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Abstract: Naturally occurring resistance-associated substitutions (RASs) can negatively impact
the response to direct-acting antivirals (DAAs) agents-based therapies for hepatitis C virus (HCV)
infection. Herein, we set out to characterize the RASs in the HCV1b genome from serum samples of
DAA-naïve patients in the context of the SINERGIE (South Italian Network for Rational Guidelines
and International Epidemiology, 2014) project. We deep-sequenced the NS3/4A protease region of
the viral population using the Ion Torrent Personal Genome Machine, and patient-specific majority
rule consensus sequence summaries were constructed with a combination of freely available next
generation sequencing data analysis software. We detected NS3/4A protease major and minor
variants associated with resistance to boceprevir (V36L), telaprevir (V36L, I132V), simeprevir (V36L),
and grazoprevir (V36L, V170I). Furthermore, we sequenced part of HCV NS5B polymerase using
Sanger-sequencing and detected a natural RAS for dasabuvir (C316N). This mutation could be
important for treatment strategies in cases of previous therapy failure.
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1. Introduction

Treatment of hepatitis C virus (HCV) infection has significantly improved in the past few years
after the introduction of direct-acting antivirals (DAAs) agents [1]. While patients treated with
pegylated interferon-α (pegIFN-α) plus ribavirin (RBV) reached sustained virological response (SVR)
in only 42% of cases [2], clinical trials have demonstrated that combinations including a first-generation
DAA and pegIFN-α + RBV are effective in obtaining a SVR in up to 75% of patients infected with
HCV genotype 1 (1a and 1b subtypes) [3]. Lately, new interferon-free regimens are able to eradicate
HCV infection in more than 90% of patients after 12 weeks of treatment, irrespective of the HCV
genotype [4].

However, the targets of these DAAs are viral proteins, and due to the rapid evolution of the virus,
viral variants resistant to drugs can emerge and lead to therapy failure [5,6]. For this reason, it is
sometimes advised to consider the presence of resistance-associated substitutions (RASs) at therapy
initiation, and now importantly also at virological failure, to guide drug selection and for the rational
management of HCV infection [1,7–9].

In order to prescribe the appropriate treatment with regards to the drug type and length of
treatment, determining the correct HCV subtype is crucial [1]. Likewise, the genetic background of
different subtypes is also important for the interpretation of RASs [7]. In clinical practice, the infecting
subtype is determined by a reverse hybridization line probe assay (LiPA) that distinguishes
subtypes based on the heterogeneity in the 5′UTR and core regions, with a misclassification
rate of around 11% [10]. Indeed, it has become clear that more accurate subtyping results can be
obtained through the analysis of more diverse regions, such as the NS5B gene [11–13]. Recently,
Di Maio et al. [14] reported that HCV NS3 sequencing, followed by phylogenetic analysis, also
improves the specificity and sensitivity of subtype assignments.

The large diversity of HCV [15] complicates the bulk sequencing of viral populations with
Sanger-sequencing. Furthermore, population sequencing can only reliably detect variants that make
up around 20% of the viral population [16], which makes this a suboptimal approach for assessing the
impact of lower-frequency RASs on therapy outcome [9]. These limitations make massively parallel
sequencing methods an attractive alternative for the study of complex virus populations [17]. Indeed,
next-generation sequencing (NGS) has been successfully applied in a wide range of HCV analyses,
including characterization of virus transmission [18] and positions of mutation (hot spot) in NS3/4A
protease [19].

The vast amount of data produced by deep sequencing platforms, each with its particular
characteristics, stimulated bioinformatics developments to efficiently translate the raw sequence
data into interpretable information [20,21]. The choice of NGS platform and post-processing largely
depend on the research purpose. The short read platforms (e.g., the Illumina® sequencers) are currently
the most widely used, but the advantages of longer read lengths in reads assembly and the preservation
of mutational linkage over longer distances [22–24] ensure a place for longer read technologies, such as
the Ion Torrent platforms for virus sequencing. As a case in point, the Ion Personal Genome Machine
(PGM) Sequencer (Life Technologies, Carlsbad, CA, USA) has recently been used to detect low-level
drug resistance variants in HCV and HIV quasispecies [25–29].

Herein, we used the PGM sequencer in concert with a number of freely available analysis software
packages [30–34] to generate a baseline resistance profile for eight samples from DAA-naïve patients
chronically infected with HCV1b, targeting NS3 protease. Also, the NS5B Sanger sequences, used to
genotype/subtype virus, were screened for RASs to polymerase inhibitors.

2. Results

The Versant HCV genotype 2.0 assay classified HCV isolates from all patients as HCV subtype
1b, except for one patient whose genotype was characterized as a mixed genotype 1b/4 (Table 1).
In contrast, all samples were classified as genotype 1b by both the Oxford and COMET subtyping
tools, and by phylogenetic analysis of the NS3 (Figure 1A) and NS5B (Figure 1B) regions.
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Table 1. Patients’ characteristics.

Patient ID Gender Age LiPA
Genotyping

Liver Stiffness
(KPa) * Risk Factors # Response Previous

Therapy

HCV04 female 47 1b 6.0 Surgery and Cohabitation Partial responder
HCV06 male 68 1b 6.5 Surgery and Cohabitation Partial responder
HCV08 male 46 1b 6.0 Surgery Relapser
HCV09 male 62 1b/4 6.1 Surgery and Cohabitation Relapser
HCV17 female 69 1b 14.0 Surgery Naïve
HCV19 male 45 1b 6.9 Surgery and Tattoo Relapser
HCV20 male 51 1b 22.0 Surgery Relapser
HCV21 male 66 1b 25.0 Not Available Partial responder

* According to Castéra et al. [35], 2005, KPa ≤ 7.1 = F0−F1 (minimal fibrosis), 7.1 < KPa ≤ 9.5 = F2 (moderate
fibrosis), 9.5 < KPa ≤ 14.5 = F3 (severe fibrosis), and KPa > 14.5 = F4 (cirrhosis); # Surgery and cohabitation with
HCV-antibodies (Ab) positive individuals or tattoo are transmission risks reported by the same patient.
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Seven patients were previously treated with pegIFN-α/RBV and were classified as partial 
responders (3/7) or relapsers (4/7). The eighth patient was naïve to any prior HCV treatment. The 
median age of the patients was 55 years (interquartile range (IQR): 46.8–66.5), and six out of eight 
patients were males. Concerning transmission route, surgery was the most frequently reported risk 
factor (Table 1). 

HCV RNA levels during follow-up (scheduled according to official guidelines EASL 2015) [1] 
and adverse events for each patient are listed in Table 2. The median baseline RNA viral load was 
2,130,000 IU/mL. At week 4 of treatment, no HCV RNA was detected for 3/8 samples (HCV04, 
HCV08, HCV20 patients) while for 4 samples a viremia of <15 IU/mL was measured, and patient 
HCV21, who was treated with boceprevir (BOC), had an HCV RNA level of 11,900 IU/mL. Viremia 
was <15 IU/mL at 8 weeks in patient HCV21. All patients had undetectable RNA from week 12 to the 
end of therapy. Patients were asked to report any adverse events; three patients (HCV09, HCV17, 
HCV21) reported anemia and one patient (HCV20) reported anemia and neutropenia. The initial 
liver stiffness was tested by FibroScan® (Table 1) for its association with SVR and the occurrence of 

Figure 1. RAxML phylogenetic trees were estimated using 24 hepatitis C virus (HCV) reference
sequences (black) downloaded from Los Alamos HCV Sequence Database and 8 HCV isolates (red) in
this study for NS3 (A) and NS5B (B) regions, respectively. The reliability of the phylogenetic clustering
was evaluated using bootstrap analysis with 1000 replicates. Bootstrap support values are only shown
for the HCV1b clades (yellow area). The scale bars at the bottom of the figure represent genetic distance.

Seven patients were previously treated with pegIFN-α/RBV and were classified as partial
responders (3/7) or relapsers (4/7). The eighth patient was naïve to any prior HCV treatment.
The median age of the patients was 55 years (interquartile range (IQR): 46.8–66.5), and six out of eight
patients were males. Concerning transmission route, surgery was the most frequently reported risk
factor (Table 1).

HCV RNA levels during follow-up (scheduled according to official guidelines EASL 2015) [1]
and adverse events for each patient are listed in Table 2. The median baseline RNA viral load
was 2,130,000 IU/mL. At week 4 of treatment, no HCV RNA was detected for 3/8 samples (HCV04,
HCV08, HCV20 patients) while for 4 samples a viremia of <15 IU/mL was measured, and patient
HCV21, who was treated with boceprevir (BOC), had an HCV RNA level of 11,900 IU/mL. Viremia
was <15 IU/mL at 8 weeks in patient HCV21. All patients had undetectable RNA from week 12 to
the end of therapy. Patients were asked to report any adverse events; three patients (HCV09, HCV17,
HCV21) reported anemia and one patient (HCV20) reported anemia and neutropenia. The initial liver
stiffness was tested by FibroScan® (Table 1) for its association with SVR and the occurrence of adverse
events (Table 2). In particular, among our patients: 5/8 (HCV04, HCV06, HCV08, HCV09, HCV19)
were classified as Metavir F0−F1, 1 patient (HCV17) was classified as F3, and 2/8 (HCV20, HCV21)
were classified as F4 (Table 1).



Int. J. Mol. Sci. 2016, 17, 1416 4 of 14

Table 2. Direct-acting antiviral (DAA) therapy, HCV RNA viral load, adverse events, and
treatment response.

Patient
ID

DAA
Therapy * HCV RNA (IU/mL) Adverse

Events
SVR

12

– – Baseline 4 Weeks 12 Weeks 24 Weeks 36 Weeks 48 Weeks – –
HCV04 TVR 7,410,000 TND TND TND TND TND None Yes
HCV06 TVR 1,580,000 <15 TND TND TND TND None Yes
HCV08 TVR 2,090,000 TND TND TND TND TND None Yes
HCV09 TVR 7,930,000 <15 TND TND TND TND Anemia Yes
HCV17 TVR 2,170,000 <15 TND TND TND TND Anemia Yes
HCV19 TVR 4,290,000 <15 TND TND TND TND None Yes

HCV20 TVR 1,520,000 TND TND TND TND TND Anemia and
Neutropenia Yes

– – Baseline 4 Weeks 8 Weeks 12 Weeks 24 Weeks 36 Weeks – –
HCV21 BOC 1,030,000 11,900 <15 TND TND TND Anemia Yes

SVR = Sustained Virological Response; TND = Target Not Detected; * Patients HCV04, HCV06, HCV09, HCV17,
HCV19 and HCV20 were treated with pegylated interferon-α plus ribavirin (PegIFN-α/RBV) + telaprevir (TVR)
for 12 weeks, afterward with PegIFN-α/RBV for 36 weeks; Patient HCV08 was treated with PegIFN-α/RBV +
TVR for 12 weeks, afterward with PegIFN-α/RBV for 12 weeks; Patient HCV21 was treated with PegIFN-α/RBV
for 4 weeks, afterward with PegIFN-α/RBV + boceprevir (BOC) for 44 weeks.

We identified several nonsynonymous substitutions in the majority rule NS3 consensus sequences
(Table 3), and in minor viral populations. Substitution NS3V36L—conferring resistance to BOC and
possibly to telaprevir (TVR) or simeprevir (SMV) [5] or grazoprevir (GZR) [36]—was detected in a
treatment-naïve patient’s (HCV17) HCV isolate. We also identified substitution NS3I132V [29], which
is associated with possible resistance to TVR, in 4 patients: HCV04, HCV06, HCV08, HCV19. The

NS3V170I GZR RAS was found in HCV isolate from patient HCV20 [37] (Table 3). However, for minor
substitutions in the NS3 region, nucleotide substitutions were detected at amino acid (AA) positions 55
(10.9%) and 132 (0.05%) in isolates from HCV17 and HCV21 patients, respectively, but these changes
did not modify the corresponding AA (i.e., synonymous substitutions). The NS5BC316N mutation
associated with resistance to the NS5B polymerase inhibitor, dasabuvir (DSV) [38], was found in two
patients (HCV06, HCV19), who also harbored NS3I132V and NS5BC316N (Table 3).

We also found genotype 1b polymorphisms [39], NS5BV338A and NS3D30E + NS3I170V, in all HCV
isolates (Table 3). A mutation analysis for the last generation DAAs showed that none of the isolates
harbor RASs for NS3/4A protease inhibitor paritaprevir or NS5B polymerase inhibitor sofosbuvir [5]
(Table 3).

Table 3. Nonsynonymous substitutions detected for NS3 and NS5B target region in HCV isolates from
SVR patients.

Patient ID NS3 Protease NS5B Polymerase
– RASs Polymorphisms RASs Polymorphisms

HCV04 I132V

S7A

none V338A

D30E
P86Q
M94L
V114I
S122N
I170V
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Table 3. Cont.

Patient ID NS3 Protease NS5B Polymerase
– RASs Polymorphisms RASs Polymorphisms

HCV06 I132V

L14F C316N R254K
D30E

–

S300T
V48I V338A
P86Q

–

P89S
M94L
V114I
S122N
V150A
I170V

HCV08 I132V

D30E

none

V338A
T72I

–

P86Q
M94L
V114I
V150A
I170V

HCV09 none

D30E

none

L266M
V48I V338A
T72I

–

P89S
M94L
H110Y
S122N
V150A
I170V

HCV17 V36L

L14I

none

A252V
D30E Q309R
V48I V338A
S61A

–

P86Q
A87S
M94L
V114I
V150A
I170V

HCV19 I132V

L14F C316N Q309R
D30E

–

S335N
S61T V338A
P86Q

–
M94L
V114I
V150A
I170V

HCV20 V170I

D30E

none

Q309R
S61A S335N
P86Q V338A
M94L

–V114I
V150A

HCV21 none

L14F

none

V338A
D30E

–

V48I
I71V
T95A
V114I
V150A
I170V
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3. Discussion

In this work we capitalized on the sequence output of the Ion Torrent PGM Sequencer to generate
a baseline NS3 resistance profile of eight DAA-naïve patients infected by HCV1b subtype. The NS5B
coding region of the same isolates was sequenced with conventional Sanger technology for genotyping
purposes, and was also screened for RASs to polymerase inhibitors.

We performed bulk sequencing of virus populations and were able to construct a consensus
representation of the intra-host viral population so that secondary variants could also be detected.
However, the threshold for clinical relevance of RASs in population sequencing is set at 15%–25% [40].
This contrasts sharply with the excellent in-depth view of the viral population composition that can
be achieved with NGS methods, even though replicate analysis is advised to average the effects of
random variations in the sample pre-processing procedures [23,41]. We have applied this technique
for mutation analysis to a sample of clinical isolates. Although the predictive potential of baseline
resistance substitutions remains controversial, RASs have been associated with reduced response to
DAA regimens in several studies [5,6]. Using deep sequencing with PGM, we conducted a thorough
assessment on HCV NS3 protease major and minor variants in HCV1b isolates from samples of chronic
DAA-naïve patients; samples were gathered prior to the telaprevir- or boceprevir-based triple therapy.
In addition, once NS5B sequences were obtained by conventional Sanger-sequencing method for
subtyping analysis, we also looked for RASs to polymerase nucleotide inhibitors within the dominant
viral population [42]. A potential useful application of deep sequencing is that this technique could
detect minor variants, whose impact on clinical response to treatment is significant.

We found a dual resistance profile, NS3I132V and NS5BC316N, against TVR (a protease inhibitor)
and DSV (a polymerase inhibitor), respectively, in two patients (Table 3). This finding underlines the
value of a wider genomic view on resistance testing when multiple viral proteins are targeted [39].
The fact that all patients (including those with RASs) reached SVR with the TVR- or BOC-based
triple therapy seems to suggest that other factors, besides the presence of RASs, contribute to the
eventual treatment response. The present study adds to the available information regarding the
prevalence of baseline HCV RASs and polymorphisms. Furthermore, we recognize that the studied
drug combinations remain acceptable in selected patients for whom the new DAAs regimens are not
available [1] and further studies involving patients treated with current regimens are needed. Lastly,
the sequenced NS5B region, used for subtyping analysis, allowed us to identify NS5BC316N RAS even
though a number of important AA positions for resistance against NS5B non-nucleoside inhibitors
(i.e., 368, 411, 414, 448, 553, 554, 556) were not amplified by the used primers [43,44].

In the NS3 region, we found two RASs, NS3V36L [45] and NS3I132V [29], in isolates from one
patient and four patients, respectively. The NS3V36L variant carried by patient HCV17 confers resistance
to BOC and possibly to TVR or SMV and is reported to be present in 0.5% of all previously studied
worldwide HCV1b strains [46]. An Italian study of 326 HCV-infected patients treated with TVR/BOC
triple therapy, showed this NS3V36L variant in only two HCV1b patients with SVR [14], in line with our
observations. The two isolates from HCV06 and HCV19 patients carried mutations for TVR (NS3I132V)
and DSV (NS5BC316N). In phase 3 clinical trials, the NS3I132V was reported as RAS only for the HCV1a
subtype [45], although NS3132V has recently been described as an HCV1b-resistant variant with a high
prevalence at baseline [29]. In particular, NS3I132V variant is present at 0.5% and 73.7% in HCV1a
versus HCV1b strains [46]. The NS3V170I GZR RAS, detected at baseline in patient HCV20, has also
been reported at treatment failure during a randomized trial of HCV1b-infected patients [37].

As reported in the results section, in some cases (HCV isolates from patients HCV04, HCV06,
HCV08, HCV17, and HCV19) RASs were detected but SVR was achieved. This may reflect an
incomplete knowledge of the mutation patterns that have a clinical meaningfulness (i.e., predictive
value for the risk of virological failure). Unfortunately, our sample size was too small to address these
issues with an acceptable statistical power. Moreover, it is possible that host variability (including
pharmacogenomical features, such as IL28B single nucleotide polymorphisms) may have favored
virological response notwithstanding the presence of resistant virus quasispecies. Unfortunately,
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however, we did not include any pharmacogenomical evaluations and, again, our sample size was
limited. Further studies are needed in this respect.

High-throughput deep sequencing allowed us to determine minor nucleotide variations in the
viral population of each patient. The analysis highlighted nucleotide mutations in hot spot positions,
ranging 0.05%–10.9%, that were not associated with HCV resistance to DAAs.

Our combination of the PGM and software packages was able to identify low frequency RASs in
the viral quasispecies population, which could provide important insights when the methodology used
in this study is applied in a larger cohort of patients.

The NS5B variant C316N, known to confer resistance to non-nucleoside inhibitor DSV, is observed
in 31.4% of the worldwide HCV1b strains [46], and assessment of this mutation could be important
for the treatment strategy in case of TVR failure. Indeed, DSV is approved by the FDA (Food and
Drug Administration) in combination with other DAA agents in interferon-free regimens for HCV1,
achieving high cure rates with few adverse effects [42]. Therefore, in case of TVR treatment failure,
DSV could be contraindicated in the presence of the NS5BC316N variant. Furthermore, we found a
substantial number of polymorphisms (Table 3) in the NS3 protease and NS5B polymerase regions,
which could be characterized as RASs in the near future. These substitutions could prove to be
useful for drug resistance studies [46], and our report adds to the knowledge regarding their general
prevalence in Italian HCV isolates. For instance, Chen et al. [9] described the NS3I170V variant,
observed in 7/8 of our patients, as BOC RASs in HCV1a, HCV2, HCV3, HCV4 and HCV6 genotypes,
while the Geno2pheno team describes them as mutations in a hot spot position not yet related to
resistance against BOC in HCV1b strains. We also highlight the polymorphism NS3S122N found in a
hot spot position of the NS3 protease region. Lontok et al. recently reported A/G/I/T substitutions in
the same amino acid residue at the time of virological failure [5]. Analogous to what has been observed
in HIV studies, AA substitutions could be crucial for future analyses and possible correlations with the
clinical outcome [47].

4. Materials and Methods

4.1. Ethic Statement

The study was approved by the Ethical Committee (#2012.58.E; 19 June 2013) of the Mater Domini
University Hospital of Catanzaro, Italy. Written informed consent was obtained from each patient
in accordance with the principles of the Helsinki Declaration (World Medical Association General
Assembly, Seoul, Korea, 59 October 2008).

4.2. Study Population

Eight DAA-naïve patients chronically infected with HCV subtype 1b, who were not co-infected
with HIV or HBV, were recruited between January and December 2014 at the “Mater Domini”
University Hospital of Catanzaro, Italy, as part of the SINERGIE (South Italian Network for Rational
Guidelines and International Epidemiology) project [48]. We provide an overview of the patients’
clinical information in Table 1. After baseline sampling and evaluation of initial fibrosis stage, a triple
therapy protocol (pegIFN-α and RBV supplemented with telaprevir or boceprevir) was started for
each patient [1].

4.3. HCV RNA Viral Load Determination

HCV RNA viral load was determined with the Cobas AmpliPrep/Cobas TaqMan HCV test (Roche
Diagnostics, Milan, Italy) (quantification range of 15 to 100 million IU/mL).
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4.4. Liver Stiffness

Fibrosis stage was estimated by transient elastometry (FibroScan®), interpreted as follows:
KPa ≤ 7.1 = F0−F1 (minimal fibrosis), 7.1 < KPa ≤ 9.5 = F2 (moderate fibrosis), 9.5 < KPa ≤ 14.5 = F3
(severe fibrosis), and KPa > 14.5 = F4 (cirrhosis) [35].

4.5. HCV NS3 Protease Deep Sequencing

Viral RNA was extracted from 140 µL serum using the QIAmp viral RNA extraction kit (Qiagen,
Hilden, Germany) in accordance with the manufacturer’s protocol. RNA was reverse-transcribed
using the High-Capacity cDNA Reverse Transcription Kits protocol (Applied Biosystems, Foster City,
CA, USA). The 2X reverse transcription Master Mix (2 µL 10× RT Buffer, 0.8 µL 25× dNTP Mix
(100 mM), 2 µL 10× RT Random Primers, 1 µL MultiScribe™ Reverse Transcriptase, 1 µL RNase
Inhibitor and RNase-free water) was added at 10 µL RNA to make up a final volume of 20 µL.
Synthesized cDNA was amplified by PCR technique using in-house-developed primers specific for
NS3 genomic region (650 bp), covering all NS3/4A positions involved in drug resistance using GoTaq®

DNA Polymerase (Promega, Madison, WI, USA). The nested PCR amplification for both rounds was
performed under the following conditions: 1.25 units of GoTaq® DNA Polymerase, 50 mM KCl, 30 mM
Tris-HCl, 1.5 mM Mg2+, 200 µM of each dNTP, 0.2 µM sense primer, 0.2 µM antisense primer. Six
microliters of cDNA was used for the first round of PCR. NS3 primers were the following: Forward1
(outer) 5′-GGAGGGAGATACATCTGG-3′; Reverse1 (outer): 5′-GTTCAGGACAAGCACCTTAT-3′.
Thermocycling conditions consisted in a denaturation step at 95 ◦C for 5 min, followed by 35 cycle
at 95 ◦C for 30 s; 62 ◦C for 30 s; 72 ◦C for 1 min; a final elongation cycle of 7 min at 72 ◦C and
finally a hold at 4 ◦C. Five microliters of the first round of PCR products was used for nested-PCR,
using the same thermocycling conditions. NS3 nested primers were the following: Forward2 (inner)
5′-ACTCCTCGCGCCTATTACG-3′; Reverse2 (inner) 5′-TTAGTGCTCTTGCCGCTACC-3′ (Figure 2).
In order to obtain enough material for sequencing, the second PCR was performed in duplicate. These
PCR products were quantified by semi-fluidic electrophoresis (Agilent® Bioanalyzer®, Santa Clara,
CA, USA), using Agilent High Sensitivity DNA Kit and diluted to in order to obtain 100 ng of HCV
cDNA in a final volume of 40 µL.Int. J. Mol. Sci. 2016, 17, 1416 9 of 14 
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High-throughput sequencing was performed using the Ion Torrent Personal Genome Machine
(PGM) Sequencer [49]. The adapter- and barcoded-ligated library was prepared according to
manufacturer’s protocol using the Ion Xpress Plus Fragment Library kit (Life Technologies, Foster,
CA, USA). Briefly, amplicons were enzymatically fragmented for 5 min, using Ion Shear Reagents.
Fragments were then purified by Agencourt® AMPure® XP Reagent and the fragmentation pattern
was analyzed by semi-fluidic electrophoresis (Agilent® Bioanalyzer®, Santa Clara, CA, USA) Barcodes
and adapters were ligated to the amplicons and library fragments of 300–400 nucleotides long were
size selected using E-gel® SizeSelect Agarose Gel (Life Technologies, Carlsbad, CA, USA). Emulsion
PCR and Ion sphere particle (ISP) enrichment was performed by using Ion OneTouch 400 Template Kit
(Life Technologies). The enrichment of template on Ion Spheres particles (ISPs) was quantified using
Qubit System (Life Technologies) and loaded into a 314 chip, according to Ion PGM Hi-Q sequencing
kit protocol.

4.6. HCV NS3 NGS Read Analysis

We provide an overview of the sequence read post-processing steps in Figure 3. Briefly,
Cutadapt [31] and Sickle tools [30] were used to remove low quality reads, low complexity reads,
adapters and primers from fastq raw sequence data. After quality control of raw data using FastQC
(Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and pre-processing
with the Pollux error correction software [32], a de novo assembly was performed using software
packages VICUNA [33] and V-FAT [34]. The sample-specific majority rule consensus sequences were
used to infer the variant frequencies with V-phaser 2 [50], and we only considered variants that had no
strand bias (p-value ≤ 0.05).
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4.7. Subtyping Analysis

The Versant HCV genotype v2.0 assay (LiPA, Siemens, Healthcare Diagnostic Inc., Tarrytown,
NY, USA) was used for initial subtyping. We sought to confirm the subtype assignment by three
methods using the NS3 majority rule consensus sequences (cfr. above) and the NS5B population
consensus sequence. The NS5B region was amplified as previously described (Figure 2) [43,44] and
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sequenced by the traditional dideoxy chain termination method using ABI PRISM 3500 genetic analyzer
(Applied Biosystems). These were submitted to the Oxford HCV Automated Subtyping Tool v.2.0 [51]
and the COMET HCV typing tool [52], and were also used in a maximum likelihood phylogenetic
inference incorporating reference sequences available from the Los Alamos National Laboratory HCV
Sequence Database (Table S1) [53]. Sequences were aligned with Clustal W [54] and manually edited
in MEGA v.5.2.2 [55]. Trees were estimated, inferring with the generalized time reversible (GTR)
nucleotide substitution model with gamma (Г)-distribution by RAxML v.8.1.17 [56] and the reliability
of phylogenetic clustering was evaluated using 1000 bootstrap replicates. Phylogenetic trees were
visualized with FigTree v1.4.2 (Available online: http://tree.bio.ed.ac.uk/software/figtree/).

4.8. Genetic Variability Analysis

We compiled a list of positions known to possibly encode for RASs through a literature
search [5,9,29] and with the Geno2pheno[HCV] 0.92 tool [57] using the rules as updated on 21 October
2015. Additionally, the same amino acid (AA) substitutions, aligning generated sequences to HCV1b
(accession number AJ238799) wild-type reference by MUSCLE [58], were confirmed. This resulted in
the following list of NS3 AA positions: 36, 43, 54, 55, 80, 107, 122, 132, 155, 156, 168, 170, 174, 175; for
NS5B we evaluated variation at positions 282, 316, 321.

4.9. Public Availability of the Sequencing Data

The newly generated NS3 and NS5B sequences were submitted to the SINERGIE
database (available from ARCA (dbARCA)-Antiviral Response Cohort Analysis (Available online:
https://www.dbarca.net/)) and to GenBank® database [59]. All sequences can be retrieved from
GenBank® under accession numbers: KX373275-KX373290.

5. Conclusions

In conclusion, we found pretreatment RASs in 6/8 patients. In spite of the presence of RASs, all
patients achieved SVR at 12 weeks under TVR or BOC plus pegIFN-α/RBV triple therapy regimens.
However, further studies focusing on current treatments are necessary to establish the impact of RASs
and other polymorphisms on treatment response. We have determined that the combination of the
PGM Sequencer in conjunction with an analysis pipeline consisting of freely available software could
be a useful method to analyze genetic variability in the NS3 coding region. Our workflow is readily
extensible to a wider genome perspective, but requires benchmarking on simulated data sets and/or
larger patient cohorts. This piece of evidence will be extended through implementation of an ongoing
international collaboration.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/9/1416/s1.
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