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Abstract: It is well known that microbial pathogens and herbivores elicit defence responses in plants.
Moreover, microorganisms associated with herbivores, such as bacteria or viruses, can modulate the
plant’s response to herbivores. Herbivorous spider mites can harbour different species of bacterial
symbionts and exert a broad range of effects on host-plant defences. Hence, we tested the extent
to which such symbionts affect the plant’s defences induced by their mite host and assessed if this
translates into changes in plant resistance. We assessed the bacterial communities of two strains of
the common mite pest Tetranychus urticae. We found that these strains harboured distinct symbiotic
bacteria and removed these using antibiotics. Subsequently, we tested to which extent mites with
and without symbiotic bacteria induce plant defences in terms of phytohormone accumulation and
defence gene expression, and assessed mite oviposition and survival as a measure for plant resistance.
We observed that the absence/presence of these bacteria altered distinct plant defence parameters
and affected mite performance but we did not find indications for a causal link between the two.
We argue that although bacteria-related effects on host-induced plant defences may occur, these do
not necessarily affect plant resistance concomitantly.

Keywords: Tetranychus urticae; Wolbachia; Caridinium; Spiroplasma; symbiosis; plant-herbivore
interaction; plant defence

1. Introduction

Herbivores face the challenge of having to consume plant material that, because of herbivory, has
been under strong selection to be unpalatable. Hence, herbivores have to cope with plant defences
ranging from mechanical barriers, such as thorns and trichomes, to the production of poisonous
substances [1–3]. Moreover, in many cases the nutrient composition of plant material is poor or
unbalanced from a herbivore’s perspective or it contains structural molecules that are hard to digest
like cellulose or lignin [1,2]. In some cases, herbivores have established symbioses (i.e., the living
together of dissimilar species [4]) with microbes, often as mutualistic symbiosis, to promote the
utilization of plant material. For instance, some herbivores provide nutrients and shelter to microbes,
while in return they make use of the huge metabolic capabilities of these microbes to feed on otherwise
unpalatable plants or plant parts, thereby expanding their niche space [5–8].
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Plant usage by herbivores may be facilitated either by beneficial bacterial symbionts directly,
or indirectly via an interaction between the bacterium and host plant [9–11]. For example, direct
facilitation may occur via bacteria that upgrade low quality food, by producing essential amino acids
or vitamins that the host diet lacks, or by the production of enzymes which enhance the digestion
of refractory food sources [5–7]. As an example of indirect facilitation, bacteria associated with oral
secretions of the Colorado potato beetle (Leptinotarsa decemlineata) were shown to alter plant resistance
and turn the host plant into better food [12].

Among arthropods, the most prevalent microbial symbionts are so-called reproductive parasites
such as Wolbachia (Rickettsiales), Cardinium (Cytophagales) and Spiroplasma (Entomoplasmatales) [13].
Reproductive parasites commonly secure their prevalence in a host population by increasing the
proportion of infected females through various mechanisms including cytoplasmic incompatibility,
feminization, parthenogenesis or male killing [13–16]. In most cases, these manipulations by the
symbiont are not beneficial to the host, yet very effective for the persistence of the symbiont in a
population. This was demonstrated by a recent study in which approximately 40% of all terrestrial
arthropod species was estimated to be infected with Wolbachia [17]. However, direct beneficial effects
of reproductive manipulators on host fitness are thought to mediate their spread within populations
as well, especially when manipulation of host reproduction is weak [18,19]. Accordingly, evidence
has accumulated that reproductive manipulators, which have long been considered parasites, can
benefit their hosts or vectors in various ways [11,20,21]. For instance, reproductive manipulators
have been shown to protect their host against parasites, parasitoids, predators and bacterial or viral
infections [22–30]. Besides protection, Wolbachia is known to function as nutritional mutualist in filarial
nematodes [31], while some examples also exist for arthropod hosts [32–34]. Additionally, infection of
arthropods with Wolbachia has been associated with the manipulation of plant physiology [35–37]; but
see [38].

The two-spotted spider mite Tetranychus urticae can harbour several (endo)symbiotic bacteria
that are known to be reproductive manipulators in mites [39–42]. However, the infection status of
spider mites was shown to vary widely among and within their populations [39,42]. Tetranychus
urticae is a highly polyphagous pest species found on over 1100 plant species worldwide, including
economically important crops like tomato, cucumber, strawberry, bean and cotton [43–45]. Plants
have evolved a wide array of defences which are organized by the action of several phytohormones
in which jasmonic acid (JA) and salicylic acid (SA) are the two central players [46,47]. In general,
defence against biotrophic pathogens is orchestrated by SA, while jasmonates, in particular jasmonic
acid-isoleucine (JA-Ile), are crucial for defence against herbivores and pathogens with a necrotrophic
lifestyle [48,49]. However, spider mites, such as those of the T. urticae Santpoort-2 strain, induce these
hormones and associated defences simultaneously [50–53], and in tomato both defence pathways
determine the level of resistance against mites [54–59]. Recently, we isolated mites from natural
T. urticae populations and demonstrated that some of them suppressed JA-mediated defences of
tomato to uphold a relatively high reproductive performance on this hostile plant species [52]. One
of these strains, designated as DeLier-1, was characterized in more detail and shown to significantly
suppress JA- as well as SA-mediated defences [52]. Finally, feeding on tomato by mites of strain
Santpoort-2 causes the formation of rusty/brown scars on the leaf surface, similar to those described
for the Kanzawa mite [60], while DeLier-1 causes white feeding scars [52].

Against the background that (endo)symbiotic bacteria can influence host fitness in various ways
and may be involved in the manipulation of plant responses, we investigated the bacterial communities
that are associated with the DeLier-1 and the Santpoort-2 strain. We found that the DeLier-1 strain
contained Wolbachia and Spiroplasma, while the Santpoort-2 strain harboured Cardinium and Spiroplasma.
We subsequently treated both mite strains with antibiotics to remove these bacteria and tested if
bacterial presence was correlated with mite performance and with induced plant responses in tomato
(Solanum lycopersicum). Our results indicate that the presence of Wolbachia had a positive effect on
the survival of the DeLier-1 strain, while we did not find an indication that this effect was due to
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a Wolbachia-dependent change in induced plant responses. Therefore, we conclude that bacteria of
the DeLier-1 strain likely affect mite survival and induced plant responses independently. In the
Santpoort-2 strain the combined presence of Cardinium and Spiroplasma was negatively correlated with
mite fecundity. This result was paralleled by a high expression level of SA-defence marker genes in
the host plant when both bacteria were present in the mites. We discuss if the negative correlation of
bacterial presence and mite performance could be due to bacteria-induced alteration of plant responses.

2. Results

2.1. Bacterial Communities in Antibiotics-Treated and Untreated Mite Lines of Tetranychus urticae DeLier-1
and Santpoort-2

Adult female mites, obtained from laboratory populations of either the T. urticae Delier-1 or
T. urticae Santpoort-2 strains [52], harboured different bacterial communities, as was determined by
Illumina sequencing of 16S rRNA derived PCR products (Table 1, Figure S1). Most evidently, in
the DeLier-1 strain a high percentage of the reads corresponded with the endosymbiotic bacterium
Wolbachia sp. (W) (Rickettsiaceae), with an average of 30.41% (±13.58 standard deviation, SD). Wolbachia
was identified in the Santpoort-2 strain as well, albeit at low relative levels with an average of 0.25%
(±0.32 SD). In contrast, in the Santpoort-2 strain a high percentage of reads corresponded to the
endosymbiotic bacterium Cardinium (C) (Bacteroidaceae), with an average of 29.05% (±8.72 SD).
Cardinium was also found in the DeLier-1 strain, but at low relative levels with an average of 0.0032%
(±0.0037 SD). In addition, the same Spiroplasma sp. (S) (Spiroplasmataceae) operational taxonomic
units (OTU) was present in similar relative amounts in both mite strains: an average of 4.03%
(±1.06 SD) in the DeLier-1 strain and 4.42% (±2.67 SD) in the Santpoort-2 strain. Therefore, the
DeLier-1 strain was classified as W+S+ and the Santpoort-2 strain as C+S+.

To assess the effect(s) of the bacteria on mite performance and induced plant responses, mites from
both strains were treated with antibiotics (tetracycline). The antibiotics treatments successfully cleared
Wolbachia from the DeLier-1 strain, as only very few (0–6) reads were detected per line in the W−S+
and W−S− groups (Table 1, Figure S1). Spiroplasma was completely removed in the latter group, but
was relatively more abundant in the W−S+ group than in the W+S+ group—i.e., on average at 7.98%
(±1.71 SD). The antibiotics treatment was also successful in the Santpoort-2 strain (Figure S1). Only a
small fraction of the reads (<0.04%) recovered from the tetracycline-treated C−S− group corresponded
to Cardinium or Spiroplasma (Table 1). Moreover, presence of Wolbachia, Spiroplasma or Cardinium was
no longer detectable in the antibiotic-treated groups by means of PCR using genus-specific primers on
DNA of individual mites (i.e., in the same mites that were used for Illumina sequencing).

Besides Wolbachia, Cardinium and Spiroplasma, bacteria from the families Enterobacteriaceae
(Enterobacteriales) and Pseudomonadaceae (Pseudomonadales) were also present in varying amounts
in all groups and sublines of both mite strains (Figure S1). Other bacterial families reached high relative
abundances in some of the sublines—e.g., two different Oxalobacteraceae (Burkholderiales), one in
line 5 group C−S−, the other in line 6 group C+S+ and in line 2 group W+S+; Sphingobacteriaceae
(Sphingobacteriales) in line 2 group W+S+, or Nocardiaceae in line 4 group W−S+. Taken together,
this demonstrates that we cleared the mites from Wolbachia, Spiroplasma or Cardinium, but not
from all bacteria residing in and/or on the mites. Therefore, we only focused on the consistent
presence/absence of Wolbachia, Spiroplasma or Cardinium in all our analyses, to which we refer when
we use the terms “bacteria” or “mite-associated bacteria”.
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Table 1. Antibiotics treatments of two strains of the spider mite T.etranychus urticae resulted in the
(near) complete removal of their associated bacteria Wolbachia, Spiroplasma and/or Cardinium, as
demonstrated by Illumina 16S rRNA amplicon-sequencing. The T. urticae DeLier-1 strain contained
Wolbachia and Spiroplasma (W+S+) and tetracycline treatments either removed only Wolbachia or both
bacteria, yielding the groups W−S+ and W−S−, respectively. The Santpoort-2 strain harboured
Cardinium and Spiroplasma (C+S+), which were both removed by the tetracycline treatments, yielding
the C−S− group. Each group is represented by four independent mite lines. We refer to one line in one
group as a subline (e.g., line 1 in the W+S+ group). Note that mites from lines with the same number
are “sister lines” which originate from the same untreated adult female. Shown are the overall total
number of Illumina reads obtained per subline, as well as the total number of reads corresponding to
all 11 Wolbachia operational taxonomic units (OTUs), all 3 Spiroplasma OTUs and the only Cardinium
OTU identified. The 16S rRNA amplification was done with universal 341F and 785R primers, modified
from [61], see Table S1.

Mite Strain Group Line Total Wolbachia Spiroplasma Cardinium

DeLier-1

W+S+

1 3164 1272 141 -
2 14,303 2131 350 1
3 34,118 7940 1605 2
4 19,747 8546 890 -

W−S+

1 4371 1 440 -
2 16,637 - 1120 1
3 27,939 6 2422 2
4 8812 1 567 -

W−S−

1 4975 3 - -
2 20,054 4 - 1
3 10,241 2 - -
4 8906 1 - -

Santpoort-2

C+S+

5 26,384 7 1159 7443
6 18,367 5 165 3643
7 48,325 108 3555 19,744
8 28,966 204 1467 7904

C−S−

5 39,276 100 1 2
6 22,648 110 1 1
7 30,608 66 - 3
8 18,702 63 6 -

2.2. Effects of Wolbachia, Cardinium and Spiroplasma on Spider Mite Performance

To assess whether the mite-associated bacteria were correlated with the performance of their host,
we determined the number of eggs and survival of adult female mites after four days on tomato plants.
For the DeLier-1 strain, we found an overall significant effect of the factor (bacterial) “group” (i.e.,
presence/absence of Wolbachia and/or Spiroplasma) on mite survival (Figure 1). More mites of the W+S+
group survived until the end of the experiment compared to the W−S+ and W−S− groups. There
was no statistically significant difference in number of eggs between the groups when we calculated
the total number of eggs produced per number of females that were initially put on each leaflet (five
mites) (Figure 2a).

For the Santpoort-2 strain, overall significantly more mites of the C−S− group survived until the
end of the experiment compared to the C+S+ group (Figure 1b). However, this was not consistent
among the lines (Figure S2). The number of eggs produced by mites from the C+S+ and C−S− groups
was significantly different: overall, mites from the C−S− group produced more eggs than mites from
the C+S+ group (Figure 2b). This difference in oviposition did show the same trend for the lines we
tested (Figure S3) and this difference was statistically significant for line 5 (F1,29 = 14.71, p < 0.001), but
not for line 8 (F1,32 = 1.21, p = 0.27). Notably, the data from the performance assays with the Santpoort-2
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strain were not performed with all lines, because line 6 in the C−S− group, as well as line 7 in both
groups (C−S− and C+S+), went extinct before the performance assays were completed.Int. J. Mol. Sci. 2017, 18, 182  5 of 25 
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Different letters above the bars indicate significant differences at a level of p ≤ 0.05, after applying 
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range. Different letters above the boxes indicate significant differences at a level of p ≤ 0.05, after 
applying linear mixed models followed by Tukey multiple comparisons with Holm adjustment.  
n.s.: not significant. 
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Figure 1. Survival, migration and mortality in two strains of the spider mite T. urticae which did (+) or
did not (−) contain Wolbachia (W), Spiroplasma (S) and/or Cardinium (C); (a) The DeLier-1 strain with
three groups: W+S+, W−S+ and W−S−; (b) The Santpoort-2 strain with two groups: C+S+ and C−S−.
Different letters above the bars indicate significant differences at a level of p ≤ 0.05, after applying
generalized linear mixed models followed by Tukey multiple comparisons with Holm adjustment.
Note that experiments with the Santpoort-2 strain could not be performed with all four lines and that
results obtained with the remaining lines were inconsistent, see Figure S2.
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Figure 2. Total number of eggs produced per female in four days in two strains of the spider mite
T. urticae which did (+) or did not (−) contain Wolbachia (W), Spiroplasma (S) and/or Cardinium (C).
(a) The DeLier-1 strain with three groups: W+S+, W−S+ and W−S−; (b) The Santpoort-2 strain with
two groups: C+S+ and C−S−. Boxes span the 25–75 percentiles, horizontal lines in the boxes represent
medians, whiskers span 1.5× interquartile range (IQR), dots represent data points outside of this
range. Different letters above the boxes indicate significant differences at a level of p ≤ 0.05, after
applying linear mixed models followed by Tukey multiple comparisons with Holm adjustment. n.s.:
not significant.

2.2.1. Effects of Mite-Associated Wolbachia, Cardinium and Spiroplasma on Tomato Induced Responses

For the DeLier-1-infested plants, the most prominent differences in phytohormone profiles were
found between leaflets infested with mites from the W−S+ group and those infested with the W−S−
or W+S+ group (Figure 3). Compared to non-infested control plants, feeding by the W+S+ group
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resulted in the increased accumulation of 12-oxo-phytodienoic acid (OPDA, a precursor of JA) as did
feeding by the W−S− group.Int. J. Mol. Sci. 2017, 18, 182  6 of 25 
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Figure 3. Phytohormone amounts in tomato (S. lycopersicum) leaflets after seven days of infestation
with the spider mite T. urticae DeLier-1 strain which did (+) or did not (−) contain the bacteria Wolbachia
(W) and Spiroplasma (S). Control plants were not infested. Phytohormones for which we assayed
include (a) 12-oxo-phytodienoic acid (OPDA); (b) jasmonic acid-isoleucine (JA-Ile); (c) salicylic acid
(SA); and (d) abscisic acid (ABA). Boxes span the 25–75 percentiles, horizontal lines in the boxes
represent medians, whiskers span 1.5× IQR, dots represent data points outside this range. Different
letters above the boxes indicate significant differences at a level of p ≤ 0.05, after applying linear mixed
models followed by Tukey multiple comparisons with Holm adjustment. Phytohormone amounts are
presented as nanogram per gram fresh leaf weight (ng·g−1·FW). n.s.: not significant.

However, leaflets infested with mites from the W−S− group accumulated significantly lower
amounts of OPDA than those infested with the W+S+ group. In contrast, the OPDA concentration
in leaflets infested with the third group of mites (i.e., the W−S+ group) was similar to that in control
leaflets. We did not find this pattern (i.e., lowest hormone concentrations in W−S+ compared to W+S+
and W−S− infested leaflets) for JA-Ile (Figure 3b). The concentration of SA in infested leaflets followed
a pattern that appeared opposite of that of OPDA: amounts of SA in leaflets that were infested with
the W−S+ group were significantly higher than in leaflets infested with either the W−S− or the W+S+
group, but were not higher than in non-infested control leaflets (Figure 3c). The concentration of
abscisic acid (ABA) was not changed after infestations with mites from any of the DeLier-1 groups
(Figure 3d).

In Santpoort-2-infested leaflets the concentrations of OPDA, JA-Ile and SA were higher after
infestation with both the C+S+ and C−S− group compared to uninfested controls, but did not differ
between the two groups (Figure 4a–c). Abscisic acid accumulated to higher amounts in C−S− infested
leaflets than in C+S+ infested leaflets (Figure 4d).
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Figure 4. Phytohormone amounts in tomato (S. lycopersicum) leaflets after seven days of infestation
with the spider mite T. urticae Santpoort-2 strain which did (+) or did not (−) contain the bacteria
Cardinium (C) and Spiroplasma (S). Control plants were not infested. Phytohormones for which we
assayed include (a) OPDA; (b) JA-Ile; (c) SA; and (d) ABA. Boxes span the 25–75 percentiles, horizontal
lines in the boxes represent medians, whiskers span 1.5× IQR, dots represent data points outside
of this range. Different letters above the boxes indicate significant differences at a level of p ≤ 0.05,
after applying linear mixed models followed by Tukey multiple comparisons with Holm adjustment.
Phytohormone amounts are presented as nanogram per gram fresh leaf weight (ng·g−1·FW).

Previously, it was shown that defence suppression by spider mites, including T. urticae DeLier-1,
acts downstream of phytohormone accumulation [52]. We therefore augmented the phytohormone
data with the expression data of downstream marker genes using quantitative reverse-transcription
PCR (qRT-PCR). In the leaflets infested with the DeLier-1 strain, the expression of OPDA reductase 3
(OPR3), which acts directly downstream of OPDA in the JA biosynthesis pathway, was significantly
higher in W−S+ than in W+S+ or W−S− infested leaflets (Figure 5a). The same pattern was found
for two putative OPDA-responsive genes (ORGs), tomato wound-induced 1 (TWI-1) and glutaredoxin
(GRX) (Figure 5b,c). The expression levels of these ORGs were thus negatively correlated with OPDA
amounts and positively with SA amounts, while the coefficient of determination (R2) values were
similar (Figure S4). Expression of the JA-defence marker genes threonine deaminase-2 (TD-2) (Figure 5d),
proteinase inhibitor IIc (PI-IIc) (Figure 5e) and jasmonate-inducible protein-21 (JIP-21) (Figure 5f) was
induced by mites from all three groups compared to the control, but for TD-2 and PI-IIc the expression
level did not differ among the groups. Transcripts of JIP-21 accumulated to significantly higher levels
in W−S− infested than in W+S+ and W−S+ leaflets (Figure 5f). The expression of the SA-defence
marker genes, pathogenesis-related protein 6 (PR-P6) (Figure 5g) and pathogenesis-related protein 1a (PR-1a)
(Figure 5h), was not significantly higher in DeLier-1-infested leaflets than in non-infested controls,
irrespective of the bacterial infection-status of the mites. The only exception was the induction of PR-P6
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in W−S+ infested leaflets. It has to be noted that this increased PR-P6 expression was visually clear in
only two out of the four lines we tested (Figure S5). Accordingly, SA amounts showed a moderate but
significant correlation with expression levels of PR-P6 (Figure S6a) and did not correlate with PR-1a
transcript levels (Figure S6b).
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Figure 5. Normalized expression (NE) of plant defence related genes obtained via qRT-PCRs in tomato
(S. lycopersicum) leaflets after seven days of infestation with the spider mite T. urticae DeLier-1 strain
which did (+) or did not (−) contain the bacteria Wolbachia (W) and Spiroplasma (S). Control plants were
not infested. (a) OPDA reductase 3 (OPR3); (b) Tomato wound-induced 1 (TWI-1); (c) Glutaredoxin (GRX);
(d) Threonine deaminase-2 (TD-2); (e) Proteinase inhibitor IIc (PI-IIc); (f) Jasmonate-inducible protein-21
(JIP-21); (g) Pathogenesis-related protein 6 (PR-P6); and (h) Pathogenesis-related protein 1a (PR-1a); Gene
expression levels were normalized to the levels of tomato actin. Boxes span the 25–75 percentiles,
horizontal lines in the boxes represent medians, whiskers span 1.5× IQR, dots represent data points
outside of this range. Different letters above the boxes indicate significant differences at a level of
p ≤ 0.05, after applying linear mixed models followed by Tukey multiple comparisons with Holm
adjustment. n.s.: not significant.

In the leaflets infested with the Santpoort-2 strain, none of the JA-defence marker genes (TD-2,
PI-IIc and JIP-21) were differentially expressed (p ≤ 0.05) between C+S+ and C−S− infested leaflets
(Figure 6a–c). Interestingly, transcripts of both SA-defence marker genes (PR-P6 and PR-1a) were more
abundant in C+S+ infested leaflets compared to C−S− infested leaflets (Figure 6d–e).
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Figure 6. Normalized expression (NE) of plant defence related genes obtained via qRT-PCRs in tomato
(S. lycopersicum) leaflets after seven days of infestation with the spider mite T. urticae Santpoort-2 strain
which did (+) or did not (−) contain the bacteria Cardinium (C) and Spiroplasma (S). Control plants
were not infested. (a) TD-2; (b) PI-IIc; (c) JIP-21; (d) PR-P6; and (e) PR-1a; Gene expression levels were
normalized to the levels of tomato actin. Boxes span the 25–75 percentiles, horizontal lines in the boxes
represent medians, whiskers span 1.5× IQR, dots represent data points outside of this range. Different
letters above the boxes indicate significant differences at a level of p ≤ 0.05, after applying linear mixed
models followed by Tukey multiple comparisons with Holm adjustment. n.s.: not significant

2.2.2. Effects of Wolbachia, Cardinium and Spiroplasma on the Amount of Feeding Damage Inflicted by
Spider Mites

To test if the magnitude of induced plant responses was correlated with the amount of feeding
by the mites, we quantified the spider mite-inflicted feeding damage (recognizable as chlorotic spots)
on the same leaflets that were used for phytohormone extractions and tomato RNA isolation for
qRT-PCRs. Overall, there was no significant difference in feeding damage between the three groups
(W+S+, W−S+, W−S−) of the DeLier-1 strain (Figure 7a). In contrast, there was a clear difference in
the amount of feeding damage caused by the two groups of the Santpoort-2 strain and in the type of
damage these inflicted. Not only did mites from the C−S− group feed significantly more than mites
from the C+S+ group (Figure 7b), feeding by the C+S+ group resulted in rusty red/brown “scars” on
the leaflets (Figure 7c), while those infested with the C−S− group had clear white scars (Figure 7d).
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Figure 7. Feeding damage on tomato (S. lycopersicum) leaflets inflicted by two strains of the spider
mite T. urticae which did (+) or did not (−) contain the bacteria Wolbachia (W), Spiroplasma (S) and/or
Cardinium (C). Total amount of feeding damage (mm2) after seven days of infestation by mites from (a)
the DeLier-1 strain with three groups: W+S+, W−S+ and W−S−; and (b) the Santpoort-2 strain with
two groups: C+S+ and C−S−. Boxes span the 25–75 percentiles, horizontal lines in the boxes represent
medians, whiskers span 1.5× IQR, dots represent data points outside of this range. Different letters
above the boxes indicate significant differences at a level of p ≤ 0.05, n.s.: not significant; (c) Typical
rusty red/brown scars inflicted by feeding of the C+S+ group of the Santpoort-2 strain and (d) typical
white scars inflicted by feeding of the C−S− group of the Santpoort-2 strain.

3. Discussion

In this study we investigated two strains of T. urticae that differed in their bacterial symbionts.
The DeLier-1 strain, contains Wolbachia (W) and Spiroplasma (S) bacteria, while the Santpoort-2 strain
harbours Cardinium (C) and Spiroplasma (i.e., the same OTU as in the Delier-1 strain). Using antibiotic
treatments we removed these well-known reproductive parasites to determine their effect(s) on
spider mite performance and on induced plant responses. We showed that: (i) the presence of the
(endo)symbionts correlated positively with the survival, but not with number of eggs produced by the
DeLier-1 strain, while it correlated negatively with the number of eggs produced by the Santpoort-2
strain; (ii) Plant responses to mite infestations differed between the mite groups that did or did
not harbour Wolbachia, Cardinium and/or Spiroplasma; (iii) The combined presence of Wolbachia and
Spiroplasma bacteria had consequences for induced plant responses, indicating that these bacteria might
interact. See Figure 8 for a schematic overview of the results.

It has to be noted that, although the antibiotic treatments resulted in the (near) complete removal
of Wolbachia, Cardinium and/or Spiroplasma from the mites (Table 1), various other bacterial strains
were present in or on antibiotics-treated and untreated mites as well (Figure S1). These bacterial strains
were not consistently present in all the mite lines of the same group and are thus not likely to be
responsible for the differences that we found between the groups (but see below for the discussion on
the performance of mites from the Santpoort-2 groups). In addition, tetracycline treatments may have
had effects on the mites other than the removal of bacteria. Direct toxic effects of tetracycline, such as
inhibition of mitochondrial functioning, are unlikely to play a role in our study, because we started
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experiments at least 15 generations after the antibiotics treatments. However, we cannot rule out that
the tetracycline treatment had selective effects, such as the selection for more toxin resistant mites.Int. J. Mol. Sci. 2017, 18, 182  11 of 25 
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Figure 8. Schematic and simplified overview of the most important findings of this study. Adult female
spider mites (T. urticae) from the DeLier-1 strain and the Santpoort-2 strain were treated with antibiotics
to remove their associated bacteria Wolbachia sp. (W), Spiroplasma sp. (S) and/or Cardinium (C), after
which the indicated mite and plant (tomato; S. lycopersicum) parameters were assayed. For a more
detailed description we refer to the Results and Discussion sections. med: intermediate; +: bacteria
present; −: bacteria absent.
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3.1. Effects of Wolbachia, Spiroplasma and Cardinium on Spider Mite Performance

When we investigated the performance of the DeLier-1 strain in a four-day trial, survival was
highest in mites containing Wolbachia and Spiroplasma. The presence or absence of Spiroplasma did not
seem to affect mite survival, as the survival rate was similar for the W−S+ and W−S− groups. We did
not find more spider mite eggs on leaflets infested with the W+S+ group than on those infested with
the W−S+ or W−S− group. However, since differences in mite survival can be expected to have a
significant effect on reproductive performance in the long run, future experiments should focus on the
lifetime production of eggs by the DeLier-1 strain with and without symbionts.

For the Santpoort-2 strain, egg production was negatively correlated with the presence of
Cardinium and Spiroplasma. However, the performance assay for this mite strain could not be carried out
for all lines (see Material and Methods section), hence we have to be cautious with drawing conclusions
about the effect of Cardinium and Spiroplasma on the fitness of their Santpoort-2 hosts. For instance, the
number of remaining lines was insufficient to firmly test whether these symbionts affect the survival
of their host, because unlike for egg production, mites from the remaining lines showed inconsistent
survival patterns. Moreover, both survival and egg production in these remaining lines (also) coincide
with the presence of bacteria other than Cardinium and Spiroplasma (i.e., Oxalobacteriaceae).

Previous studies indicate that the effect of reproductive parasites on the fitness of their host may
strongly depend on the genotype of both symbiont and host and whether or not symbionts optimize
their prevalence in a population by reproductive manipulation [19,21,62]. Accordingly, the reported
effects of Cardinium, Wolbachia and Spiroplasma on the fitness of their arthropod host, including other
T. urticae strains than the ones tested here, are diverse (i.e., positive, negative or no effects) [42,63–74].

3.2. Effects of Wolbachia, Cardinium and Spiroplasma on Tomato Induced Responses

When we investigated the effect of Wolbachia and Spiroplasma infection of the DeLier-1 strain on
tomato induced responses, the most striking finding was that OPDA amounts did not significantly
increase in W−S+ infested leaflets compared to non-infested leaflets, while the OPDA concentration
was highest in W+S+ infested leaves and intermediate in W−S− infested ones. Thus, the presence of
Wolbachia in the DeLier-1 strain was correlated with enhanced OPDA accumulation, while the presence
of Spiroplasma in these mites was correlated with suppression of OPDA accumulation. Expression of
OPR3 was highest in W−S+ infested leaflets suggesting that the conversion rate of OPDA might have
been increased and thereby have reduced OPDA accumulation in the respective leaflets. However,
the end product of the oxylipin pathway, JA-Ile, which is considered the main biologically active
jasmonate [75,76], did not show any pattern that was correlated with bacterial presence. It remains to
be investigated why the accumulation of OPDA is affected by spider mite-associated bacteria, while
that of JA-Ile is not. In addition, it is currently unknown if OPDA plays a JA-independent role in
resistance against T. urticae. It has been demonstrated that OPDA can confer plant resistance to several
herbivore and pathogen species, i.e., via inducing plant responses independent of JA-Ile biosynthesis
and/or signalling, and via its cytotoxic properties [77–86]. However, in our study the detected OPDA
accumulation pattern was not reflected in the mite performance data.

In Arabidopsis, OPDA specifically induces the expression of uridine diphosphate-glycosyltransferase
73B5 (UGT73B5) and GRX480 [78,82,87]. Unexpectedly, in DeLier-1-infested leaflets the expression
levels of the tomato homologs of these ORGs, TWI-1 and GRX, respectively, correlated negatively with
OPDA amounts, but correlated positively with SA amounts. Tomato TWI-1 and GRX may simply
not be good OPDA markers, which emphasizes that it can be risky to rely on sequence similarity for
predicting functional or regulatory similarities. Furthermore, considering the positive correlation with
SA, TW-1 and GRX may be regulated by SA rather than by OPDA. Interestingly, also some Arabidopsis
ORGs, including UGT73B5 and GRX480, have been shown to be SA-responsive [88–90]. Tomato TWI-1
is also responsive to SA [91], for GRX this is not known yet.

Salicylic acid concentrations correlated only weakly with expression levels of PR-P6 and did not
correlate with PR-1a expression levels at all in DeLier-1-infested leaflets. The expression of PR-P6 is
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induced upon exogenous application of SA or its synthetic analogue benzothiadiazole BTH [92,93] and
the PR-P6 promoter has been demonstrated to be responsive to SA [94]. Likewise, the expression of
PR-1a is induced upon exogenous application of BTH [95]. A tomato infestation with defence-inducing
T. urticae Santpoort-2 (i.e., untreated C+S+ group) also results in the increased accumulation of SA as
well as transcripts of PR-P6 and PR-1a (Figures 4c and 5g,h, respectively, and [52]). Importantly, the
induced SA-mediated defence response was found to have a negative effect on the performance of the
Santpoort-2 mites [59]. The weak or lack of correlation between SA levels and PR gene expression in
DeLier-1-infested leaflets possibly resulted from defence suppression by the mites, which has been
shown to occur downstream of SA (and JA) accumulation (e.g., at the PR-1a transcript level) [52]. It is
also possible that the induction of PR genes by exogenous application of (high concentrations of) SA
or BTH is more effective than endogenous SA accumulation and PR gene expression upon herbivory
since the latter is subject to spatio-temporal dynamics of multiple hormonal responses. The usefulness
of such marker genes as predictors of SA responses deserves further testing in future experiments.

Together, our findings for the DeLier-1 strain indicate that bacteria affected the measured plant
responses and mite survival independently. We did not find indications that bacteria affect plant
resistance against mites of the DeLier-1 strain. Although plant defence responses mediated by
jasmonates and SA appear to be most important to confer resistance to T. urticae [50,51,53–59], we
cannot exclude that mite-associated bacteria affected other plant responses (e.g., those regulated by
ethylene) or other host fitness parameters than we have surveyed. Note that only very few ethylene
response-associated genes were found to be differentially expressed in tomato upon spider mite
infestation [50,53]. Furthermore, the altered plant responses that we found in DeLier-1-infested leaves
cannot be explained by the amount of damage inflicted due to mite feeding, as this was equal among
all three groups.

When investigating the Santpoort-2 strain, we found that leaflets infested with mites from the
C−S− group contained higher amounts of ABA than C+S+ infested leaflets, while transcript levels of
SA-responsive PR-P6 and PR-1a were reduced. Consistent with these results, earlier studies found that
feeding by arthropods with certain bacterial symbionts was associated with increased amounts of SA
and higher expression levels of PR genes in host plants [12,96]. However, in our study accumulation
of the phytohormone SA itself was not affected by bacterial presence. One explanation for the altered
expression of the PR genes could be negative crosstalk between ABA and SA signalling pathways,
which has been described in Arabidopsis [97,98]. Also in tomato, ABA appears to negatively regulate
SA defences, in particular by inhibiting expression of PR-1a [99]. The reduced expression of PR genes
in C−S− samples compared to the C+S+ samples might thus be explained by the negative action
of ABA on these genes. Notably, mites from the C−S− group caused almost twice as much feeding
damage as mites from the C+S+ group did, suggesting that mites from the C−S− group fed more
while JA and SA defence responses were induced to a similar, or even lower (PR genes), magnitude.
The exact role of the PR proteins in defence against spider mites remains to be investigated.

Our finding that induced plant responses are affected by bacterial presence in the Santpoort-2
strain was complemented with different feeding scar phenotypes of C−S− and C+S+ mites on tomato
leaflets. Whereas feeding by the C+S+ group resulted in rusty red/brown scars, infestation with
the C−S− group yielded white scars. Similar scar phenotypes have been reported before from the
Kanzawa spider mite Tetranychus kanzawai. In that case, red scars were associated with increased SA
amounts of bean leaves as well as increased expression of a SA marker gene [100]. In the Kanzawa
spider mite, mite genotype and not maternally inherited symbionts were the cause of differentially
coloured scars upon T. kanzawai feeding [60]. Nevertheless, since the genetic background of our mite
lines was equal among the C+S+ and C−S− groups, we suggest that the red scars in our case did
probably not have a genetic basis but may have been caused by the presence of a bacterium. Most
likely the presence of Cardinium resulted in rusty red/brown scars, because we did not observe this
scar phenotype with mites from the W−S+ group of the DeLier-1 strain that contained the same
Spiroplasma OTU.
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3.3. The Combined Presence of Wolbachia and Spiroplasma Bacteria Has Consequences for Induced
Plant Responses

Within a host, the various symbionts that (can) co-occur possibly interact, which may affect
host and bacterial fitness in various ways. Our results suggest that a single or double infection
status of the DeLier-1 suppressor strain differentially affects plant defence responses but not mite
performance (and thus probably not plant resistance). In these mites, the presence of Spiroplasma
partially antagonized Wolbachia-associated changes in plant responses. This could have resulted
from independent effects of the bacteria on mites and/or plant responses. Alternatively, bacteria
may interact in the mites and competition between the two symbionts, for instance for space and/or
resources, might underlie our findings. Microbial competition for space (i.e., the ovaries) within the
mosquito hosts Anopheles stephensi and Aedes aegypti was reported to occur between Wolbachia and an
unrelated Asaia bacterium [101,102]. Besides the proper localization, symbionts may reduce densities
of a second symbiont in a host. Density is an important parameter for fidelity of vertical transmission
of bacteria as well as for their effect on host fitness [103–107]. Our Illumina MiSeq analysis showed that
the relative abundance (as well as the total number of reads) of Spiroplasma in the lines of the W−S+
group was higher than in the lines of the W+S+ group, suggesting that Wolbachia may negatively affect
the abundance of Spiroplasma in the DeLier-1 strain. However, since 16S amplicon sequencing is only
a semi-quantitative method, bacterial abundance should be assessed by means of qRT-PCRs to test
this hypothesis.

Unfortunately, we did not obtain all bacterial combinations in T. urticae to disentangle the exact
effects of single bacterial strains and their combined effects on mite fitness and induced plant responses.
For instance, we did not have mites that were infected with only Wolbachia, hence we can only indirectly
infer the role of Wolbachia in our experiments from comparisons between the W+S+, W−S+, and W−S−
groups. Moreover, for the Santpoort-2 strain the roles of Spiroplasma and Cardinium remain difficult
to interpret because we did not have C−S+ or C+S− groups. The same Spiroplasma OTU occurred in
both the Santpoort-2 inducer and the DeLier-1 suppressor strain. If we assume that Spiroplasma in the
Santpoort-2 strain had the same effect on host fitness parameters as in the DeLier-1 strain, we could
attribute the negative effects of bacteria in the Santpoort-2 strain to Cardinium. However, Spiroplasma
may interact with Cardinium in the mites. Furthermore, its effects on host fitness may depend on mite
genotype [108].

4. Material and Methods

4.1. Plants

Tomato (S. lycopersicum cv. Castlemart) and bean (Phaseolus vulgaris cv. Speedy) were germinated
and grown in a greenhouse (25/18 ◦C day/night temperature, 16 light (L)/8 dark (D) photoperiod,
50%–60% relative humidity). Experiments involving plants were carried out in a climate room (default
settings: 25 ◦C, 16L/8D photoperiod, 60% relative humidity, 300 µE·m−2·s−1), to which plants were
transferred seven days in advance.

4.2. Spider Mites

We used spider mites from the Santpoort-2 strain and the DeLier-1 strain. The Santpoort-2
strain has been described before as inducer of tomato JA and SA defences, to which this strain is
also susceptible [52,59], while the DeLier-1 strain was shown to suppress some of these defences [52].
Spider mites from both strains were reared separately on detached bean leaflets in a climate room.

4.2.1. Bacterial Communities in Antibiotics-Treated and Untreated Mite Lines of Tetranychus urticae
DeLier-1 and Santpoort-2

Results from a preliminary assessment of the presence of bacteria in the two mite strains indicated
that they harboured different endosymbiotic bacteria. The DeLier-1 strain contained Wolbachia sp.,
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while Cardinium was identified in the Santpoort-2 strain. In addition, Spiroplasma sp. was found in
both mite strains (see also Table 1, Figure S1).

4.2.2. Antibiotics Treatments and Nomenclature of Mite Lines

We treated mites from both strains with antibiotics to remove Wolbachia, Cardinium and Spiroplasma
bacteria. Offspring from randomly selected mated adult females (from laboratory mass rearings) was
divided over two treatments: (i) antibiotics-treated; and (ii) untreated controls. For the antibiotics
treatment, adult female spider mites were first kept on bean leaf discs on cotton wool soaked with
tetracycline hydrochloride (Sigma-Aldrich, St. Louis, MO, USA) for 2–3 days. After this, they were
transferred to new leaf discs on water-saturated cotton wool to produce eggs. Two days later, adult
females were individually sampled in Eppendorf tubes and stored at −80 ◦C until DNA was extracted
for diagnostic PCRs to test the bacterial infection status of the mites (see below). The eggs on the
leaf discs were allowed to hatch and mature in a climate room, after which the antibiotics treatment
was repeated. In parallel, untreated control mites were kept on leaf discs placed on water-saturated
cotton wool. After egg production, mites were sampled for diagnostic PCRs as described below.
Three subsequent generations of mites were treated in this way, but with increasing concentrations
of tetracycline (i.e., 0.15%, 0.20% and 0.30% w/v) to obtain mites free of Wolbachia, Cardinium and
Spiroplasma as assessed via diagnostic PCR. From generation 4 onwards, all mites were reared on
untreated detached bean leaflets to accommodate larger populations.

During the antibiotics treatment, we kept track of the individual mites and their offspring and
only kept those “lines” (antibiotics-treated versus control group) that both originated from the same
adult female (i.e., these were “sister lines”). This was done to minimize genetic variation between
antibiotics-treated and untreated control groups. Following these criteria, we obtained four lines for
the DeLier-1 strain, designated as line 1, 2, 3 and 4. Each of the four lines had three sublines: W+S+
contained both Wolbachia and Spiroplasma; W−S+ was free of Wolbachia, but contained Spiroplasma,
W−S− was free of Wolbachia and Spiroplasma. We did not obtain W+S- sublines. For the Santpoort-2
strain, we obtained four lines as well, which were designated as lines 5, 6, 7 and 8. Each of the four
lines had two sublines: C+S+ contained Cardinium and Spiroplasma, and C−S− was free of Cardinium
and Spiroplasma. Sublines with the same respective bacteria will be referred to as “groups”. For the
DeLier-1 strain the groups were W+S+, W−S+ and W−S−, for the Santpoort-2 strain the groups were
C+S+ and C−S− (see Table 1, Figure S1 for an overview of the mite lines). Mites from each strain
and subline were regularly checked for their bacterial infection status by diagnostic PCR and kept
on untreated detached bean leaflets for at least 15 generations before they were used for the plant
infestation assay and mite fecundity tests.

4.2.3. Illumina Sequencing

To assess the presence of Wolbachia, Cardinium, Spiroplasma and other potentially present bacteria
in mites from the five groups (W−S−, W−S+, W+S+, C−S− and C+S+) that were used for the plant
infestation assay, we sampled five tomato-habituated mites per subline (as described above) for
Illumina sequencing. DNA was extracted from single mites using a fast Chelex method modified
from [39]. To isolate the DNA, a single mite was ground and homogenized in 100 µL sterile 5%
w/v Chelex (Sigma-Aldrich) with a sterile pestle, after which 2.5 µL proteinase K (20 mg/mL,
Sigma-Aldrich) was added. Samples were then incubated at 56 ◦C for 1 h, followed by incubation at
95 ◦C for 8 min to complete the DNA extraction. DNA from the five mites from the same subline was
pooled to form one sample. DNA concentration was adjusted to 25–35 ng/µL per sample. In total,
20 (pooled) samples were sent for sequencing, one for each subline. Amplification and sequencing of
the 16S rRNA gene fragment was done by LGC Genomics (Berlin, Germany) using an Illumina MiSeq
sequencer (2 × 250 bp paired-end reads; Illumina, San Diego, CA, USA) and the universal primers
341F and 785R modified from [61], see Table S1. Since the Chelex method does not yield highly pure
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DNA, the initial PCR amplification of the 16S rRNA genetic region was done on 20 times diluted DNA.
Furthermore, the PCR was run with 35 instead of the usual 30 cycles.

Sequences were provided as adapter clipped FASTQ files and analysed in Quantitative Insights
into Microbial Ecology (QIIME), which is a standard pipeline for microbial community analysis [109].
First, forward and reverse reads were joined with the join_paired_ends.py algorithm. Joined sequences
were quality filtered, applying a Phred threshold of 20. Subsequently, sequences were clustered
into OTUs with the open reference OTU picking command, applying the uclust algorithm [110] and
97% similarity cut-offs. First, sequences were clustered against the reference Greengenes 16S rRNA
gene database [111]. Sequences that did not cluster with the reference sequences were clustered de
novo. The most abundant sequence from each OTU cluster was taken as representative sequence.
Representative sequences were aligned with PyNAST, using the Greengenes core set as a template [112].
PyNAST-aligned sequences were checked for chimeras with Chimera Slayer [113]. Identified chimeras
were removed from de novo clustered sequences for downstream analysis. Taxonomy was assigned to
the representative sequences using the uclust consensus taxonomy classifier [110]. The resulting OTU
table was manually edited; global singletons and sequences identified as chloroplast and mitochondrial
DNA were removed from the dataset. In Figure S1, we show OTUs that were present above 0.5% in at
least one of the sublines.

4.2.4. Diagnostic PCRs on Mites

To verify the presence or absence of the most common endosymbionts in mites (i.e., Wolbachia,
Cardinium and Spiroplasma [39–42]), we performed diagnostic PCRs on DNA extracted from spider
mites using genus-specific bacterial primers (Table S1). Adult female mites were sampled in Eppendorf
tubes and their DNA was extracted using the Chelex method as described above. Samples were stored
at 4 ◦C until they were used for PCR as previously described [114].

4.3. Effects of Wolbachia, Cardinium and Spiroplasma on Spider Mite Performance

4.3.1. Spider Mite Performance Assay

To establish whether (endo)symbionts had an effect on mite performance, we assessed spider
mite fecundity and survival on wild type tomato plants. For the experiment, an “egg-wave” [52] was
generated by allowing random adult females from each strain to produce eggs on the adaxial surface
of detached bean leaflets, which had been put flat on wet cotton wool. After 48 h of egg production, all
mites were removed from the leaflets, collected in Eppendorf tubes (25–35 mites from the same subline
were pooled), flash-frozen in liquid nitrogen and stored at −80 ◦C until their DNA was extracted
for diagnostic PCRs. The eggs were allowed to hatch and mature in a climate room for another nine
days. The bean leaflets with mites were then transferred to leaves of 21-day-old tomato plants to
habituate the mites to tomato to minimize possible effects of the previous diet (i.e., bean) on mite
behaviour, performance, and/or induced tomato responses. Dietary effects are known to persist for at
least 48 h, after which they diminish rapidly [115]. Three days later, the 1 ± 1-day-old adult female
mites were collected from the tomato leaves and transferred to new 21-day-old tomato plants for the
mite performance assay. Plants were infested with five mites per leaflet; three leaflets per plant; 3–6
plants per treatment. A lanolin (Sigma-Aldrich) barrier was made around the petiolule to prevent the
mites from escaping. After four days, the number of eggs produced by the mites, as well as the number
of alive, dead and missing (i.e., migrated) mites, was recorded using a stereo microscope (Leica MZ6;
Leica Microsystems, Wetzlar, Germany). This experiment was repeated 2–3 times for all four lines of
the DeLier-1 strain. However, for the Santpoort-2 strain, populations from the C−S− subline of line 6,
as well as both sublines of line 7 went extinct (for yet unknown reasons) before we could complete the
performance assays. Data from the C+S+ subline of line 6 was included for analysis.
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4.3.2. Statistical Analysis of Spider Mite Performance Assay

To test the effect of Wolbachia, Cardinium and/or Spiroplasma on mite oviposition, we constructed
one linear mixed effect model (LMM) for each mite strain (DeLier-1 and Santpoort-2) in the lme4
package [116], using “average number of eggs per number of females that were originally put on
the leaves” (five mites) as response variable. To test effects of bacteria on survival of the mites, we
used generalized linear mixed models (GLMMs) in the lme4 package using a binomial distribution to
analyze the proportion of mites that were dead or alive at the end of the oviposition experiment (i.e.,
after four days). In the models of oviposition and survival, we used (bacterial) “group” as explanatory
variable and “line” was added as random effect. Additionally, since experiments were spread over
different experimental days, and in total 6–9 plants were used per line (with three leaflets per plant), we
added a nested random effect with “leaflet” nested in “plant”, nested in “day” (1|day/plant/leaflet)
to the model. Pairwise comparisons for the DeLier-1 strain were done using Tukey contrasts in the
multicomp package [117] and applying Holm adjustments to account for multiple comparisons. The
response variables were transformed using log, sqrt or 1/sqrt if necessary for meeting the assumptions
of homogeneity of variance. All GLMMs were checked for overdispersion by taking the sum of Pearson
residuals squared and dividing by the residual degrees of freedom. The GLMMs were found to be not
overdispersed. All analyses were performed using the statistical software R 3.0.2 [118].

4.4. Effects of SpiderMite-Associated Wolbachia, Cardinium and Spiroplasma on Induced Plant Responses

4.4.1. Plant Infestation Assay

To measure phytohormone levels and plant defence gene expression upon mite-inflicted feeding
damage, tomato plants were infested with spider mites as described previously [52], but prior to the
infestation, mites were habituated on tomato for two days. For the experiment, we used adult female
spider mites of similar age, obtained from an egg-wave as described above. After removal of the
females, eggs were allowed to hatch and mature in a climate room for another 12 days. The bean
leaflets with mites were then taken from the cotton wool and placed upside-down on leaves of
28-day-old tomato plants to infest these (i.e., habituation step). Two days later, the 3 ± 1-day-old adult
female mites were collected and transferred to 21-day-old tomato plants for the plant infestation assay,
according to our standard infestation protocol; 15 mites per leaflet, three leaflets per plant. To prevent
the mites from escaping, a lanolin (Sigma-Aldrich) barrier was made around the petiolule, which
was also applied to uninfested control leaflets. A total of five plants were infested per mite subline
(i.e., 20 plants per group). To verify the bacterial infection status of each strain, five tomato-habituated
mites per strain were individually collected in Eppendorf tubes, flash-frozen in liquid nitrogen and
stored at −80 ◦C until DNA was extracted for PCR amplification and subsequent Illumina sequencing
of the 16S rRNA genetic region (see “Illumina sequencing”, Section 4.2.3).

At seven days post-infestation, mites and tomato leaflets were harvested separately. First, spider
mites were removed from the leaflets with a vacuum pump, a sterile 1 ml pipet tip, and mite-proof
gauze to quickly remove the mites without touching and hence mechanically damaging the leaflets.
Subsequently, the mite-cleared leaflets were excised without the petiolule. The three detached leaflets
obtained from the same plant, along with a scale marker, were then aligned on black paper, gently
covered with a thin glass plate to flatten them out, and photographed with a Canon EOS 300D
DSLR camera (Canon, Tokyo, Japan) equipped with a Canon EF-S 18-55 mm lens to enable in silico
calculation of spider mite-inflicted feeding damage, using Adobe Photoshop CS6 Extended (Adobe
Systems, San Jose, CA, USA) as described by [50]. Finally, the leaflets were flash-frozen in liquid
nitrogen and stored at −80 ◦C until we extracted their phytohormones and RNA. The three leaflets
obtained from the same plant were pooled to form one biological replicate. In total, it took less than
5 min per plant to complete these three steps and harvest the leaflets. Care was taken to not damage
them. Except for removal of the mites, non-infested control leaflets were processed in the same way.
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4.4.2. Isolation of Phytohormones and Analysis by Means of Liquid Chromatography Tandem
Mass Spectrometry

Per sample, 200–300 mg of frozen leaf material was homogenized (Precellys 24; Bertin
Technologies, Aix-en-Provence, France) in 1 mL of ethyl acetate which had been spiked with D6-SA
and D5-JA (C/D/N Isotopes Inc., Pointe-Claire, QC, Canada) as internal standards with a final
concentration of 100 ng·mL−1. Tubes were centrifuged at 13,000 rpm (15,493× g; Sigma 3-30KS;
SIGMA Laborzentrifugen GmbH, Osterode am Harz, Germany) for 10 min at 4 ◦C and the supernatant
(the ethyl acetate phase) was transferred to new tubes. The pellet was re-extracted with 0.5 mL of
ethyl acetate (without internal standards) and centrifuged again at 13,000 rpm for 10 min at 4 ◦C. Both
supernatants were combined and then evaporated to dryness on a vacuum concentrator (CentriVap
centrifugal concentrator; Labconco, Kansas City, MO, USA) at 30 ◦C. The residue was re-suspended
in 0.1 mL of 70% methanol (v/v), centrifuged at 14,800 rpm (20,081× g) for 15 min at 4 ◦C, and the
supernatants were transferred to glass vials and then analysed using a liquid chromatography tandem
mass spectrometry (LC–MS/MS) system (Varian 320-MS LC/MS; Agilent Technologies, Santa Clara,
CA, USA). A serial dilution of pure standards of ABA, OPDA, JA, JA-Ile and SA was run separately.
We injected 10 µL of each sample onto a Kinetix 5u C18 100A column (C18 phase, 5 µm particle size,
100 Å pore size, 50 × 2.1 mm; Phenomenex, Torrance, CA, USA) equipped with a Phenex-RC guard
cartridge (Phenomenex). The mobile phase comprised of solvent A (0.05% formic acid in LC–MS-grade
water; Sigma-Aldrich) and solvent B (0.05% formic acid in LC–MS-grade methanol; Sigma-Aldrich).
The program, with a constant flow rate of 0.2 mL·min−1, was set as follows: (i) 95% solvent A/5%
solvent B for 1 min 30 s; (ii) followed by 6 min in which solvent B gradually increased till 98%;
(iii) continuing with 98% solvent B for 5 min; (iv) then a rapid (in 1 min) but gradual decrease returning
to 95% solvent A/5% solvent B until the end of the run. A negative electrospray ionization mode was
used for detection. For LC–MS/MS parameters see [52]. For all oxylipins and ABA, we used D5-JA to
estimate the recovery rate and their in planta concentrations were subsequently quantified using the
external standard series. For SA we used D6-SA to estimate the recovery rate and it was quantified
using the external standard. Phytohormone amounts were expressed ng·g−1 FW.

4.4.3. Gene Expression Analysis by Quantitative Reverse-Transcription PCR

To determine the effect of mite-associated bacteria on defence gene expression, we performed
qRT-PCRs on plant defence marker genes. Therefore, total RNA was isolated from the tomato leaf
tissue that was used for phytohormone isolation, using the hot phenol method [119]. RNA integrity
was checked by agarose-gel electrophoresis and a NanoDrop spectrophotometer (ND-1000; Thermo
Fisher Scientific, Waltham, MA, USA) was used to assess RNA purity and quantity. Per sample, 3 µg
DNase (Ambion, Austin, TX, USA)-treated RNA was used as template for reverse transcription and
first strand cDNA synthesis using RevertAid H minus reverse transcriptase (Thermo Fisher Scientific).
For gene expression analysis, 1 µL of 10-times diluted cDNA (i.e., the equivalent of 7.5 ng total RNA)
served as template in a 20 µL qRT-PCR using the 5× HOT FIREPol EvaGreen qPCR Mix Plus (ROX)
kit (Solis Biodyne, Tartu, Estonia) and the ABI 7500 real-time PCR system (Applied Biosystems, Foster
City, CA, USA), according to the instructions of the manufacturers. We monitored expression of a gene
involved in JA biosynthesis; OPR3 [120], as well as JA-defence marker genes; JIP-21 [121], TD-2 [122],
PI-IIc [123], SA-defence marker genes; PR-1a [124], PR-P6 [124], and putative OPDA-responsive
genes; TWI-1 [125] and an uncharacterized “GRX” (Solyc07g053550.1). The amino acid sequences of
established Arabidopsis thaliana ORGs [78,82,87] were used to identify their putative tomato homologs:
At2g15480 (AtUGT73B5) for SlTWI-1 and At1g28480 (AtGRX480) for tomato GRX. Actin was used as a
reference gene to normalize expression data and hence correct for variance in quantity of cDNA input.
Standard dilution series of selected samples were included with each qRT-PCR run to calculate primer
efficiency. Amplicons generated by PCR were sequenced to verify primer specificity. Gene identifiers,
primer sequences and references are listed in Table S1. The normalized expression (referred to as NE in
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Figures 5 and 6) data were calculated by the ∆Ct method: NE = (PEtarget
Ct_target)/(PEreference

Ct_reference),
in which PE is the primer efficiency and Ct the number of cycles to reach the cycle threshold value.

4.4.4. Statistical Analysis of the Plant Infestation Assay Data—Phytohormones, Quantitative
Reverse-Transcription PCR, Feeding Damage

To test the effect of bacteria on phytohormone levels, tomato gene expression and amount of spider
mite-inflicted feeding damage, we constructed LMMs using the package lme4 [116]. The respective
amounts of phytohormones (ng·g−1 FW), normalized gene expression (NE) or total amount of feeding
damage (mm2) for three leaflets of one plant combined were used as response variable, while “presence
of bacteria” (i.e., W/S/C) was used as explanatory variable. To test the level of defences in mite-infested
plants compared to non-infested control plants, in the case of phytohormones and gene expression this
explanatory variable also included control plants that were not infested. Since we had four lines which
were present as sublines in all bacterial “groups”, we added “line” as a random factor to the model to
account for variation between the lines. The response variables were transformed using log, sqrt or
1/sqrt if applicable for meeting the assumptions of homogeneity of variance and normality of residuals
required for LMM. For pairwise comparisons, we used Tukey contrasts with Holm adjustment for
multiple comparisons in the multcomp package [117]. To assess how the phytohormones SA and
ODPA correlated with expression levels of tomato genes (TWI-1, GRX and OPR3), we calculated linear
correlations between phytohormone amounts and the NE level of these genes using the R package
Hmisc 3.15 [126]. Further, we calculated linear correlations between SA amounts and NE levels of the
SA marker genes PR-P6 and PR-1a. p-Values of correlations were adjusted for multiple testing, using
the Holm method. All analyses were performed using the statistical software R 3.0.2 [118].

5. Conclusions

The T. urticae DeLier-1 plant defence-suppressor and the Santpoort-2 defence-inducer strains
harbour different bacteria. While the DeLier-1 strain harbours Wolbachia and Spiroplasma (W+S+), the
Santpoort-2 strain harbours Cardinium and Spiroplasma (C+S+). In the DeLier-1 strain, the presence of
Wolbachia was positively correlated with survival of the mites, while the presence of Spiroplasma did
not correlate with survival. These results were not reflected in the pattern of induced plant responses.
Here, the sole presence of Spiroplasma (and thus the absence of Wolbachia) was correlated with lower
accumulation of OPDA and higher accumulation of SA in tomato leaflets compared to infestation of
leaflets with other mite groups. Since the bacteria-correlated patterns of mite performance and plant
response were not congruent, we conclude that the bacteria that we investigated are unlikely to affect
plant resistance against the DeLier-1 strain of T. urticae on tomato plants. Rather, these bacteria may
affect mite performance and plant responses independently.

For the Santpoort-2 strain we found that the presence of Spiroplasma and Cardinium correlated
negatively with feeding damage and oviposition, while it correlated positively with the induction of
SA marker gene expression as well as with the rusty scar phenotype of infested leaves. This indicates
a distinct and clearly visible impact of the presence of Cardinium and Spiroplasma on the mite’s host
plant. Our results further suggest that the enhanced SA response that was correlated with bacterial
presence may be negatively correlated with performance of the mites. However, a clear causal link
between the effect of bacteria on plant responses and mite performance remains to be investigated.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/1/182/s1.
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