Supplementary Materials: A Multiple Reaction Modelling Framework for Microbial Electrochemical Technologies

Tolutola Oyetunde, Priyangshu M. Sharma, Farrukh Ahmad and Jorge Rodríguez

Stoichiometry of microbial growth Acetoclastic methanogenesis $CH_3COO^- + 0.019NH_4^+ + 0.98 H^+ \rightarrow 0.95 CH_4 + 0.92CO_2 + 0.04H_2O + 0.095X$

Acetate oxidation by electroactive bacteria

 $CH_3COO^- + 0.02NH_4^+ + 1.85H_2O \rightarrow 1.9CO_2 + 6.6H^+ + 0.1X + 7.58e^-$

Kinetic rate equations Rate of acetate consumption by acetoclastic methanogens

$$rS_{Acm} = q_{ac}^{max} \cdot \frac{S_{ac}}{K_s + S_{ac}} \cdot \frac{S_{in}}{K_{in} + S_{in}} X_{ac} \cdot I_{ph} \cdot I_{NH_3}$$

Rate of electroactive acetate oxidation(nernst-monod equation)

$$rS_{Acox} = q_{ac_e}^{max} \cdot \frac{S_{ac}}{K_{se} + S_{ac}} \cdot \frac{S_{in}}{K_{in} + S_{in}} X_{ac_e} \cdot I_{ph} \cdot \frac{\eta_{ac}^{act}}{KsE + \eta_{ac}^{act}}$$

Rate of transport between liquid and gaseous phases $rT_{CO2} = kLa. \left(S_{CO_{2}(aq)} - S_{CO_{2}(g)}/H\right)$ $CO_{2}(g) \rightleftharpoons CO_{2}(aq)$ $CO_{2}(aq) + H_{2}O \rightleftharpoons H_{2}CO_{3} \rightleftharpoons H^{+} + HCO_{3}^{-} \rightleftharpoons 2H^{+} + CO_{3}^{2-}$

Figure S1. Example microbial stoichiometric equations and rates.

act

Figure S2. Electrical model equations.

Figure S3. Modeling ionic flow across membrane.

Table S1. Model parameters used in the ethanol/butanol and perchlorate remediation case studies.

Parameter	Symbol	Value	Units	Comments
Max. oxidative acetate consumption rate	qSaceAN_max	1.04×10^{-4}	molSac/molXace·s	assumed(3 mole- per mole substrate per hour)
Max. oxidative hyrogen consumption rate	qSh2eAN_max	4.17×10^{-4}	molSh2/molXh2e·s	assumed(3 mole- per mole substrate per hour)
Max. reductive acetate consumption rate	qSaceCA_max	2.08×10^{-4}	molSac/molXace·s	assumed(3 mole- per mole substrate per hour)
Max. reductive butyrate consumption rate	qSbueCA_max	2.08×10^{-4}	molSbu/molXbue·s	assumed(3 mole- per mole substrate per hour)
Max. reductive proton consumption rate	qSh2eCA_max	8.33×10^{-4}	molSh+/molXh2e·s	assumed(3 mole- per mole substrate per hour)
Max. reductive ClO₄ ⁻ consumption rate	qSclo4_max	1.150×10^{-4}	molSclox/molXeaa·s	assumed
Max. reductive ClO ³⁻ consumption rate	qSclo3_max	1.150×10^{-4}	molSclox/molXeaa·s	assumed
Max. reductive ClO ₂ - consumption rate	qSclo2_max	1.150×10^{-4}	molSclox/molXeaa·s	assumed
Max. reductive ClO ⁻ consumption rate	qSclo_max	1.150×10^{-4}	molSclox/molXeaa·s	assumed
Max acetate consumption rate	qSacm_max	4.86×10^{-5}	molSac/molXacm·s	ADM1
Max butyrate consumption rate	qSbu_max	4.86×10^{-5}	molSbu/molCxc4·s	ADM1
Max hydrogen consumption rate	qSh2_max	8.51×10^{-4}	molSh2/molCxh2·s	ADM1
Monod half saturation constant(acetate)	Ks_ac	2.34×10^{-3}	molSac/L	ADM1
Monod half saturation constant (inorganic nitrogen)	Ks_in	1.00×10^{-4}	molSin/L	ADM1
Monod half saturation constant (butyrate)	Ks_bu	1.88×10^{-3}	molSbu/L	ADM1
Monod half saturation constant (hydrogen)	Ks_h2	1.56×10^{-6}	molSh2/L	ADM1
Monod electroactive half saturation constant (acetate)	Ks_ace	1.91×10^{-3}	molSac/L	[38]
Monod electroactive half saturation constant (butyrate)	Ks_bue	8.55×10^{-4}	molSbu/L	[38]
Monod electroactive half saturation constant (hydrogen)	Ks_h2e	1.25×10^{-6}	molSh2/L	assumed(20% less than anaerobic fermentation)
Monod electroactive half saturation constant (perchlorate)	Ks_clox	0.000779095	molClOx/L	
pH upper limit	pHul	5	[]	ADM1
pH lower limit	pHll	4	[]	ADM1
pH upper limit (acetoclastic methanogens)	pHll_ac	6	[]	ADM1
pH lower limit (acetoclastic methanogens)	pHul_ac	7	[]	ADM1
Ammonia inhibition constant	Ki_nh3_ac	1.80×10^{-3}	molSnh3/L	ADM1
Decay rate constant	kd	2.31 × 10 ⁻⁷	1/s	ADM1
Acetate diffusion coefficient	Dac	1.21×10^{-9}	m²/s	http://www.biofilmbook.com
Hydrogen diffusion coefficient	Dh2	4.50×10^{-9}	m²/s	http://www.biofilmbook.com
Butyrate diffusion coefficient	Dbut	8.70×10^{-10}	m²/s	http://www.biofilmbook.com
Perchlorate diffusion coefficient	Dclox	1.00×10^{-9}	m²/s	

Parameter	Symbol	Value	Units	Comments
Characteristic anode length	dAN	1.00×10^{-4}	m	assumed(depends on geometry)
Characteristic cathode length	dCA	1.00×10^{-4}	m	assumed(depends on geometry)
Gas- liquid transfer coefficient	kLa	2.31 × 10 ⁻⁵	1/s	ADM1(a measure of mixing)
Electrical monod term (acetate at anode)	KsE_ac_an	1.00×10^{-4}	V	assumed
Electrical monod term (butyrate at anode)	KsE_bu_an	1.00×10^{-4}	V	assumed
Electrical monod term (hydrogen at anode)	KsE_h2_an	1.00×10^{-4}	V	assumed
Electrical monod term (acetate at cathode)	KsE_ac_ca	1.00×10^{-4}	V	assumed
Electrical monod term (butyrate at cathode)	KsE_bu_ca	1.00×10^{-4}	V	assumed
Electrical monod term (hydrogen at cathode)	KsE_h2_ca	1.00×10^{-4}	V	assumed
Electrical monod term (ClO ₄ - at cathode)	KsE_clo4_ca	0.0005	V	assumed
Electrical monod term (ClO3 ⁻ at cathode)	KsE_clo3_ca	0.0005	V	assumed
Electrical monod term (ClO ₂ - at cathode)	KsE_clo2_ca	0.0005	V	assumed
Electrical monod term (ClO ⁻ at cathode)	KsE_clo_ca	0.0005	V	assumed
Yield(electroactive acetate oxidation)	Y_ac_an_e	0.100	molX/molAc	assumed(5% more than anaerobic fermentation)
Yield(electroactive hydrogen oxidation)	Y_h2_an_e	0.030	molX/molH2	assumed(5% more than anaerobic fermentation)
Yield(acetoclastic Methanogenesis)	Y_acm	0.095	molX/molAc	ADM1
Yield(hydrotrophic Methanogenesis)	Y_h2m	0.029	molX/molH2	ADM1
Yield(Butyric reduction to acetate)	Y_but_ac	0.286	molX/molBu	ADM1
Yield(electroactive Butyrate reduction)	Y_but_ca_e	0.285	molX/molBu	assumed(0.25% less than anaerobic fermentation)
Yield(butyrate reduction by hydrogen)	Y_but_h2	0.286	molX/molBu	assumed(adm1)
Yield(acetate reduction by hydrogen)	Y_ac_h2	0.095	molX/molAc	assumed(adm1)
Yield(electroactive proton reduction)	Y_h+_e	0.029	molX/molH+	assumed(0.25% less than anaerobic fermentation)
Yield(electroactive acetate reduction)	Y_ac_ca_e	0.095	molX/molAc	assumed(0.25% less than anaerobic fermentation)
Yield(electroactive ClO ₄ - reduction)	Ye_clo4	2.559	mole/molClO ₄	assumed
Yield(electroactive ClO3 ⁻ reduction)	Ye_clo3	2.503	mole/molClO ₃	assumed
Yield(electroactive ClO ₂ - reduction)	Ye_clo2	2.777	mole/molClO ₂	assumed
Yield(electroactive ClO ⁻ reduction)	Ye_clo	2.925	mole/molClO	assumed
Maximum biomass concentration	Xtmax	0.132	kmol/m ³ (M)	[17]

Table S1. Cont.

Anode electrode reactions	Cathode electrode reactions				
Acetate oxidation	Acetate reduction				
$CH_3COO^- + H_2O \rightarrow CO_2 + 7H^+ + 8e^-$	$CH_3COO^- + 5H^+ + 4e^- \rightarrow C_2H_5OH + H_2O$				
Hydrogen oxidation	Butyrate reduction				
$H_2 \rightarrow 2H^+ + 2e^-$	$C_3H_7COO^-+5H^++4e^- → C_4H_9OH+H_2O$				
Anode side microbial reactions Acetoclastic methanogenesis	Proton reduction $2H^+ + 2e^- \rightarrow H_2$				
$CH_3COOH \rightarrow CO_2 + CH_4$ Hydrotrophic methanogenesis	Cathode side microbial reactions				
$2H2 + CO2 \rightarrow CH4 + 2H_2O$	Acetoclastic methanogenesis				
Butyrate degradation to acetate	$CH_3COOH \rightarrow CO_2 + CH_4$				
$C_3H_7COOH + 2H_2O \rightarrow 2CH_3COOH + 2H_2$	Hydrotrophic methanogenesis				
	$2H2 + CO2 \rightarrow CH4 + 2H_2O$				
	Butyrate degradation to acetate				
	$C_{3}H_{7}COOH + 2H_{2}O \rightarrow 2CH_{3}COOH + 2H_{2}$				
	Acetate reduction by hydrogen				
	$CH_3COOH + 2H_2 \rightarrow C_2H_5OH + H_2O$				
	Butyrate reduction by hydrogen				
	$C_3H_7COOH + 2H_2 \rightarrow C_4H_9OH + H_2O$				

Figure S4. Electrode reactions for the ethanol/butanol case study.

Anode electrode reaction Acetate oxidation	Cathode electrode reactions Perchlorate reduction
$CH_3COO^- + H_2O \rightarrow CO_2 + 7H^+ + 8e^-$	$CIO_4^- + 2H^+ + 2e^- \rightarrow CIO_3^- + H_2O$
	Chlorate reduction
	$CIO_3^- + 2H^+ + 2e^- \rightarrow CIO_2^- + H_2O$
Anode side microbial reaction Acetoclastic methanogenesis $CH_3COOH \rightarrow CO_2 + CH_4$	Chlorite reduction
	$CIO_2^- + 2H^+ + 2e^- \rightarrow CIO^- + H_2O$
	Hypochlorite reduction
	$\text{CIO}^{-} + 2\text{H}^{+} + 2\text{e}^{-} \rightarrow \text{CI}^{-} + \text{H}_2\text{O}$

Figure S5. Electrode reactions for the perchlorate remediation case study.