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Abstract: The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular
activities and survival. Disturbances in the normal ER functions lead to the accumulation and
aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response
(UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the
process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination,
which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis
can lead to the development of various pathological conditions, such as neurodegenerative and
autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca?*)
is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in
response to various conditions. Ca?* regulates cell death both at the early and late stages of apoptosis.
Severe Ca?* dysregulation can promote cell death through apoptosis. Action potential, an electrical
signal transmitted along the neurons and muscle fibers, is important for conveying information
to, from, and within the brain. Upon the initiation of the action potential, increased levels of
cytosolic Ca?* (depolarization) lead to the activation of the ER stress response involved in the
initiation of apoptosis. In this review, we discuss the involvement of Ca?* and action potential in ER
stress-mediated apoptosis.

Keywords: endoplasmic reticulum stress; unfolded protein response; calcium; apoptosis;
action potential

1. Introduction

The endoplasmic reticulum (ER) is a vital organelle in eukaryotic cells, responsible for multiple
cellular activities, including synthesis, maturation, translation and folding of secretory and membrane
proteins, lipid biogenesis, and the sequestration of Ca?* [1,2]. The ER quality control (ERQC) system
is involved in the proofreading of nascent and newly synthesized proteins in order to protect cells
against the pathological accumulation of unfolded and misfolded proteins [3-5]. Disturbances in the
cellular energy levels, the redox state, or Ca?* concentrations reduce the protein folding capacity of
the ER, and lead to the accumulation and aggregation of unfolded proteins, resulting in ER stress [1].
It has been reported that ER stress is triggered by disturbed ER functions, especially by the increase
in protein secretion or protein misfolding [6]. ER stress leads to the activation of three ER-resident
transmembrane proteins called activating transcription factor-6 (ATF6), inositol requiring protein-1
(IRE1), and protein kinase RNA-like ER kinase (PERK) [7]. All three ER stress receptors maintain direct
signaling pathways that relieve ER stress by initiating the unfolded protein response (UPR). UPR is
a pro-survival response, responsible for restoring normal ER functions by reducing the aggregation
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and accumulation of unfolded proteins [8]. Prolonged UPR activation or adaptive response failure
can promote a pro-survival response to a pro-apoptotic signaling, especially in the pathological
condition [7].

The term apoptosis is used interchangeably with the term programmed cell death, which represents
a genetically regulated form of cell death [9]. Apoptosis plays a vital role in the elimination of cells,
which is important for the processes of embryogenesis, development, and tissue homeostasis [10]. It has
been reported that ER stress is a major cause affecting the initiation of apoptosis [11]. Impairment of
apoptosis can lead to a variety of pathological diseases, including neurodegenerative and autoimmune
diseases, cancer, or acquired immune deficiency syndrome (AIDS) [12-14].

Ca?" is a ubiquitous and versatile intracellular second messenger involved in many
signaling processes, including myofilaments contraction, secretion of hormones, growth factors,
and neurotransmitters, and the modulation of metabolism, synaptic transmission, and gene
transcription [15-17]. Loss of cellular homeostasis disrupts Ca®* signaling, inducing ER stress
response [15]. Ca* is a major player in the regulation of cell death [18], both at the early and
late stages of apoptosis, and severe Ca?* dysregulation can induce ER stress-mediated apoptosis in
response to various pathological conditions [19-22].

Action potential is an electrical signal responsible for the transmission along neurons and muscle
fibers conveying the information to, from, and within the brain [23]. Action potential propagation is
necessary for all essential processes and functions, for example, reading a text and understanding its
message, laughing and crying, thinking and feeling, hearing, and moving our muscles [24]. Currently,
research is focused on the understanding of action potentials and their effects on muscle and neuronal
activities. Many currently investigated diseases, including Alzheimer’s disease (AD), myasthenia
gravis, and epilepsy, involve the disturbances in action potential propagation [25-27].

This review focuses on: (a) ER stress and UPR signal transduction pathways; (b) the role of Ca* in
the ER stress and apoptosis; and (c) the involvement of action potential in ER stress-mediated apoptosis.

2. Endoplasmic Reticulum (ER) Stress and Unfolded Protein Response (UPR)

2.1. The ER

ER is an essential central cellular organelle of each eukaryotic cell, which plays a vital role in the
synthesis, maturation, and folding of proteins that go through the secretory pathway (Figure 1) [1].
ER ensures correct protein functioning by executing and regulating many posttranslational
modifications [4,28]. Several factors, including adenosine triphosphate (ATP), Ca?*, and an oxidizing
environment regulate the optimal protein folding through disulfide-bond formation [29]. The ERQC
process assists the transit of properly folded proteins in membrane vesicles to different organelles
and the surface or extracellular space of the cell [30,31]. Proper folding of newly synthesized
proteins is assisted, after the translocation to the ER, by a complex network of chaperones, foldases,
and cofactors [32].

2.2. Rough Endoplasmic Reticulum (RER) and Smooth Endoplasmic Reticulum (SER)

There are two types of the ER: rough endoplasmic reticulum (RER) and smooth endoplasmic
reticulum (SER) [33]. As RER is studded with ribosomes, it is called rough and it plays a crucial
role in the production of proteins, protein folding, quality control, and dispatch of proteins [33].
SER is called smooth, as it is associated with smooth slippery fats and it is not studded with
ribosomes [31]. SER is involved in the production and metabolism of fats and steroid hormones [34].
ER is adjacent to the nuclear envelope and closely associated with the Golgi apparatus, and the proteins
are transported directly between them, and ultimately into secretory vesicles that are transported
through the cytoplasm [35].
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Figure 1. Endoplasmic reticulum (ER) Stress and unfolded protein response (UPR). ER functions
include protein synthesis, maturation, and the folding of proteins, ensuring cellular homeostasis.
The disturbance of cellular adenosine triphosphate (ATP) levels, redox state, or Ca>* concentration
affects ER functioning, causing the accumulation and aggregation of unfolded proteins, and generating
ER stress, which further triggers UPR. The UPR has three major roles: in adaptive response, feedback
control, and cell fate. In the adaptive response, the UPR reduces ER stress and restores ER homeostasis.
The UPR signaling is inhibited through a negative feedback mechanism. Depending on the severity of
the ER stress, the UPR can regulate both cellular survival and death.

2.3. ER and Protein Quality Control System

The ER plays an important role in the protein quality control by proofreading nascent and newly
synthesized proteins, and mediating the degradation of unfolded or misfolded protein, which was
designated as ER-associated degradation (ERAD) [3-5,36]. The ERAD pathway is responsible for the
identification and destruction of the proteins that are unable to pass ERQC, using a proteolytic
system [3,37]. Impaired ERQC functions can lead to various severe protein folding diseases,
including neurodegenerative diseases, such as AD; cardiac diseases such as hypertrophy, heart failure,
cardiomyopathy, and atherosclerosis; and cancer [38—41].

2.4. ER Stress

The ER is the primary organelle involved in signal transduction that senses homeostatic changes
and provides feedback to other cellular components [42]. All proteins are usually folded into their
tertiary and quaternary structures in the ER [1]. Perturbation of cellular ATP levels, Ca®* concentration,
or the redox state lead to the reduction in the protein-folding capacity of the ER, resulting in the
accumulation and aggregation of unfolded proteins, known as ER stress (Figure 1) [43]. ER stress is
induced by the excessive protein traffic and the accumulation of unfolded protein aggregates [44].

2.5. UPR

ER stress triggers the UPR (Figure 1), an adaptive response responsible for restoring protein
homeostasis [45,46]. The UPR is mediated by three ER-localized proteins: IRE1, PERK, and ATFé6.
The luminal domains of these proteins bind an ER chaperone, binding-immunoglobulin protein (BiP),
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and are kept inactive during unstressed conditions. During ER stress, these proteins dissociate from
BiP, which results in their activation [47]. The UPR has three major roles: (a) adaptive response,
reducing ER stress and restoring ER homeostasis; (b) feedback control, in order to block the UPR when
ER homeostasis is regained; and (c) balancing cellular survival and death through the regulation of
apoptosis (Figure 1) [48,49].

2.6. UPR Signaling

As previously described, UPR is regulated by three major ER-residence proteins: IRE1, PERK,
and ATF6 (Figure 2). IRE1 is a type I ER resident transmembrane protein with serine/threonine kinase
activity, which can detect ER stress through its N-terminal luminal domain, and it initiates the most
conserved UPR signaling pathway [50]. There are two isoforms of IRE1: IRElcx and IRE13. IRE1«
has been studied extensively as it is expressed in all cell types. The unfolded proteins accumulation
in the ER induces IRE1 oligomerization in ER lumen and the autophosphorylation of the cytosolic
domain of IRE1 [51]. Following the activation, IRE1 splices X-box-binding protein 1 (XBP1) mRNA,
leading to a shift in the codon reading frame of this mRNA, triggering the generation of a new
C-terminal domain that contains an active transactivation domain, spliced XBP1 (sXBP1) [29,30,32,52].
sXBP1 induces the upregulation of UPR-related genes involved in different functions, including
protein folding, protein translocation to the ER, and ERAD [53,54]. IRE1 recruits tumor necrosis
factor receptor (TNFR)-associated factor-2 (TRAF2) as well, and activates apoptosis-signaling-kinase 1
(ASK1) [55]. The activation of ASK1 leads to the activation of c-Jun N-terminal protein kinase (JNK)
and p38 mitogen-activation protein kinase (MAPK) [55,56]. Activated JNK molecules translocate to
the mitochondrial membrane and induce the activation of Bcl-2 interacting protein (Bim) and the
inhibition of B-cell lymphoma 2 (Bcl-2), whereas p38 MAPK phosphorylation leads to the activation of
transcriptional factor C/EBP homologous protein (CHOP), which causes an increased expression of
Bim and death receptor 5 (DR5), simultaneously decreasing the expression of Bcl-2, which leads to the
initiation of apoptosis [57-60]. Bcl-2 associated X protein (Bax) and Bcl-2 homologous antagonist killer
protein (Bak) can: (a) bind to and activate IRE1; and (b) stimulate inositol 1,4,5-triphosphate receptors
(IP3Rs) to induce the release of Ca®* from the ER [61].

PERK is a type I ER-resident transmembrane protein responsible for the attenuation of mRNA
translation, which can sense ER stress and its luminal domain partially resembles IRE1 [62-64].
Under normal conditions, PERK is thought to bind a chaperone protein BiP, and, following the
activation, it inhibits the influx of newly synthesized proteins into the already stressed ER compartment
through the inactivation of the eukaryotic initiation factor 2 (elF2) by serine 51 phosphorylation [38].
This inhibits elF2B, guanine nucleotide exchange factor complex that recycles elF2 to its active
GTP-bound form [39], which reduces the overload of misfolded proteins, thereby alleviating ER
stress [36]. elF2 phosphorylation also allows the translation of UPR-dependent genes, such as the
ATF4, that contain various upstream open reading frames [65,66]. ATF4 induces the expression of
ER stress target genes, including CHOP, growth arrest and DNA-damage-inducible 34 (GADD34),
and ATF3 [67,68].

ATF6 is a type Il ER resident transmembrane protein, which dissociates from BiP and translocates
to the Golgi compartment under ER stress conditions for further proteolytic processing [69,70].
Two Golgi resident enzymes, site-1 protease (S1P) and site-2 protease (52P), are involved in the
proteolytic cleavage of the full-length 90-kDa ATF6 [71,72]. Afterward, the cleaved N-terminal cytosolic
domain of 50-kDa cytosolic basic leucine zipper (bZIP) translocates into the nucleus and binds to
the ATF/cAMP response elements (CRE) and ER stress-response elements (ERSE-1) to activate the
transcription of target proteins, such as BiP, XBP-1, and CHOP [73-76].

During a prolonged ER stress, IRE1, PERK, and ATF6 can induce pro-apoptotic signaling through
the activation of CHOP, which subsequently leads to the initiation of apoptosis [8,77].
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Figure 2. UPR mechanism. Upon the aggregation of the unfolded proteins, binding-immunoglobulin
protein (BiP) dissociates from inositol requiring protein-1 (IRE1), protein kinase RN A-like ER kinase
(PERK), and activating transcription factor-6 (ATF6), allowing their activation. Activated IRE1
splices X-box-binding protein 1 (XBP-1) mRNA, producing spliced XBP-1 (sXBP-1) that translocates
to the nucleus and regulates the expression of C/EBP homologous protein (CHOP) transcription
factor. IRE1 can recruit tumor necrosis factor receptor (TNFR)-associated factor-2 (TRAF2) and
apoptosis-signaling-kinase 1 (ASK1), resulting in the downstream activation of c-Jun N-terminal
protein kinase (JNK) and p38 mitogen-activation protein kinase (MAPK). Activated p38 MAPK
phosphorylates and activates CHOP, whereas JNK translocates to the mitochondrial membrane,
inhibiting B-cell lymphoma 2 (Bcl-2) and activating Bcl-2 interacting protein (Bim). IRE1 can activate
Bcl-2 associated X protein (Bax) and Bcl-2 homologous antagonist killer protein (Bak) that induce
inositol 1,4,5-triphosphate receptors (IP3Rs) to initiate the release of Ca?* from the ER. Activated PERK
phosphorylates eukaryotic initiation factor 2 (eIF2), which allows the translation of ATF4 through an
elF2-independent pathway, and ATF4 translocates to the nucleus and stimulates the transcription of
proteins required to regain ER homeostasis. ATF6 is activated by the Golgi resident enzymes through
a limited proteolysis, and it regulates the expression of CHOP. During the ER stress, all three UPR
pathways result in the initiation of CHOP transcription.

2.7. ER Stress and Ca**

Ca?* is one of the most important second messengers in the cell that participates in multiple
cellular activities, such as protein synthesis and secretion, contraction of muscles, gene expression,
cell cycle progression, metabolism, and apoptosis [78]. Intracellular Ca?* is mainly stored in the ER
lumen, to ensure the proper protein-folding through the activity of Ca?*-binding chaperones [79].
ER controls a diversity of cellular responses and signaling transduction pathways in response to stress
through the transport of Ca?* in and out of ER lumen. Ca?* released from the ER induces apoptosis
mainly through the mitochondrial cell death [53]. Additionally, Ca®" released through IP3Rs at ER
and mitochondrial contact sites can promote oxidative phosphorylation, which controls ATP levels
and cell survival [80]. Bax and Bak are involved in Ca?*-mediated ER-induced apoptosis [56], and the
overexpression of Bax leads to the release of Ca?* from ER and subsequent increase in the mitochondrial
Ca?* levels, which leads to the induction of cytochrome c release. Bax and Bak deficient cells release
a lower amount of Ca?* from ER even after the treatment with IP3 and other ER Ca?*-mobilizing
agents [81]. Ca*-binding chaperones, such as calreticulin, play an important role in the quality control
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and proper folding of newly synthesized proteins in the ER [73]. Therefore, ER Ca?* imbalance can
greatly impact the folding capacity and induce ER stress-mediated apoptosis. For example, calreticulin
overexpression disrupts intracellular Ca®* regulation, leading to Ca?*-dependent apoptosis in mature
cardiomyocytes [82].

3. Programmed Cell Death

3.1. Apoptosis

Apoptosis or the process of programmed cell death is a genetically regulated form of
cell death, which can be determined by morphological characteristics reflecting the underlying
energy-dependent biochemical mechanisms [83]. Apoptosis is considered an important element
of many cellular processes, including the changes in the normal cells, immune system development,
hormone-dependent atrophy, and embryonic development [84]. Organ homeostasis is regulated
by apoptosis in both physiological and pathological conditions, by modulating cell number and
tissue [85,86]. The inappropriate activation of apoptosis is responsible for a variety of common
pathologies [12,87]. Apoptosis maintains cell populations in tissues through a homeostatic mechanism
during development and aging, and this process can be used as a defense mechanism during immune
responses or in tissues damaged by disease or toxic agents [88]. In both physiological and pathological
conditions, many factors can trigger apoptosis, but not all cells necessarily undergo apoptosis in
response to the same factors [89]. For example, cancer chemotherapy or radiotherapy induce DNA
damage in some cells, which results in the activation of apoptotic death through a p53-dependent
pathway [90].

3.2. Apoptosis and ER Stress

ER is a vital cellular organelle that can affect cellular survival or death [43]. Recently, ER
stress was identified as a major process involved in the initiation of apoptosis that leads to the
development of various pathological conditions, including neurodegenerative diseases, diabetes
mellitus, and infectious diseases [91-93]. The ER resident proteins, PERK, ATF6, and IRE1 are
stimulated during the prolonged ER stress and they can activate apoptotic signaling by inducing the
expression of CHOP, which acts as a major ER stress-induced apoptotic factor through the regulation
of Bcl-2, Bim, and DR5 expression [58,94]. CHOP represents a common UPR transcription factor,
with the binding sites for ATF6, ATF4, and XBP1 present within its regulatory genes. CHOP is
considered a primarily pro-apoptotic transcription factor that induces ER stress-mediated apoptosis
through the regulation of Bcl-2 family members. It was demonstrated that the upregulation of Bim
is CHOP-dependent in tunicamycin-treated Michigan cancer foundation-7 (MCF7) breast cancer
cells [95]. Bim expression was shown to be controlled through a combined effect of CHOP-dependent
transcriptional upregulation and post-translational alteration through protein phosphatase 2« (PP2c),
which increases protein stability [57]. CHOP-mediated downregulation of Bcl-2 may shift the balance
of Bcl-2 family members in favor of pro-apoptotic pathway, thus ensuring propagation and execution
of the apoptotic signal [69].

Prolonged activation of IRE1 promotes apoptosis as well. Recently, several studies showed
that the prolonged ER stress can trigger the activation of a pro-apoptotic IRE1I-TRAF2-JNK pathway,
which is activated through the signal transduction between IRE1-TRAF2 and phosphorylation [6].
Phosphorylated IRE1 interacts with the adaptor protein TRAF2, leading to the activation of JNK
through the initiation of a phosphorylation cascade [96].

3.3. Apoptosis and Ca®*

Ca?* plays a complex regulatory role in apoptosis and it is involved in various cellular
functions [16,97,98]. In almost all cell types, including neurons, an increase in intracellular CaZ*
concentration can induce apoptosis [99]. It regulates cell death through the pro-apoptotic transition of
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mitochondria [100], and Ca?* overload in mitochondria induces mitochondrial swelling, through the
pro-apoptotic pathway that leads to the perturbation or rupture of the outer membrane, and result
in the release of mitochondrial apoptotic factors into the cytosol [18]. A crucial link between Ca®*
and apoptosis was established by studying the Bcl-2 family and its mechanisms of action. Bcl-2 is
thought to be a central regulator of apoptosis, which can block or delay cell death in various cells,
from hematopoietic cells to neural cells [101]. Overexpression of Bcl-2 can prevent the reduction
of Ca?* concentration in the ER, and it is also believed to reduce the amount of CaZ* released from
the ER [102]. It has been suggested that the kinase family plays a crucial role in the Ca?*-mediated
apoptotic signaling, and that phospholipid-dependent serine/threonine kinases are regulated by some
intracellular factors, such as diacylglycerol (DAG) and Ca?* [103,104]. Ca*-dependent phosphatases
play a vital role in the regulation of the Ca?*-dependent serine-threonine phosphatase calcineurin
through Bcl-2 blocking [105]. Recently, it was determined that Bcl-2 ovarian killer (Bok), Bax and
Bak homolog, promotes apoptosis in response to the ER stress [106]. However, the role of Bok in ER
stress-induced apoptosis remains questionable due to the insufficient experimental data [107,108].

3.4. Role of Apoptosis in Health and Disease

Apoptosis, compared with necrosis, is better for maintaining hemostasis. Apoptosis is one of the
key mechanisms during the embryonic development of organs and tissue structures, and during cell
proliferation and differentiation. Loss of the control of cell death (excess apoptosis) results in a wide
range of diseases, including cancer, neurodegenerative diseases, hematologic diseases, liver diseases,
and general tissue damage [109].

Cancer is usually characterized by too little apoptosis, by the dysfunction of the normal
mechanisms cell cycle regulation, and with either an uncontrolled cell proliferation, and/or reduced
removal of tumor cells [110]. Usually, cancer cells have a number of mutations, allowing them to avoid
normal growth signals and greatly increase their proliferative potential [111]. Hypoxic conditions
can induce cell death through the activity of N-terminal a-helix domain of CHOP in solid tumors,
while p300 is involved in the regulation of CHOP ubiquitination [112]. In leukemia, the overexpression
of Na*/H* exchanger 1 (NHE1) can trigger ER stress-induced and CHOP-mediated upregulation of
DR5 receptor expression [113]. CHOP upregulation is involved in the ER stress-induced apoptosis of
B-chronic lymphocytic leukemia cells as well [114].

Neurodegenerative diseases, especially Parkinson’s disease or AD, are thought to be caused
mostly by cell death and the progressive loss of neurons. Many mutations of the key functional
proteins are related to the upregulation of CHOP. Increased (3-amyloid production and accumulation
lead to the propagation of AD, and CHOP expression can induced by increased 3-amyloid levels.
It was demonstrated that the treatment of neuronal cells with CHOP antisense RNA can lead to their
improved survival [115].

The control of cell proliferation and apoptosis is required for the development of maternal blood
vessels, which enables the establishment and maintenance of a successful pregnancy [91]. Additionally,
it is believed that the apoptosis is involved in the development and progression of many autoimmune
diseases. For example, the dysregulation of T-lymphocyte apoptosis can result in autoreactive T-cell
entering into circulation and the onset of autoimmune disease [92].

3.5. ER Stress-Mediated Apoptosis: The Role of Ca>*

3.5.1. Ca®* Signaling Cascade

Ca®* plays a key role in many cellular processes. Cellular homeostasis is regulated by Ca?*-binding
enzymes and proteins, cytosolic Ca?* buffers, associated with the plasma membrane and various
cellular components, such as cytoplasm, nucleus, mitochondria, and cellular reticular network (i.e., ER),
which maintain the physiological levels of free and bound Ca?* in cells [116]. It has been well established
that multiple apoptotic signaling cascades are mediated in a Ca**-dependent manner [97,117].
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Protein kinase C (PKC), a family of phospholipid-dependent serine/threonine kinases, is regulated
by various intracellular factors, including diacylglycerol (DAG) and Ca®* [103]. It was demonstrated
previously that PKC blocks Ca®*-triggered apoptosis in human acute lymphoblastic leukemia (ALL)
cells [118].

Calcineurin, Ca?*/calmodulin-dependent protein phosphatase, was implicated in the apoptotic
signaling pathway [105]. It plays a key role in the regulation of the upstream events in Ca®*-activated
apoptosis by inhibiting Bcl-2 [105]. Additionally, it was demonstrated that protein-folding
dysfunction and chronic mitochondrial Ca?* overload induced by Ca?* depletion in the ER lead
to induce apoptosis through Bcl-2 dependent mechanisms [119]. Recently, it was reported that
Ca?* /calmodulin-dependent protein kinase IT (CaMKII) is involved in ER stress and mitochondrial
apoptosis pathway activation in the fetal alcohol syndrome (Fas) [120,121]. CaMKII/ASK1 signaling
pathway is important for JNK activation and apoptosis induced by several types of stimuli [122].
Ca?* mediates hyperglycemia-induced apoptosis of the in retinal capillary endothelial cells (RECs)
through CaMKII-JNK-Fas pathway [123].

IP3R-mediated Ca®* release affects many signaling pathways, including the regulation of
apoptosis [124]. For example, breast and ovarian cancer susceptibility gene 1 (BRCA1) stimulates
apoptosis through physical and functional interaction with IP3R [125]. Previously, it was shown that
IP3Rs regulate intracellular Ca?* concentration during apoptosis induced by death receptor ligation
and cellular damage via the activation of cytochrome c [126-128]. Functional interaction between Bcl-2
and IP3R was implicated in the suppression of IP3R activation, which regulates IP3-induced Ca?*
release from the ER [129]. Recently, it was established that the overexpression of multiple inositol
polyphosphate phosphatase 1 (Minpp1) can promote ER stress-induced apoptosis [130].

Ryanodine receptors (RyRs) are a family of Ca®* release channels found on intracellular Ca®*
storage/release organelles (i.e., ER), and sarcolemmal Ca?* influx or depolarization represent the
signals that activate these channels [131]. Some studies have shown that the depletion of intracellular
Ca?* stores through the activation of RyRs can induce apoptosis [132,133], because it leads to
cytosolic Ca?* overload, mitochondrial dysfunction, ER stress, and the subsequent cell death through
a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated excitotoxicity in
oligodendrocytes [134].

Calnexin is involved in ER stress-induced apoptosis in the fission yeast [135]. It was previously
established that calnexin knockout leads to early postnatal mouse death, and is lethal in the fission
yeast as well [136]. Recently, it was reported that the regulation of calnexin subcellular localization
modulates ER stress-induced apoptosis in MCF7 cells [137].

Calsequestrin is a major Ca*-binding protein, which plays a role in Ca?* homeostasis that extends
well beyond its ability to buffer Ca?* ions [137]. The overexpression of cardiac calsequestrin was
reported to lead to cardiomyopathy [138].

3.5.2. Ca?*-Activated Proteases: Caspases and Calpain

Caspase signaling cascade plays a crucial role in ER stress-induced apoptosis [139]. Apoptosis
is mediated by proteases called caspases, which are activated in response to extracellular signals or
upon intracellular stresses [140]. Different components of Ca®* signaling pathway, cleaved by caspases,
can lead to the activation of various cellular processes.

The destabilization of the N-terminal amino-acid residues (or N-degron) of protein substrates
was described as the N-end rule, demonstrating that the regulation of the invivo half-life of
a protein is related to the identity of its N-terminal residue [141,142]. Recently, Arg/N-end rule
pathway was shown to be a mechanistically specific repressor of programmed cell death [143].
The degradation of proapoptotic substrates (Asp-BRCA1, Leu-LIMK1, Tyr-NEDD9, Arg-Bid,
Asp-Bcl-XL, Arg-BIMEL, Asp-EPHA4, Tyr-MET, Cys-TRAF1, and Cys-RIPK1) in the Arg/N-end
rule pathway was demonstrated, together with the suppression of this pathway by the activated
caspases [142,143]. The activation of apoptosis leads to the cleavage of Lyn tyrosine kinase by
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caspases, generating the N-terminal truncated LynAN, which was shown to exert negative feedback
on imatinib-induced apoptosis in chronic myelogenous leukemia (CML) K562 cells [144].

ER stress can activate caspase-12 through ER-specific apoptosis pathway in caspase-12-deficient
mice [92]. In humans, caspase-4 is involved in ER stress-induced apoptosis pathway as an alternative
to murine caspase-12 and both are cleaved specifically under ER stress conditions [92,145,146].
The downstream activation of caspase-12 leads to ER stress-induced apoptosis through the apoptosis
protease-activating factor 1 (Apaf-1)/caspase-3 signaling pathway [147]. IP3R-1 was shown to act as
a caspase-3 substrate and that IP3-induced Ca?* release can be inhibited by caspase-3 dependent IP3R-1
cleavage [148,149]. Ca?* release can act as a potentiation loop of apoptosis, representing a negative
feedback mechanism [148,150]. Additionally, it was reported that in AD, Ca?*-permeable AMPA-type
glutamate receptors are involved in caspase-mediated neuronal apoptosis [151]. The inactivation of
AMPA receptors helps avoid Ca?* overload and excitotoxic apoptosis in neurons [56,152].

Calpain is a Ca®*-dependent cysteine protease involved in the control of cell cycle [153], and it was
shown that an increase in free cytosolic Ca?* concentration triggers the activation of calpain-mediated
neuronal apoptosis, leading to a spinal cord injury in rats [154]. Calpain activation due to cytosolic
Ca2* overload is thought to be responsible for the initiation of neuronal death [155]. Ca?*-activated
calpain has been implicated in cell death in cultured neonatal rat cardiomyocytes and ischemic
hearts as well [156]. Additionally, the activated calpain cleaves key elements of the apoptotic
machinery, especially the members of the Bcl-2 family (Bcl-XL or Bid), caspase-12, and X-linked
inhibitor of apoptosis (XIAP) [157-159]. Furthermore, nuclear calpain activates Ca**-dependent
signaling through the proteolysis of nuclear CaMKIV during the sustained Ca?* influx in cultured
neurons [160]. Exercise-induced protection against myocardial apoptosis and necrosis was shown
to occur through the attenuation of calpain-mediated degradation of myocardial Ca?*-handling
proteins [161]. Activated calpain can induce the activation of caspase-independent apoptotic pathway
in adult injured motor neurons and during enterovirus 71 (EV71)-induced apoptosis of human
epithelial HeLa cells [162]. Dysregulation of Ca?* leads to calpain (or caspase-7)-dependent activation
of caspase-12 and subsequent apoptosis [163,164]. It was reported that Ca?* associated apoptosis
is regulated by ER through caspase-dependent (cytochrome c/Apafl/caspase-9) or independent
(apoptosis inducing factor, AIF) mechanisms [164-166]. ER Ca?* homeostatic alterations lead to the
induction of ER stress and ER-mediated apoptosis through the activation of caspase-12 [167]. It was
demonstrated that the calpain-generated C-terminal fragments of mammalian proteins represent the
substrates of the Arg/N-end rule pathway involved in apoptosis [142,143]. Calpain activation as
a result of the Ca?* increase probably plays a major role in CYP2E1-dependent toxicity in human liver
cancer cell line, HEPG2 [168]. In the retina degeneration model, Ca?* influx leads to the activation of
calpain, which results in caspase-3-mediated apoptosis [169].

4. Action Potential

4.1. Action Potential

The difference in electric potential between the exterior and the interior of a cell is called membrane
potential, and, typically, its values range from —40 mV to —80 mV [170]. Action potential represents
a reversal of the electric polarization (lasting for about one-thousandth of a second) of the membrane
of a neuron or muscle cell (Figure 3) [171]. In neurons, signals are transmitted along the axons through
the propagation of action potential, and in the muscle cell, action potential propagation leads to the
muscle contractions, required for all movement [172]. All types of cells, especially neurons and muscle
cells, maintain an electrochemical gradient across their membranes so that the cellular interior is
negatively charged relative to the outside of cell when the membrane is at rest, which is known as the
resting potential [171]. At resting condition, K* concentration is higher inside and Na* concentration
is higher outside the cell [173]. If the cell membrane is punctured, K* ions can diffuse out of the cell,
while Na* concentration increases inside the cell, until they reach the equilibrium of their intracellular
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and extracellular concentrations [173,174]. Na*/K* pumps (or ATPases) are involved in the regulation
of both Na* and K* concentration gradients across the plasma membrane [175]. Sodium channels are
generally closed, but some Na*/K*-ATPases are open at the resting state. Therefore, K* ions can exit
the cell against the concentration gradient due to their positive charge, which maintains the resting
membrane potential around —70-80 mV [176]. The whole system is roughly balanced because the
negativity inside tends to resist further efflux of K* ions. However, there is a very slight leakage of

Na* into the cells [175,177].

A Action Potential

B Action Potential
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Figure 3. Ionic basis of action potential. (A) A typical action potential. The membrane potential begins
at —70 mV. When a stimulus is applied after 1 ms, the membrane potential raises above —40 mV
(threshold potential). If a prolonged stimulation is applied, the membrane potential rapidly rises to
the peak potential (+60 mV) at time = 2 ms. Afterward, the potential rapidly drops and overshoots
to —90 mV at time = 4 ms, and finally the resting potential of —70 mV is reestablished at time = 5 ms;
(B) the role of Ca?* during an action potential. Depolarization occurs due to the influx of Na* ions,
which causes voltage-gated Ca?* channels to open. This results in the change of membrane potential
first from —70 mV to —40 mV (threshold level), and then to +60 mV. When the membrane potential
reaches +60 mV, Ca?* channels close and voltage-gated K* channels open. The efflux of K* results in
the repolarization of cell membrane to —70 mV and then to —90 mV (hyperpolarization).

4.2. Ionic Basis of Action Potentials

The generation and propagation of the action potential is based on the influx of ions (Na™,
Ca2*,and Cl") through the ion channels, which leads to membrane depolarization (Figure 3) [178].
Inactivation of the Na* channels reduces Na* influx, which stops the depolarization, while K* efflux is
increased, which allows rapid action potential repolarization [97]. The increased K* efflux is regulated
by the activity of both voltage-dependent and voltage-independent K* channels. The recovery of

Na* channels from inactivation and the slow closing of K* channels following the action potential
determine the membrane refractory period [179].

4.3. Action Potential and Ca**

Ca?* plays an important role in the propagation of action potential. Long-lasting Ca?* channels
open when the threshold (—40 mV) is reached, initiating the propagation of action potential [180,181].

Neurons contain a number of Na* channels that can open and close [172]. When opened,
Na* influx leads to a change in the membrane potential, which further stimulates the opening of
voltage-gated Ca®* channels. Ca?* influx leads to membrane depolarization, reaching the threshold
where Ca?*channels close and voltage-gated K* channels open, allowing the efflux of K* that results
in membrane repolarization [180]. When the membrane potential returns to approximately —60 mV,
K* channels close and Na* channels open, and the action potential can be initiated again (Figure 3) [24].
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5. ER Stress-Induced Apoptosis: Action Potential and Ca®* as a Key Player

5.1. Physiological Role of Ca’* Channel during the Initiation of Action Potential

In the resting conditions, free cytosolic Ca?* levels are lower than the extracellular levels [182,183].
Upon the initiation of the action potential, Ca?* levels rise through the influx of extracellular Ca?* or
Ca?* release from intracellular stores (e.g., ER) (Figure 4) [184]. In response to the action potential
initiation, CaZ* channels are activated, which leads to Ca2* influx into the cytosol and subthreshold
depolarizing signals [185]. Both Ca?* influx and Ca?* release from the ER have been proposed to be
apoptogenic [14].

Ca?* can enter into the cell via voltage-gated Ca?* channels (VGCCs) and several ligand-gated
calcium channels (LGCCs), such as glutamate and acetylcholine receptors [15,186]. VGCCs are
key transducers of membrane potential changes that can initiate many physiological events [185],
for example, the rise in intracellular Ca?* levels that is mediated by AMPA subtype of glutamate
receptors, which is involved in the pathogenesis of motor neuron disease [187]. Furthermore,
it was reported that the exposure of cells to glutamate receptor agonists, such as glutamate,
N-methyl-D-aspartic acid (NMDA), and AMPA, leads to an increase in both intracellular and
mitochondrial Ca?* levels, causing mitochondrial depolarization and cytotoxicity in motor neurons
and other spinal neurons [188,189]. IP3Rs and RyRs play critical roles in Ca?*-mediated signaling,
including the activation of T-cell, excitation-contraction coupling, and apoptosis [190]. Recently,
translocon, the ER protein import complex, or IP3Rs were suggested to contribute to the Ca?* efflux
from the ER [191].

Action Potential

Ca?* gt
Outside o VGCCpm ¢ ,,,,7_”7/

Cytosol

|
CHOP

Figure 4. Action potential propagation induces ER stress-mediated apoptosis. During the action
potential, extracellular Ca®* enters into the cell through voltage-gated Ca?* channels (VGCCs) and
several ligand-gated calcium channels (LGCCs), while ER Ca?* is released into the cytosol through
IP3Rs or ryanodine receptors (RyRs). An increased level of intracellular Ca?* leads to the membrane
depolarization and the subsequent activation of ER stress response. Conformational changes of Bak and
Bax in the ER membrane permit Ca?* efflux, which activates m-calpain in the cytosol and subsequently
cleaves and activates ER-resident procaspase-12, leading to the activation of the caspase cascade. Ca®* is
taken by mitochondria, leading to the depolarization of the inner membrane, the release of cytochrome
¢, and subsequent activation of Apaf-1/procaspase-9-regulated apoptosis. PERK and ATF6 can trigger
pro-apoptotic signaling through the activation of downstream transcriptional target CHOP that inhibits
the expression of Bel-2 and thus promotes apoptosis. Activated IRE1 recruits TRAF2, which leads to
the activation of ASK1/JNK and procaspase-12, subsequently activating caspase cascade.
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5.2. Action Potential and Ca®* in the ER Stress-Mediated Apoptosis

VGCCs are normally closed under physiological conditions or at resting membrane potential,
and they are activated upon membrane depolarization [192]. Depending on cell type, the activated
VGCCs allow CaZ* influx into the cell, lead to the activation of Ca2+-dependent K* channels,
which results in contraction of muscles, neuronal excitation, upregulation of protein expression,
or hormone or neurotransmitter release [193,194]. During the action potential, Ca?* is released
from the ER into the cytosol, increasing the levels of cytosolic Ca** (depolarization), which may
lead to the activation of the ER stress response (Figure 4) [69,195]. The depletion of ER Ca®*
results in protein misfolding and chronic mitochondrial Ca?* overload, which can induce apoptosis
through Bcl-2-dependent mechanisms [119]. ER stress induces the localization and oligomerization
of pro-apoptotic Bcl-2 proteins, Bax and Bak, at the ER, which further promotes Ca?* release from
the ER into the cytosol [196], through IP3Rs and RyRs [197-199] that are involved in the apoptotic
signal transduction pathway [133,200-202]. The increased cytosolic Ca?* concentration leads to the
activation of Ca?*-dependent cysteine protease m-calpain, which is involved in many intracellular
processes, such as signal transduction, cell cycle progression, differentiation, and apoptosis [203,204].
M-calpain was reported to cleave and activate the ER-resident procaspase-12 (Figure 4) [11,157], which
contributes to the ER stress-induced cell death pathway in differentiated PC12 cells [205]. Activated
caspase-12 also cleaves and activates procaspase-9 and consequently leads to the activation of caspase-3
apoptotic cascade [206].

Increased cytosolic Ca?* concentrations induce Ca?* uptake into the mitochondrial matrix,
leading to the depolarization of the inner mitochondrial membrane and alteration of the outer
membrane permeability [7]. This induces cytochrome c release and Apaf-1-dependent activation
of the apoptosome, a mutisubunit protein complex that serves as a platform for caspase activation,
leading to apoptosis [207]. Now, it is generally accepted that CHOP represents a major player in
the regulation of the ER stress-induced apoptosis [208]. CHOP is a basic leucine zipper-containing
transcription factor that suppresses the expression of Bcl-2 and activates the transcription of several
genes with pro-apoptotic functions, thereby promoting the apoptosis [209,210]. The association
of IRE1/TRAF2 and ER stress may help the release of procaspase-12 from TRAF2, leading to its
activation [211,212]. The activated caspase-12 can directly cleave and activate caspase-9, which further
induces the activation of caspase-3, resulting in apoptosis [213].

6. Conclusions

The ER is a dynamic organelle that plays important roles in the coordination of signaling pathways
through the regulation of intracellular Ca?* levels, which ensures normal cell physiological functions.
Ca?* molecules are stored in the ER lumen, and Ca?* is involved in the regulation of various
molecular chaperones, such as calcineurin, calnexin, and calreticulin, and apoptotic proteases, such as
caspases and calpain, which help ERQC system determine cellular sensitivity to ER stress and
apoptosis. Moreover, the ERQC system facilitates proper folding, transportation, and modification of
secretory and membrane proteins, and eliminates terminally misfolded polypeptides through ERAD.
ER stress-induced apoptosis was shown to present a key factor contributing to the development
of several disorders, especially neurodegenerative diseases, autoimmune diseases, and cancer.
An understanding of the crucial roles of Ca?* and action potential in the ER stress-mediated apoptosis,
and the underlying mechanisms and processes, may lead to the development of new approaches for
the treatment of various diseases that occur as a consequence of ER stress and defective protein folding.
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