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Abstract: Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb).
Due to the extensive use of anti-tuberculosis drugs and the development of mutations, the emergence
and spread of multidrug-resistant tuberculosis is recognized as one of the most dangerous threats to
global tuberculosis control. Some single mutations have been identified to be significantly linked
with drug resistance. However, the prior research did not take gene-gene interactions into account,
and the emergence of transmissible drug resistance is connected with multiple genetic mutations. In
this study we use the bioinformatics software GBOOST (The Hong Kong University, Clear Water Bay,
Kowloon, Hong Kong, China) to calculate the interactions of Single Nucleotide Polymorphism (SNP)
pairs and identify gene pairs associated with drug resistance. A large part of the non-synonymous
mutations in the drug target genes that were included in the screened gene pairs were confirmed
by previous reports, which lent sound solid credits to the effectiveness of our method. Notably,
most of the identified gene pairs containing drug targets also comprise Pro-Pro-Glu (PPE) family
proteins, suggesting that PPE family proteins play important roles in the drug resistance of Mtb.
Therefore, this study provides deeper insights into the mechanisms underlying anti-tuberculosis
drug resistance, and the present method is useful for exploring the drug resistance mechanisms for
other microorganisms.
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1. Introduction

Tuberculosis (TB) is one of most dangerous chronic infectious diseases and it is caused by
Mycobacterium tuberculosis (Mtb) infection. Mtb is typically transmitted by aerosols and reaches the
lungs, where macrophages and other immune cells are recruited during the early innate response to
infection [1,2]. TB has become a significant threat to public health. The World Health Organization
(WHO) Global Tuberculosis Report indicated that in 2014, approximate 9.6 million people were carriers
of Mtb, and 1.5 million people died of TB [3]. In the early 20th century, with the development of
effective antibiotics and vaccines, the deaths caused by Mtb were controlled. However, TB became
an ongoing threat to global health in the late 20th century, and the current epidemic is fueled by
Human Immunodeficiency Virus (HIV) coinfection and an increasing incidence of drug-resistant
strains of Mtb [4]. The extensive treatment courses result in poor compliance and drug resistance, and
the emergence of multidrug-resistant strains has become a serious public health threat and represents
a new challenge in TB control.
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The first TB therapy, streptomycin (STR), was discovered and used to combat TB in 1944 [5].
Soon afterwards, many more anti-TB agents were developed. Drugs employed in TB treatment are
classified into five groups, as shown in Table 1 [6]. Group 1 represents the first-line oral agents,
which include isoniazid (INH), rifampicin (RMP), ethambutol (EMB), pyrazinamide and rifabutin.
Group 2 includes the injectable agents, which comprise aminoglycoside antibiotics (kanamycin (KAN);
amikacin; STR) and peptide drugs (capreomycin (CPM)). Group 2 drugs can be used together with
group 3 fluoroquinolone drugs, which include ofloxacin, levofloxacin, moxifloxacin and gatifloxacin.
Group 4 drugs include the oral bacteriostatic second-line agents: p-aminosalicylic acid, cycloserine,
terizidone, ethionamide (ETH) and prothionamide. Group 5 comprises agents with unclear efficacy
and primarily includes clofazimine, linezolid and amoxicillin. The group 5 drugs can be used only
when none of other groups of drugs can be used for TB treatment [7].

Table 1. Anti-tuberculosis drug classification, with inclusion of new compounds under evaluation a.

Group Drug

Group 1: First-line oral agents isoniazid; rifampicin; ethambutol; pyrazinamide

Group 2: Injectable agents kanamycin; amikacin; capreomycin; streptomycin

Group 3: Fluoroquinolones ofloxacin; levofloxacin; moxifloxacin; gatifloxacin

Group 4: Oral bacteriostatic
second-line agents

p-aminosalicylic acid; cycloserine; terizidone;
ethionamide; protionamide

Group 5: Agents with
unclear efficacy

clofazimine; linezolid; amoxicillin;
imipenem; clarithromycin; thioacetazone

a According to Reference [6].

In general, the mechanism of anti-TB drugs can be divided into four types: (i) inhibition of
RNA synthesis; (ii) inhibition of protein synthesis; (iii) inhibition of cell wall biosynthesis; and
(iv) interference with the synthesis of cell membranes [8]. INH is a widely used first-line drug to
treat TB and is a prodrug susceptible to oxidative reactions catalyzed by catalase-peroxidase (KatG).
The formed activated isonicotinoyl-NAD adduct binds to InhA (enoyl-acyl carrier protein reductase)
and inhibits the biosynthesis of mycolic acids, which are components of the mycobacterial cell wall,
to induce cell lysis [9]. RMP is another first-line drug for the treatment of TB. RMP interferes with
DNA-dependent RNA synthesis by inhibiting bacterial DNA-dependent RNA polymerase [8]. EMB is
one of the first-line drugs used in treating TB, and the mechanism of EMB is the inhibition of the transfer
of arabinogalactan [10]. The second-line anti-TB injectable drugs, which include STR, KAN and CPM,
are aminoglycosides. These drugs exhibit similar mechanisms of antibacterial and metabolic activity
by blocking the initiation of protein synthesis [11]. Ofloxacin (OFX) belongs to the fluoroquinolone
class of drugs that inhibit DNA gyrase (topoisomerase II) and topoisomerase IV, resulting in microbial
death [10]. ETH is an oral bacteriostatic second-line agent and is a structural analog of INH. The two
drugs exhibit a similar mechanism of action by inhibiting mycolic acid biosynthesis [12].

Due to the extensive use and long-term treatment with the first-line and second-line anti-TB drugs,
strains of Mtb resistant to anti-TB agents have emerged and increased rapidly. The general anti-TB drug
resistance-associated genetic regions are summarized and presented in Table 2 [13]. Drug resistance
patterns may vary widely from single-drug to multiple-drug resistance, and most transmissible drug
resistance is associated with multiple genetic mutations. Therefore, it is critical to seek out and clarify
the resistance mechanism of anti-TB agents and to develop a rapid and comprehensive approach to
tackle the current ominous situation [14].

Recently, many research groups have conducted whole genome sequencing on Mtb strains
with a range of resistance profiles and have identified some new mutations in genes that are
significantly linked with Mtb drug resistance [15,16]. However, the conventional method does not
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take gene-gene interactions into account. Accumulating evidence reveals that the emergence of
transmissible drug-resistant Mtb is the result of a multitude of additional genetic mutations, many of
which interact [17]. Therefore, in this paper we performed a bioinformatics analysis to identify gene
pairs associated with Mtb drug resistance.

Table 2. Anti-tuberculosis drug resistance-associated genes a.

Drug Genes Involved in Resistance

Capreomycin (CPM) rrs, tlyA
Ethambutol (EMB) embA, embB, embC
Ethionamide (ETH) inhA, katG

Isoniazid (INH) katG, inhA, ahpC, fabG, fadE24
Kanamycin (KAN) rpsL rrs

Ofloxacin (OFX) gyrA, gyrB
Rifampicin (RMP) rpoA, rpoB, rpoC

Streptomycin (STR) gidB, rpsL rrs
a According to reference [13].

2. Results and Discussion

All of the interactions of Single Nucleotide Polymorphism (SNP) pairs obtained by GBOOST
and the screened corresponding gene pairs from the two datasets are predicted (Tables S1 and S2).
Because the mutations of target genes are of most significance in Mtb drug resistance [18], we primarily
focused on the gene pairs that contained at least one target gene. The drug target information is from
the DrugBank database and is listed in Table S3. In dataset 1, katG-PPE54, rpoB-PPE54 gene pairs
associated with INH resistance and RMP resistance were identified, respectively (Table 3). In dataset 2,
embA-PPE68, embB-PPE54 gene pairs associated with EMB resistance were detected, and katG-PPE54,
katG-transcriptional regulator, katG-ccsA, katG-fdxB and katG-oxidoreductase gene pairs associated with
ETH-resistance were discovered (Table 4).

Table 3. The obtained gene pairs containing target genes in dataset 1.

Gene ID
(Target Name)

Gene ID
(Gene Name) SNP1 SNP2 Chi-Square

Test
Permutation

Test

Rv1908c (katG) a Rv3343c (PPE54) a rs_5245 rs_8894 1.69 × 10−3 <0.0001
Rv0667 (rpoB) b Rv3343c (PPE54) b rs_2019 rs_8894 1.28 × 10−4 <0.0001

a associated with isoniazid resistance; b associated with rifampicin resistance.

Table 4. The obtained gene pairs containing target genes in dataset 2.

Gene ID
(Target Name) Gene ID (Gene Name) SNP1 SNP2 Chi-Square

Test
Permutation

Test

Rv3794 (embA) a Rv3873 (PPE68) a rss_17400 rss_17926 1.98 × 10−3 0.0016
Rv3795 (embB) a Rv3343c (PPE54) a rss_17410 rss_15182 2.29 × 10−3 <0.0001
Rv3795 (embB) a Rv3343c (PPE54) a rss_17411 rss_15181 8.55 × 10−4 0.0004
Rv3795 (embB) a Rv3343c (PPE54) a rss_17411 rss_15182 2.19 × 10−3 <0.0001
Rv1908c (katG) b Rv3343c (PPE54) b rss_8886 rss_15184 2.16 × 10−3 0.0023
Rv1908c (katG) b Rv0576 (transcriptional regulator) b rss_8886 rss_3040 1.86 × 10−3 <0.0001
Rv1908c (katG) b Rv0529 (ccsA) b rss_8886 rss_2852 1.78 × 10−3 0.0038
Rv1908c (katG) b Rv3554 (fdxB) b rss_8886 rss_16297 1.20 × 10−3 0.0009
Rv1908c (katG) b Rv0575c (oxidoreductase) b rss_8900 rss_3037 1.80 × 10−3 0.0009

a associated with ethambutol resistance; b associated with ethionamide resistance.
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To validate the effectiveness of the screening procedure, we sorted out all of the non-synonymous
mutations in the drug targets. Overall, five non-synonymous mutations were found in drug targets;
three mutations have experimental or theoretical evidence, and the other two are new discoveries
(Table 5). One non-synonymous mutation R463L in the katG target gene associated with INH resistance
was screened out in dataset 1 (Table 5). The R463L SNP site of katG was predicted to generate
resistance for INH, which had been verified by previous experiments [19]. ETH resistance-associated
mutations Y155C and R463L of the katG target gene were sorted from gene pairs of dataset 2, as
shown in Table 5. The Y155C mutation was consistent with the results of Zhang et al. [16]. The R463L
mutation was consistent with the results of INH resistance-associated mutations in dataset 1. ETH
is a structural analog of INH (Figure 1). The structural similarity and the existence of cross-resistant
phenotypes have suggested that these two drugs share common molecular targets, i.e., inhA and
katG [20]. Therefore, we believe that the R463L mutation would lead to the Mtb resistance to ETH.
Two EMB resistance-associated mutations, N399T and G406S, of the embB target gene were selected.
The G406S mutation was consistent with the results of Zhang et al. and was verified by previous
experiments [21]. Comparison with the results of Zhang et al. indicated that the N399T mutation was
a new site identified by our method, possibly because the previous study did not consider the joint
mutation of gene pairs, and the new mutation site is worth experimental verification.
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Figure 1. The structures of isoniazid and ethionamide.

Table 5. The non-synonymous mutations in the target genes from the two datasets.

Drug SNP SNP Loci Gene ID Target Base
Mutation

Amino Acid
Mutation

Previously
Reported

INH a rs_5245 2154724 Rv1908c KatG CGG > CTG R463L [19]
EMB b rss_17410 4247709 Rv3795 embB AAC > ACC N399T –
EMB b rss_17411 4247729 Rv3795 embB GGC > AGC G406S [16,21]
ETH c rss_8886 2154724 Rv1908c KatG CGG > CTG R463L –
ETH c rss_8900 2155648 Rv1908c KatG TAC > TGC Y155C [16]

a isoniazid; b ethambutol; c ethionamide.

Interestingly, according to the research report of Phelan et al., there is a strong association between
the (shorter) distance of the mutation to the ligand in the protein structure and INH resistance (greater
minimum inhibitory concentrations (MIC) values), and the distance between the mutation location
and drug binding site was not greater than 9.93 Å [15]. The R463L mutation was not reported in
their results. The crystal structure of the KatG protein has been reported (PDB code: 2CCA) [22], and
structural analysis revealed that the mutation of R463L is located far from the drug binding site (the
distance was approximately 58.172 Å, much greater than 9.93 Å), as shown in Figure 2. This result also
lends credit to the present method, which can identify the resistance mutations that far from the drug
binding site.
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As shown in Tables 3 and 4, more than 60% of the gene pairs contain one drug target and one
PPE family protein (i.e., PPE68 and PPE54). PPE family proteins are unique to mycobacteria and are
particularly abundant in pathogenic mycobacteria but are absent from the vaccine strains of Bacille
Calmette-Guérin (BCG) [23]. Members of the PPE families are characterized by the presence of a
conserved Pro-Pro-Glu (PPE) motif in their N-terminal region [24]. The literatures reported that most
of the PPE proteins are located on the cell surface, and PPE proteins have been found to play important
roles in generating antigenic variation and immune evasion [25–27]. The mutation of PPE protein
results in failure to activate the body’s immune response [23]. PPE68 is a member of the PPE protein
family and is a membrane protein expressed on the surface of Mtb [28,29]. PPE68 is primarily present
in the cell wall of Mtb and is an immunogenic protein. Experiments confirmed that PPE68 cell surface
proteins can induce a specific cellular immune response in mice [30]. Therefore, we infer that the
changes in the protein structure caused by mutations would lead to the loss of function of PPE68.
However, the biological functions for PPE54 remain elusive. Given that drug effects are associated with
immunity and the fact that most of the gene pairs included one drug target and PPE family proteins,
the present results suggest that PPE proteins play an important role in Mtb drug resistance, which is of
apparent interest for future explorations.

In addition, katG-transcriptional regulator, katG-ccsA, katG-fdxB and katG-oxidoreductase gene pairs
associated with drug resistance were also predicted. Limited by the existing information, the hidden
mechanisms of these genes underlying drug resistance are unclear.

3. Materials and Methods

3.1. Data Source and SNP Calling

In this study, two sets of data were analyzed. The first set of data contained 127 samples of Mtb,
which included 34 EMB-, 65 INH-, 53 RMP- and 45 STR-resistant strains. A total of 38 pan-susceptible
strains of Mtb were involved in this dataset. All sequencing data of the first set were downloaded
from TDR TB Strain Bank (ENA accession number: PRJEB11653) [15]. All the data of the first set were
divided into four groups according to the different resistant strains for the following data analysis, as
did by the previous study [15]. The second set of data contained 161 samples of Mtb, and all sequencing
data were downloaded from the NCBI Sequence Read Archive (SRA) (SRA065095), which included
22 CPM-, 69 EMB-, 36 ETH-, 117 INH-, 21 KAN-, 54 OFX-, 117 RMP- and 83 STR-resistant strains [16].
And a total of 44 pan-susceptible strains of Mtb were involved in this set. Similarly, all the data of the
second set were divided into eight groups according to the type of resistant strains for the following
data analysis, as did by the prior research [16].
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All of the downloaded sequencing data were treated with Trimmomatic v0.32 software [31]
to remove or truncate reads of low quality (parameter: LEADING: 3; TRAILING: 3; MINLEN: 36;
SLIDINGWINDOW: 4:20). High quality reads were then mapped to the Mtb H37Rv reference genome
(GenBank accession: AL123456.3) using the Bowtie2 v2.2.6 [32] with default parameters. Sequencing
filtering and SNP calling were performed by SAMtools v1.2 [33] and VarScan v2.4 [34] (parameters:
min-coverage = 10; min-freq-for-hom = 0.95; min-avg-qual = 20), and SNPs with a minor allele frequency
(MAF) <0.01 [35] were presumed to be sequencing errors and were discarded. Finally, we used PLINK
v1.07 software [36] to filter phylogenetically related SNPs that are likely to influence the gene pair
identification (parameter: indep-pairwise = 10, 5, 0.5) [37]. This procedure can exclude the gene pairs
that could simply result from the strains genotype.

3.2. SNP Pair and Gene Pair Calculations

Gene-gene interactions have long been recognized to be fundamentally important in
understanding the genetic causes of complex disease trait. GBOOST is a software package identifying
gene-gene interactions in genome-wide case-control studies [38]. In this study, we used GBOOST
software (parameters: wm = GPU; st = 12.838; tt = 12.838) to detect SNP-SNP interactions on risk of
drug resistance. GBOOST adopts a chi-square test method to examine the interaction effect between
two SNPs and phenotypes. We set the threshold to p < 0.005 (χ2 > 12.838).

Taking into account that the mutation in a target gene is a key factor for drug resistance, the SNP
pairs obtained by GBOOST were assigned to the corresponding genes. Subsequently the gene pairs
that contained at least one target gene were screened for further analysis. We also used permutation
tests to reduce the risk of false-positives (calculating 10,000 times in total). The results of the chi-square
test can be further corrected using permutation tests (FDR < 0.005). The overall workflow of our method
is presented as Figure 3.
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4. Conclusions

The emergence and spread of resistant tuberculosis has become the most significant threat to
global TB control. Drug resistance patterns may vary widely from single-drug to multiple-drug
resistance, and the emergence of transmissible drug resistance is associated with multiple genetic
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mutations. To reveal the mechanisms of drug resistance and to develop better control strategies, we
identified gene pairs associated with Mtb drug resistance.

All of the associations of SNP pairs were screened and assigned to the corresponding genes.
Subsequently, to reveal the potential resistance mechanisms of the Mtb strains, the obtained gene
pairs were filtered by drug targets and non-synonymous mutations. The obtained non-synonymous
mutations in the drug target genes were compared with the reported experiments, and the results
validated the effectiveness of our method. Many drug resistance-associated gene pairs that contained a
target gene were identified: one for INH, one for RMP, four for EMB and five for ETH. Further gene pair
analyses revealed that the detected katG-PPE54 and rpoB-PPE54 gene pairs are associated with INH and
RMP resistance, respectively. The embA-PPE68 and embB-PPE54 gene pairs play possible roles in Mtb
resistance to EMB. The joint mutations of katG-PPE54 gene pairs would bring Mtb resistance to ETH.

In summary, this study indicated the potential of bioinformatics methods in predicting drug
resistance-associated gene pairs and clarifying the resistance mechanisms of anti-tuberculosis drugs.
Moreover, the present approach is also useful for exploring the mechanisms of drug resistance for
other microorganisms.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/9/1417/s1.
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