~nm})=2.838 \times 10^{-21} \mathrm{~cm}^{2}$. Insertion into Equation (S3) gives $M_{s c a}=\beta_{m} \tilde{M}=\sigma_{s} / \sigma_{R, m} \approx 494$. The small value of $\gamma=1.8$ indicates a small \tilde{M} and a large cluster volume $V_{a g}=\beta_{m} V_{m} / \kappa_{f, m}$ with small volume fill factor $\kappa_{f, m}[7]$.

S4. Fluorescence Quantum Distribution of Heat-Denatured CaRh

The fluorescence quantum distribution of the heat-denatured CaRh sample of Figure 4 is shown in Figure S3. The corresponding attenuation coefficient spectrum is shown by the thick solid curve in Figure $4 \mathrm{a}\left(4^{\circ} \mathrm{C}\right.$, end). Fluorescence excitation occurred at $\lambda_{\mathrm{F}, \mathrm{exc}}=360 \mathrm{~nm}$.

Figure S3. Fluorescence quantum distribution of heat-denatured CaRh in pH 7.3 HEPES/MOPS buffer for fluorescence excitation wavelength $\lambda_{\mathrm{F}, \mathrm{exc}}=360 \mathrm{~nm}$ (excitation of RSB, belongs to thick solid curve of attenuation coefficient spectrum shown in Figure 4a).

S5. Excitation intensity dependent steady-state attenuation coefficient changes

The attenuation coefficient change $\delta \alpha\left(\lambda_{\text {pr }}, \lambda_{\text {exc }}, I_{\text {exc }}\right)=\alpha_{\text {extremum }}\left(\lambda_{\text {pr }}, \lambda_{\text {exc }}, I_{\text {exc }}\right)-\alpha\left(\lambda_{\text {pr }}, I_{\text {exc }}=0\right)$ versus excitation intensity for the excitation wavelengths $\lambda_{\text {exc }}=530 \mathrm{~nm}$ (LED 530 nm), 590 nm (LED 590 nm) and 470 nm (LED 470 nm) is shown in Figure S4a for $\lambda_{\mathrm{pr}}=370 \mathrm{~nm}$ and in Figure S4b for $\lambda_{\mathrm{pr}}=$ 550 nm . The circles are experimental data. The curves are nonlinear regression fits to the experimental data using the relation [S5]
$\delta \alpha\left(\lambda_{p r}, \lambda_{e x c}, I_{e x c}\right)=\delta \alpha_{0}\left(\lambda_{p r}\right) \frac{I_{e x c} / I_{s a t}\left(\lambda_{e x c}, \lambda_{p r}\right)}{1+I_{e x c} / I_{s a t}\left(\lambda_{e x c}, \lambda_{p r}\right)}$,
with $\delta \alpha_{0}$ and $I_{\text {sat }}\left(\lambda_{\text {exc }}, \lambda_{\text {pr }}\right)$ listed in the sub-figures. The saturation intensity is inverse proportional to absorption cross-section $\sigma_{a}\left(\lambda_{\text {exc }}\right)$ and the absorption recovery time $\tau_{\text {rec }}[S 5]$.

(a)

(b)

Figure S4. Dependence of attenuation coefficient change $\delta \alpha\left(\lambda_{\text {pr }}, \lambda_{\text {exc }}, I_{\text {exc }}\right)=\alpha_{\text {extremum }}\left(\lambda_{\text {pr }}, \lambda_{\text {exc }}, I_{\text {exc }}\right)-$ $\alpha\left(\lambda_{\mathrm{pr}}, I_{\text {exc }}=0\right)$ of CaRh in pH 7.3 HEPES/MOPS buffer (a) at $\lambda_{\mathrm{pr}}=370 \mathrm{~nm}$ and (\mathbf{b}) at $\lambda_{\mathrm{pr}}=550 \mathrm{~nm}$ on excitation light intensity $I_{\text {exc }}$ for $\lambda_{\text {exc }}=530 \mathrm{~nm}$ (top part), 590 nm (middle part), and 470 nm (bottom part). Circles are experimental data. The curves are nonlinear regression fits to the experimental data using the relation $\delta \alpha\left(\lambda_{p r}, I_{\text {exc }}\right)=\delta \alpha_{0}\left(I_{\text {exc }} / I_{\text {sat }}\right) /\left(1+I_{\text {exc }} / I_{\text {sat }}\right)$ with $\delta \alpha_{0}$ and $I_{\text {sat }}$ listed in the subfigures.

S6. Calculation of quantum yield of photo-degradation

The quantum yield of photodegradation ϕ d is given by
$\phi_{d}=\frac{\Delta \mathrm{N}_{d a}}{\Delta n_{\text {ph,abs }}}$,
where $\Delta \mathrm{N}_{\mathrm{da}}$ is the increment of length-integrated number density of degraded dark-adapted CaRh (Rh-541) and $\Delta n_{\mathrm{ph}, \text { abs }}$ is the increment of absorbed excitation photons by light-adapted CaRh (Rh527).
$\Delta \mathrm{N}_{\mathrm{da}}$ is given by
$\Delta \mathrm{N}_{d a}=\bar{N}_{d a} l_{e x c} \frac{\Delta \alpha_{a}\left(\lambda_{p r}\right)}{\bar{\alpha}_{a}\left(\lambda_{p r}\right)}=\frac{\bar{\alpha}_{a}\left(\lambda_{p r}\right)}{\sigma_{a, d a}\left(\lambda_{p r}\right)} l_{e x c} \frac{\Delta \alpha_{a}\left(\lambda_{p r}\right)}{\bar{\alpha}_{a}\left(\lambda_{p r}\right)}=l_{e x c} \frac{\Delta \alpha_{a}\left(\lambda_{p r}\right)}{\sigma_{a, d a}\left(\lambda_{p r}\right)}$.
$\bar{N}_{d a}=\bar{\alpha}_{a}\left(\lambda_{p r}\right) / \sigma_{a, d a}\left(\lambda_{p r}\right)$ is the average number density of CaRh in the dark-adapted state.
$\bar{\alpha}_{a}\left(\lambda_{p r}\right)=\left[\alpha_{a, \text { begin of exposure interval }}\left(\lambda_{p r}\right)+\alpha_{a \text {, recovered after end of exposure interval }}\left(\lambda_{p r}\right)\right] / 2$ is the average absorption coefficient of dark-adapted CaRh at λ_{pr} (here used $\lambda_{\mathrm{pr}}=\lambda_{\mathrm{da}, \max }=541 \mathrm{~nm}$). $l_{\text {exc }}$ is the sample length in excitation direction, $\Delta \alpha_{a}\left(\lambda_{p r}\right)=\alpha_{a \text {, begin of exposure interval }}\left(\lambda_{p r}\right)-\alpha_{a \text {, recovered after end of exposure interval }}\left(\lambda_{p r}\right)$ is the absorption coefficient change of dark-adapted CaRh at the probe wavelength $\lambda_{\text {pr }}$ due to the photon absorption $\Delta n_{\text {ph,abs }}$ in the considered excitation interval of CaRh in the light-adapted state.

The increment of absorbed excitation photons $\Delta n_{\text {ph.abs }}$ in the considered time increments $\delta t_{\text {exc }}$ is

$$
\begin{equation*}
\Delta n_{p h, a b s}=\frac{I_{e x c} \delta t_{e x c}}{h v_{e x c}}\left[1-\exp \left(-\bar{\alpha}_{a, e x c, l a} l_{e x c}\right)\right] \tag{S8a}
\end{equation*}
$$

where $\bar{\alpha}_{a, \text { exc,la }}$ is the absorption coefficient of the light-adapted sample (Rh-527 is absorbing) averaged over the spectral distribution of the excitation light source $g_{\text {LED,i }}$ and averaged over excitation time interval $\delta t_{\text {exc, }}$ i.e.,

$$
\begin{equation*}
\bar{\alpha}_{a, e x c, l a}=\frac{\int \alpha_{a, a t \delta_{t e x c} / 2}(\lambda) g_{L E D, i}(\lambda) d \lambda}{\int g_{L E D, i}(\lambda) d \lambda} \tag{S8b}
\end{equation*}
$$

S7. Determination of photocycle parameters

The limiting fraction $\kappa_{l a 1}$ of excited $\mathrm{CaRh}_{\mathrm{da}}{ }^{*}$ converted to $\mathrm{CaRhla1}$ at high excitation intensity is obtained from the ratio of the absorption coefficient strength of the $\mathrm{S}_{0}-\mathrm{S}_{1}$ transition of CaRhlat at high excitation intensity (dashed curves in Figure 7 for $t_{\text {exc }}=3 \mathrm{~s}$) to the initial absorption coefficient strength of the $\mathrm{S}_{0}-\mathrm{S}_{1}$ transition of $\mathrm{CaRh}_{\mathrm{da}}$ before excitation (solid curves in Figure 7). That is
$\kappa_{l a 1} \approx \frac{\int_{S_{0}-S_{1}} \frac{\alpha_{a, C a R h_{l a l}}\left(\lambda, I_{e x c} \rightarrow \infty\right)}{\lambda} d \lambda .}{\int_{S_{0}-S_{1}} \frac{\alpha_{a, C a R h_{d a}(}\left(\lambda, I_{e x c}=0\right)}{\lambda} d \lambda}$.
($\mathrm{S}_{0}-\mathrm{S}_{1}$ upper wavelength position in the integration is set to $\lambda_{\text {upper limit }}=430 \mathrm{~nm}$). Thereby it is assumed that the absorption cross-section strengths of the $\mathrm{S}_{0}-\mathrm{S}_{1}$ transiton of $\mathrm{CaRh}_{\mathrm{da}}$ and $\mathrm{CaRh}_{\text {lat }}$ are approximtely equal. The analysis gives Kla1 ≈ 0.73 for $\lambda_{\text {exc }}=530 \mathrm{~nm}, 590 \mathrm{~nm}$, and 470 nm . The limiting fraction $\kappa_{\mathrm{la} 2}$ of excited $\mathrm{CaRh}_{\mathrm{da}}{ }^{*}$ converted to $\mathrm{CaRh}_{\mathrm{la} 2}$ is $\kappa_{\mathrm{la} 2}=1-\mathrm{K}_{\mathrm{la} 1} \approx 0.27$ for $\lambda_{\mathrm{exc}}=530 \mathrm{~nm}$, 590 nm , and 470 nm .

Considering the photocycle scheme of Figure 13a and the reaction coordinate scheme of Figure S 5 the ratio of $\mathrm{Kla}_{\mathrm{l} 2} / \mathrm{K}_{\mathrm{la} 1}$ is given by

$$
\begin{equation*}
\frac{\kappa_{l a 2}}{\kappa_{l a 1}}=\frac{\phi_{c i s} \tau_{r e c, l a 2}}{\phi_{t r a n s} \tau_{r e c, l a 1}}=\frac{\phi_{c i s} \tau_{r e c, l a 2}}{\left(1-\phi_{c i s}\right) \tau_{r e c, l a 1}} \tag{S10}
\end{equation*}
$$

The $\kappa_{l a 2}$ and $\kappa_{l a 1}$ values obtained from Equation (S9) give $\kappa_{l a 2} / \kappa_{l a 1} \approx 0.37$. Application of Equation (S10) gives $\kappa_{\text {la2 } 2} / \kappa$ la1 $=0.37 \pm 0.13$ using $\phi_{\text {cis }}=0.46 \pm 0.05, \tau_{\text {rec,la2 }}=0.35 \pm 0.01 \mathrm{~s}$ and $\tau_{\text {rec,la1 }}=0.8 \pm 0.06 \mathrm{~s}$.

The absorption coefficient spectrum of $\alpha_{a}\left(\lambda, t_{\text {exc }}=3 \mathrm{~s}, \lambda_{\text {exc }}=530 \mathrm{~nm}, I_{\text {exc }}=226 \mathrm{~mW} \mathrm{~cm}^{-2}\right)$ of Figure 7a is approximately separated in the absorption coefficient contributions $\alpha_{a, C a R h_{a 1}}(\lambda)$ and $\alpha_{a, C a R h_{l a 2}}(\lambda)$ which are shown by the thick dashed and the thick dotted curves in Figure 7a (shape of $\alpha_{a, C a R h_{l a 2}}(\lambda)$ is taken from initial photo-degradation development of Figure 10). The absorption cross-section spectra of CaRhla1 and CaRhla2 are given by $\sigma_{a, C a R h_{l a 1}}(\lambda)=\alpha_{a, C a R h_{l a 1}}(\lambda) / N_{C a R h_{l a 1}}$ and $\sigma_{a, C a R h_{l a 2}}(\lambda)=\alpha_{a, C a R h_{l a 2}}(\lambda) / N_{C a R h_{l a 2}}$. The number density of CaRhla1 is given by $N_{C a R h_{l a l}}=N_{C a R h, 0} \kappa_{l a 1}$ $\approx 3.66 \times 10^{16} \mathrm{~cm}^{-1}$, and the number density of CaRhla2 is given by $N_{C a R h_{l a 2}}=N_{C a R h, 0} \kappa_{l a 2} \approx 1.35 \times 10^{16}$ $\mathrm{cm}^{-3}\left(N_{C a R h, 0}=\alpha_{a}\left(541 \mathrm{~nm}, t_{\text {exc }}=0\right) / \sigma_{a, C a R h_{d a}}(541 \mathrm{~nm}) \approx 5.01 \times 10^{16} \mathrm{~cm}^{-3}\right.$ with $\alpha_{\mathrm{a}}\left(541 \mathrm{~nm}, t_{\text {exc }}=0\right)=8.4 \mathrm{~cm}^{-1}$ of Figure $7 \mathrm{a}, \sigma_{a, C a R h_{d c}}(541 \mathrm{~nm})=1.675 \times 10^{-16} \mathrm{~cm}^{2}$, see top part of Figure S2). The obtained approximate absorption cross-section spectra of CaRhla^{2} and $\mathrm{CaRhla}_{\mathrm{l}}$ are shown in the bottom part of Figure S2.

The initial quantum yield of all-trans - 13-cis photo-isomerization $\phi_{\text {cis }}$ (Figure S5) of CaRhda is deduced from the initial light induced absorption change at $\lambda_{\mathrm{pr}}=550 \mathrm{~nm}$ of middle part of Figure 8a for $\lambda_{\text {exc }}=590 \mathrm{~nm}$ and $t_{\text {exc }}=0.0125 \mathrm{~s}$. $\phi_{c i s}$ is approximately given by
$\phi_{c i s}=\frac{\Delta \mathbf{N}_{d a}}{\Delta n_{p h, a b s}}$,
where $\Delta \mathrm{N}_{\mathrm{da}}$ is the increment of length-integrated number density of all-trans - 13-cis isomerized initially dark-adapted CaRh , and $\Delta n_{\text {ph,abs }}$ is the increment of absorbed excitation photons by initially dark-adapted CaRh (Rh-541).
$\Delta \mathrm{N}_{\mathrm{da}}$ is given by
$\Delta \mathrm{N}_{d a}=N_{d a} l_{e x c} \frac{\Delta \alpha_{a}\left(\lambda_{p r}\right)}{\alpha_{a}\left(\lambda_{p r}\right)}=\frac{\alpha_{a}\left(\lambda_{p r}\right)}{\sigma_{a, d a}\left(\lambda_{p r}\right)} l_{e x c} \frac{\Delta \alpha_{a}\left(\lambda_{p r}\right)}{\alpha_{a}\left(\lambda_{p r}\right)}=l_{e x c} \frac{\Delta \alpha_{a}\left(\lambda_{p r}\right)}{\sigma_{a, d a}\left(\lambda_{p r}\right)}$
$N_{d a}=\alpha_{a}\left(\lambda_{p r}\right) / \sigma_{a, d a}\left(\lambda_{p r}\right)$ is the number density of CaRh in the dark-adapted state. $\alpha_{a}\left(\lambda_{p r}\right)$ is the absorption coefficient of dark-adapted CaRh at λ_{pr} (here used $\lambda_{\mathrm{pr}}=550 \mathrm{~nm}$). $l_{\text {exc }}$ is the sample length in excitation direction (here $\left.l_{\text {exc }}=0.15 \mathrm{~cm}\right), \Delta \alpha_{a}\left(\lambda_{p r}\right)$ is the absorption coefficient change of darkadapted CaRh at the probe wavelength $\lambda_{\text {pr }}$ due to the photon absorption $\Delta n_{\text {ph,abs }}$ within $t_{\text {exc }}=0.0125$ s.

The increment of absorbed excitation photons $\Delta n_{\text {ph.abs }}$ in the considered time increment $t_{\text {exc }}$ is

$$
\begin{equation*}
\Delta n_{p h, a b s}=\frac{I_{e x c} t_{e x c}}{h v_{e x c}}\left[1-\exp \left(-\bar{\alpha}_{a, d a}\left(\lambda_{e x c}\right) l_{e x c}\right)\right] \tag{S13a}
\end{equation*}
$$

where $\bar{\alpha}_{a, d a}\left(\lambda_{\text {exc }}\right)$ is the absorption coefficient of the dark-adapted sample averaged over the spectral distribution of the excitation light source $g_{\text {LED590nm, }}$ i.e.,

$$
\begin{equation*}
\bar{\alpha}_{a, d a}\left(\lambda_{e x c}\right)=\frac{\int \alpha_{a, d a}(\lambda) g_{L E D 590 n m}(\lambda) d \lambda}{\int g_{L E D 590 n m}(\lambda) d \lambda} \tag{S13b}
\end{equation*}
$$

The obtained quantum yield is $\phi_{c i s}=0.46 \pm 0.05$. The quantum yield of all-trans back-isomerization is $\phi_{\text {trans }}=1-\phi_{c i s}=0.54 \pm 0.05$.

S8. Schematic Reaction Coordinate Diagrams for Primary and Secondary PhotoIsomerization Cycles of CaRh

A schematic reaction coordinate diagram for the primary photo-isomerization and deprotonation/re-protonation cycle together with the back-trans isomerization with protein restructuring of initially dark-adapted CaRh is shown in Figure S5. The reaction coordinate resembles the diheadral angle of the $\mathrm{C} 13=\mathrm{C} 14$ bond of retinal [8,9]. In Figure S 6 a schematic reaction coordinate diagram for the secondary photo-isomerization cycle of light-adapted CaRhla1 (PRSBall-trans,la1) is depicted.

Figure S5. Schematic reaction coordinate diagram for primary photocycle of CaRh in pH 7.3 HEPES/MOPS buffer.

Figure S6. Schematic reaction coordinate diagram for secondary photocycle of CaRh in pH 7.3 HEPES/MOPS buffer.

References

S1. Honig, B.; Dinur, U.; Birge, R.R.; Ebrey, T.G. The isomer dependence of oscillator strengths in retinal and related molecules. Spectroscopic assignments. J. Am. Chem. Soc. 1980, 102, 488-494.
S2. Penzkofer, A.; Stierl, M.; Hegemann, P.; Kateriya, S. Absorption and fluorescence characteristics of photoactivated adenylate cyclase nano-clusters from the amoeboflagellate Nagleria gruberi NEG-M strain. Chem. Phys. 2012, 392, 46-54.
S3. Fischer, H.; Polikarpov, I.; Craievich, A. Average protein density is a molecular-weight-dependent function. Protein Sci. 2004, 13, 825-828.
S4. Barer, R.; Tkaczyk, S. Refractive index of concentrated protein solutions. Nature 1954, 173, 821-822.
S5. Penzkofer, A.; Stierl, M.; Mathes, T.; Hegemann, P. Absorption and emission spectroscopic characterization of photo-dymanics of photoactivated adenylyl cyclase mutant bPAC-Y7F of Beggiatoa sp. J. Photochem. Photobiol. B Biol. 2014, 140, 182-193.

