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Abstract: Oridonin belongs to ent-kaurane tetracyclic diterpenoid and was first isolated from
Isodon species. It exhibits inhibitory activities against a variety of tumor cells, and pharmacological
study shows that oridonin could inhibit cell proliferation, DNA, RNA and protein synthesis of cancer
cells, induce apoptosis and exhibit an antimutagenic effect. In addition, the large amount of the
commercially-available supply is also very important for the natural lead oridonin. Moreover, the
good stability, suitable molecular weight and drug-like property guarantee its further generation of
a natural-like compound library. Oridonin has become the hot molecule in recent years, and from
the year 2010, more than 200 publications can be found. In this review, we summarize the synthetic
medicinal chemistry work of oridonin from the first publication 40 years ago and share our research
experience of oridonin for about 10 years, which may provide useful information to those who are
interested in this research field.
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1. Introduction

Oridonin (1, Figure 1) is an ent-kaurane diterpenoid isolated from Isodon of the Labiatae family,
the structure and absolute configuration of which were first confirmed in the year 1970 [1]. Since then,
hundreds of research articles, mainly in the antitumor field, have been published. Only from the year
2010, more than 200 papers can be found using Web of Science (searching oridonin as the topic), and
obviously, it has become a molecule in focus from a natural source for the treatment of cancer. Oridonin
is also a good lead in the field of medicinal chemistry: (a) it shows antitumor activities against many
tumor-related cells [2,3] (for example, IC50 values were 21.48 µM against human esophageal squamous
EC9706 cells [4], 5 µM against leukemia-derived Jurkat cells [5], 2.5 µM against human umbilical
vascular endothelial cells [6], 15.6 µM against gastric cancer SGC-7901 cells [7], 19.32 µM against
human pancreatic cancer BxPC-3 cells [8], 37.90 µM against human liver carcinoma HepG2 cells [9],
3.1 and 6.1 µM against uveal melanoma OCM-1 and MUM2B cells for a treatment of 24 h [10], 54.2 µM
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against human lung cancer A549 cells [11], 41.8 µM against leukemia HPB cells [12], 63.7 µM against
human fibrosarcoma HT1080 cells [13], 15.18 µM against human epidermoid carcinoma A431 cells [14],
37.1 µM against human laryngeal cancer HEp-2 cells [15,16], 7.4 µM against melanoma K1735M2
cells [17], 3.88 µM against human colon tumor SW620 cells [18], 3.74 µM against bone marrow tumor
K562 cells [18], 5.12 µM against breast tumor MCF7 cells [18], and so on) and relatively low toxicity
(18.26 µM against human liver L-02 cells and 7.48 µM against human liver carcinoma Bel-7402 cells for
a treatment of 72 h [19]); (b) the well-studied multitargeting properties of the antitumor activity [20,21]
through specific chemical modifications enable the development of natural product (NP)-based novel
drugs; (c) oridonin possessed good stability in stock solutions (1 mg/mL of oridonin and the internal
standard were over 99% of the nominal concentrations compared with freshly prepared solutions after
storage at −20 ◦C for 30 days), rat plasma (the starting concentrations were 12.3, 246 and 984 ng/mL;
the measured concentrations were 12.0, 248 and 973 ng/mL after 24 h at room temperature and 12.1, 252
and 976 ng/mL at −20 ◦C for 30 days, respectively) and even after three freeze–thaw cycles (freezing
at −20 ◦C and thawing at room temperature on three consecutive days) with concentrations of 11.8,
253 and 978 ng/mL [22,23]; (d) oridonin meets the criteria of Lipinski’s rule of five and is a lead-like,
fragment-like and drug-like molecule [24,25]; the molecular weight (Mw) of oridonin is 362.2, which
makes it suitable for further optimization, because the Mw value always increases during the process
from lead to drug-like candidate [26]; (e) there are many functional groups (double bond, carbonyl
group and hydroxyl groups in different chemical environments), which provide good synthetic
accessibility to efficiently generate libraries of derivatives; and (f) last, but not least, for all natural
products, it is commercially available for large-scale compound supply. Despite these promising
profiles as an anticancer lead, there are also some shortcomings to be overcome during structural
modification processes, such as relatively low aqueous solubility and bioavailability, moderate potency
and undefined mechanisms of action. On the basis of the above, oridonin was widely used as a
lead compound, especially to develop novel antitumor natural product-derived agents, by many
medicinal chemistry researchers, including our research group [17–41]. With its molecular mechanisms
being gradually clarified, more scientists will join this field to discover promising anti-neoplastic drug
from oridonin, as well as tetracyclic diterpenoids. Although there are several reviews concerning the
biological activities [20,21,42–44] and medicinal chemistry [45] (structural modification and biological
evaluation) of oridonin, herein, we would like to review the synthetic work of the lead oridonin from
the first publication 40 years ago and to share our research experience of oridonin for about 10 years,
which not only provides the best convenience to whomever wants to join this research field, but also a
good example for lead optimization research from natural sources.
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under mild conditions to give alkane thiol adducts (2) at C-17 [46]. The dihydro-derivative of oridonin 
(3) was obtained by the reduction reaction of 2 with Raney Ni (Figure 2). Compound 3 showed no 
antitumor activity against Ehrlich ascites carcinoma cells in mouse and antibacterial activity against 
19 selected bacteria. Therefore, the α-methylene-cyclopentanone system in the structure of oridonin 
was first considered as an important active center. 

1
2
3 45 6 7

8
910

11
12 13

14

15

16 17

18 19

20OH

OH
OH

H

O
OH
O

H

1

Figure 1. The structure and numbering of oridonin.

2. Structure Modification on the Core Structure of Oridonin

In the year 1976, biomimetic reactions of oridonin and alkane thiols were done by Fujita et al.
under mild conditions to give alkane thiol adducts (2) at C-17 [46]. The dihydro-derivative of oridonin
(3) was obtained by the reduction reaction of 2 with Raney Ni (Figure 2). Compound 3 showed no
antitumor activity against Ehrlich ascites carcinoma cells in mouse and antibacterial activity against
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acylation at 6-O (4) or/and 14-O (5, Figure 3) [47]. The antitumor activity of synthetic derivatives 
against Ehrlich ascites carcinoma cells in mouse were evaluated, and the structure activity 
relationship (SAR) showed that the activity increased with the increase of the acyl carbon chain length. 
The importance of the hydrogen bond and the ester side chain for the antitumor activity was also 
demonstrated in the derivatives of oridonin; while the 1,14-diacetate derivative of oridonin could be 
obtained by the treatment of oridonin with acetic anhydride in pyridine [48]. 
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Figure 2. The biomimetic products (2) and dihydro-derivative (3) of oridonin.

Five years later (in 1981), Fujita et al. selectively synthesized the first series of derivatives
of 1 by acylation at 6-O (4) or/and 14-O (5, Figure 3) [47]. The antitumor activity of synthetic
derivatives against Ehrlich ascites carcinoma cells in mouse were evaluated, and the structure activity
relationship (SAR) showed that the activity increased with the increase of the acyl carbon chain length.
The importance of the hydrogen bond and the ester side chain for the antitumor activity was also
demonstrated in the derivatives of oridonin; while the 1,14-diacetate derivative of oridonin could be
obtained by the treatment of oridonin with acetic anhydride in pyridine [48].
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Figure 3. Selective acylated products of oridonin at 6-O (4) or 14-O (5).

In 1990, eriocalyxin B (6) and its analogues were obtained by Zhou et al. from oridonin [49].
The overall yields of 6 and 14-hydroxyeriocalyxin B (7) were 11% and 57% in six and four steps,
correspondingly (Figure 4).
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Figure 4. Synthesis of eriocalyxin B (6) and 14-hydroxyeriocalyxin B (7) from oridonin.

Oridonin-6-O-α-D-glucopyranoside (8) was synthesized by Liu’s group from 1 by five steps
in a total yield of 23% (Figure 5). This method could improve the water solubility of oridonin
derivatives [50].

1-OAc oridonin was also a natural product, which was called lasiokaurin (11). In 2006, Liu’s
group synthesized 11 from 1 in a 69% overall yield via three steps by selective acetonide protection (9),
acetylation (10) and deprotection (Figure 6). The antiprotozoan activity of lasiokaurin and oridonin
was tested, and the median lethal concentration was 25 and 50 µM, respectively, which indicated that
1-hydroxyl had some benefits on the antiprotozoan activity [51]. These reactions were used extensively
in the further modification of oridonin.
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In the next year, a series of aromatic amine derivatives (12, Figure 7) of oridonin was designed
and obtained by Liu’s group [52]. The antiproliferative activity against oral epithelial KB cells was
evaluated and all of the derivatives showed cytotoxicity to some extent, which was similar to or
stronger than oridonin. When R4 was carboxyl, Compound 13 exhibited the strongest activity with an
inhibition rate of 38.0% at a concentration of 0.8 mg/mL.
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In the year 2008, our research group published our first work in the field of the structural
modification of oridonin [41]. Some 1-O and 14-O-derivatives of oridonin were synthesized (Figure 8)
and biologically evaluated against six cancer cell lines (SW-480, BGC-7901, HL-60, A549, Bel-7402
and B16). All of the derivatives exhibited stronger cytotoxicity than oridonin in vitro, and three of
them were further evaluated in vivo. Derivatives 16 and 17 showed the most potent antiproliferative
activity against HL-60 and Bel-7402 cell lines with the IC50 values of 0.84 and 1.00 µM, respectively.
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The preliminary SAR suggested that the introduction of both terminal carboxylic acid and the ester
side chain of the lipophilicity moiety to the 14-O position of oridonin appeared to increase the
antiproliferative activity. The cytotoxicity of the derivatives with the substituent of acetyl at the 1-O
position was better than those with the propylsulfonyl group and the 1-hydroxyl oxidated derivatives.
Compounds 16 and 17 also had stronger anti-tumor activity in mice bearing H22 liver tumor than
oridonin (45.9%) with the inhibition ratios of 69.9% and 61.2%, correspondingly.Int. J. Mol. Sci. 2016, 17, 1395 5 of 18 
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Nitric oxide (NO) is a key mediator involved in many physiological and pathological processes.
Li et al. synthesized several series of furoxan/oridonin hybrids (Figure 9) and evaluated the
antiproliferative activity against four cancer cell lines (Bel-7402, CaEs-17, MGC-803, and K562) [38].
All of the target compounds released high levels of NO (more than 15 µM) at the time point of 60 min
in vitro and exhibited stronger antiproliferative activity than the parent oridonin. Higher levels of
NO-releasing capacity could be beneficial to cytotoxicity. In each series of the target synthetic hybrids,
the derivative (18) with R10 of o-C6H4 and R11 of (CH2)3 exhibited the strongest antiproliferative activity
among the designed hybrids with IC50 values in (sub)micromolar ranges. The linkages between the
NO donor and drug molecule always affect the NO-releasing ability and biological activity.
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In 2013, Zhou’s group developed an efficient and concise synthetic approach to install the azide
functional group at the C-1, C-2 or C-3 positions of the A-ring of oridonin rapidly and diversely
with highly-controlled regio- and stereo-selectivity (Figure 10) [53]. These azides were further
functionalized through click chemistry to yield triazole derivatives. The antiproliferative activity
of representative 1,2,3-triazolesubstituted derivatives (19 and 20) against breast cancer cell lines MCF-7
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and MDA-MB-231 was tested. These derivatives with 1,2,3-triazole installed in the A-ring exhibited
significantly improved antiproliferative activity compared to oridonin. Among them, Compound 21
showed the strongest potency with IC50 of 0.38 and 0.48 µM, respectively. This work provided access
to an expanded potential anticancer natural scaffold-based compound library from the lead oridonin.Int. J. Mol. Sci. 2016, 17, 1395 6 of 18 

 

 
Figure 10. Installation of azides and 1,2,3-triazole at the C-1, -2, or -3 position derivatives (19–21)  
of oridonin. 

In the same year, Zhou’s group synthesized a series of oridonin derivatives (22) with thiazole 
fused in the A-ring through a protecting group-free synthetic strategy (Figure 11) [54]. Most of the 
derivatives exhibited potent antiproliferative effects against selected pancreatic, breast and prostate 
cancer cells with low (sub)micromolar IC50 values and enhanced aqueous solubility. These molecules 
not only showed enhanced growth inhibitory effects against MCF-7 cells, but also on the other 
oridonin insensitive cancer cells, including the highly invasive triple-negative MDA-MB-231 cell line 
with low IC50 values. Particularly, the most potent derivative (23) with an N-allyl substituted thiazole 
moiety exhibited IC50 values of 0.2 μM against both MDA-MB-231 and MCF-7 cells, which are 
approximately 147-fold and 33-fold more potent than oridonin, respectively. It was also found to 
induce the apoptosis of MCF-7/ADR and MDA-MB-231 cells in a concentration-dependent manner 
through similar multiple pathways as oridonin. The above derivative significantly suppressed  
MDA-MB-231 xenograft tumor growth at 5 mg/kg and was more efficacious than oridonin. 
Furthermore, one analogue (24, R14 = H, R15 = n-butane), which significantly inhibited HCC1806 and 
HCC1937 triple-negative breast cancer cells’ proliferation, was selected for an intensive mechanism 
study. The results showed that it could induce apoptosis and cell cycle arrest at the G2/M phase of 
HCC1806 and HCC1937 cells. The inhibitory potency would be caused by the expression of death 
receptor 5 (DR5), p21 and pERK and downregulations of cyclin D1, XIAP, FLIPL, pSTAT3 and pAKT. 
Besides, the suppression of HCC1806 xenograft tumor growth at 5 mg/kg in nude mice without the 
loss of body weight also guaranteed its further development as a drug candidate [55]. 

In late 2013, a series of dienone derivatives of oridonin with an additional α,β-unsaturated 
ketone system installed in the A-ring was synthesized by Zhou’s group (Figure 12) [56]. 
Regioselective enone construction strategies were established. These derivatives significantly 
induced apoptosis and exhibited superior antitumor effects to oridonin against drug-resistant and 
aggressive breast cancer cells in vitro and in vivo (26 suppressed MDA-MB-231 xenograft tumor 
growth at 5.0 mg/kg) and also exhibited low toxicity to normal human mammary epithelial cells. The 
preliminary mechanism studies revealed that selected dienone analogues (25, 26) were found to 
induce the apoptosis of MDA-MB-231 cells in a concentration-dependent manner through regulation 
of a series of apoptotic-related proteins. 

Figure 10. Installation of azides and 1,2,3-triazole at the C-1, -2, or -3 position derivatives (19–21)
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In the same year, Zhou’s group synthesized a series of oridonin derivatives (22) with thiazole
fused in the A-ring through a protecting group-free synthetic strategy (Figure 11) [54]. Most of the
derivatives exhibited potent antiproliferative effects against selected pancreatic, breast and prostate
cancer cells with low (sub)micromolar IC50 values and enhanced aqueous solubility. These molecules
not only showed enhanced growth inhibitory effects against MCF-7 cells, but also on the other oridonin
insensitive cancer cells, including the highly invasive triple-negative MDA-MB-231 cell line with low
IC50 values. Particularly, the most potent derivative (23) with an N-allyl substituted thiazole moiety
exhibited IC50 values of 0.2 µM against both MDA-MB-231 and MCF-7 cells, which are approximately
147-fold and 33-fold more potent than oridonin, respectively. It was also found to induce the apoptosis
of MCF-7/ADR and MDA-MB-231 cells in a concentration-dependent manner through similar
multiple pathways as oridonin. The above derivative significantly suppressed MDA-MB-231 xenograft
tumor growth at 5 mg/kg and was more efficacious than oridonin. Furthermore, one analogue
(24, R14 = H, R15 = n-butane), which significantly inhibited HCC1806 and HCC1937 triple-negative
breast cancer cells’ proliferation, was selected for an intensive mechanism study. The results showed
that it could induce apoptosis and cell cycle arrest at the G2/M phase of HCC1806 and HCC1937
cells. The inhibitory potency would be caused by the expression of death receptor 5 (DR5), p21 and
pERK and downregulations of cyclin D1, XIAP, FLIPL, pSTAT3 and pAKT. Besides, the suppression
of HCC1806 xenograft tumor growth at 5 mg/kg in nude mice without the loss of body weight also
guaranteed its further development as a drug candidate [55].
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In late 2013, a series of dienone derivatives of oridonin with an additional α,β-unsaturated ketone
system installed in the A-ring was synthesized by Zhou’s group (Figure 12) [56]. Regioselective
enone construction strategies were established. These derivatives significantly induced apoptosis and
exhibited superior antitumor effects to oridonin against drug-resistant and aggressive breast cancer
cells in vitro and in vivo (26 suppressed MDA-MB-231 xenograft tumor growth at 5.0 mg/kg) and also
exhibited low toxicity to normal human mammary epithelial cells. The preliminary mechanism studies
revealed that selected dienone analogues (25, 26) were found to induce the apoptosis of MDA-MB-231
cells in a concentration-dependent manner through regulation of a series of apoptotic-related proteins.

Int. J. Mol. Sci. 2016, 17, 1395 7 of 18 

 

 
Figure 11. The thiazole-fused A-ring modified oridonin derivatives (22–24). 

 
Figure 12. The dienone derivatives (25–28) of oridonin with the α,β-unsaturated ketone system in  
the A-ring. 

It was also reported that oridonin [57–59] and its derivatives [60,61] exhibited anti-inflammatory 
activity, such as the ability to treat hepatic fibrosis. The antifibrogenic effects of Compounds 27 [60] 
and 25 [61] were investigated on the activated rat HSC-T6 and human LX-2 stellate cell lines.  
These two derivatives could inhibit the proliferation of HSC-T6 and LX-2 cells in a dose- and  
time-dependent manner. However, for the human hepatocyte cell line C3A, no significant 
antiproliferative effects were observed. These two derivatives also induced apoptosis and cycle arrest 
at the S phase in the LX-2 cell line. The apoptosis-related property of Compound 27 was associated 
with the activation of p53, p21 and cleaved caspase-3, while Compound 25 could activate cleaved 
PARP, p21 and p53 and decrease cyclin-B1. Both of them could markedly downregulate major ECM 
proteins type I collagen and fibronectin and the myofibroblast marker protein α-smooth muscle actin 
in a time- and dose-dependent fashion and blocked transforming growth factor-β-induced type I 
collagen and fibronectin production. Oridonin analogues 25 and 27 would have great potential to act 
as promising antifibrogenic agents to treat hepatic fibrosis. 

In 2014, a series of oridonin and nitrogen mustard hybrids were designed and synthesized by 
Xu et al. to find more efficacious and less toxic antitumor agents (Figure 13) [30]. The antiproliferative 
activity of the hybrids was more potent than oridonin and the clinically used nitrogen mustards 

Figure 12. The dienone derivatives (25–28) of oridonin with the α,β-unsaturated ketone system in
the A-ring.

It was also reported that oridonin [57–59] and its derivatives [60,61] exhibited anti-inflammatory
activity, such as the ability to treat hepatic fibrosis. The antifibrogenic effects of Compounds 27 [60]
and 25 [61] were investigated on the activated rat HSC-T6 and human LX-2 stellate cell lines. These
two derivatives could inhibit the proliferation of HSC-T6 and LX-2 cells in a dose- and time-dependent
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manner. However, for the human hepatocyte cell line C3A, no significant antiproliferative effects
were observed. These two derivatives also induced apoptosis and cycle arrest at the S phase in the
LX-2 cell line. The apoptosis-related property of Compound 27 was associated with the activation
of p53, p21 and cleaved caspase-3, while Compound 25 could activate cleaved PARP, p21 and p53
and decrease cyclin-B1. Both of them could markedly downregulate major ECM proteins type I
collagen and fibronectin and the myofibroblast marker protein α-smooth muscle actin in a time-
and dose-dependent fashion and blocked transforming growth factor-β-induced type I collagen and
fibronectin production. Oridonin analogues 25 and 27 would have great potential to act as promising
antifibrogenic agents to treat hepatic fibrosis.

In 2014, a series of oridonin and nitrogen mustard hybrids were designed and synthesized
by Xu et al. to find more efficacious and less toxic antitumor agents (Figure 13) [30]. The
antiproliferative activity of the hybrids was more potent than oridonin and the clinically used nitrogen
mustards against four selected human cancer cell lines (Bel-7402, MCF-7, K562 and MGC-803). Some
representative derivatives exhibited antiproliferative activities against the multidrug-resistant cell lines
(NCI-H460/MX20 and SW620/AD300). The most effective compound (29) of this series showed strong
inhibitory activity with an IC50 value (0.67 µM) 21-fold lower than that of oridonin (14.60 µM) against
MCF-7 cells and also exhibited selective cytotoxicity toward different cancer cells. It was demonstrated
to affect cell cycle progression and significantly induce apoptosis in human hepatoma Bel-7402 cells.
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In the same year, a series of dihydropyran-fused oridonin derivatives was designed and
synthesized as potential anticancer agents by Zhou’s group (Figure 14) [62]. 3,4-dihydro-2H-pyran
moiety was introduced into the A-ring of oridonin by an optimized IED HDA (inverse electron demand
hetero-Diels–Alder) reaction in a mild and concise approach. The inhibitory effects of these derivatives
were evaluated against MCF-7, MDAMB-231, MDA-MB-468 and MCF-7/ADR cell lines. Among
them, Compound 30 was the most potent one, which showed submicromolar IC50 values in MCF-7
(IC50 = 0.44 µM), MDA-MB-231 (IC50 = 0.54 µM) and MDA-MB-468 (IC50 = 0.52 µM) cells and an
improved capability to overcome chemoresistance against the MCF-7/ADR cell line (IC50 = 1.6 µM).
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From 2014–2016, the antibacterial activity of 1- or/and 14-position modified oridonin
derivatives (31) was evaluated (Figure 15) [29,31,32]. Some derivatives were screened against
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Mycobacterium marinum, Mycobacterium smegmatis and Mycobacterium phlei. Among them, the
compounds containing the trans-cinnamic acid moiety showed the most potent inhibitory activity
against M. phlei with MICs of 0.5 µg/mL, and the SARs were analyzed. Five compounds were tested
against Mycobacterium tuberculosis H37Rv based on the preliminary screening results. Among them,
Compound 32 showed an IC50 value of 17.1 µg/mL. The antibacterial activity of some derivatives
against Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Monilia albicans was evaluated for the
first time. Most of them showed good antibacterial activity against Gram-positive bacteria B. subtilis
and S. aureus. Additionally, no obvious inhibitory activity was observed against Gram-negative
bacterium E. coli and fungus M. albicans (MIC > 100 µg/mL).Int. J. Mol. Sci. 2016, 17, 1395 9 of 18 
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synthesis [70–72]. Therefore, the therapeutic development of these compounds was significantly 
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different scaffolds bypassing the de novo synthetic strategy. 
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Early in this year, a series of oridonin fluorescent probes linked with coumarin moieties were
designed and synthesized to explore the anticancer mechanism by our research group (Figure 16) [27].
Most of the probe molecules displayed optimal antiproliferative activity and a fluorescent property.
Fluorescence microscopy and confocal imaging studies were examined by using typical probes. The
results indicated that oridonin fluorescent probe 33 could be rapidly taken up into tumor cells,
and the mitochondrion was the main site where it accumulated. Moreover, we confirmed that the
α,β-unsaturated ketone group is the active moiety, which is crucial to its cytotoxicity, localization and
uptake. The studies on mitochondrial physiology suggested that the mitochondrion-related pathway
was involved in oridonin-induced apoptosis, and cytochrome c played an important role. These results
provide new insights into the cellar mechanism of oridonin and may be useful to study the insight of
the anticancer action and the targets of other ent-kaurane diterpenoids.
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3. Oridonin as the Lead to Synthesize ent-Kaurane Diterpenoid Derivatives of Other Types

ent-Kaurane diterpenoid derivatives with diverse unique chemical skeletons are generally quite
complex, incorporating numbers of intricate ring systems and stereogenic centers, and exhibit
promising biological activities [63–69]. The preparation of ent-kaurane diterpenoid libraries inevitably
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involved rather laborious and complex synthetic sequences, especially total synthesis [70–72].
Therefore, the therapeutic development of these compounds was significantly impeded by the problem
of large-scale compound supply. It is found that oridonin is a good relevant commercially-available
lead to semi-synthesize novel ent-kaurane diterpenoid derivatives with different scaffolds bypassing
the de novo synthetic strategy.

3.1. 15,16-seco-ent-Kaurane Diterpenoid Derivatives

In the year 2011, Zhang et al. synthesized rubescensin S (34) from oridonin by two steps and
revised its stereochemistry (Figure 17) [73]. An effective two-step transformation from oridonin to the
15,16-seco-ent-kaurane skeleton (rubescensin S) was achieved. This key compound provided a good
building block for further construction of a natural product-like 15,16-seco-ent-kaurane compound
library. They also revised its structure of the 13S configuration instead of the reported 13R.
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Figure 17. The synthesis of 15,16-seco-ent-kaurane rubescensin S (34) from oridonin.

3.2. 6,7-seco-ent-Kaurane Diterpenoid Derivatives

6,7-seco-ent-Kaurane diterpenoid derivatives (including enmein- and spirolactone-type
6,7-seco-ent-kaurane diterpenoids) showed stronger cytotoxicity than oridonin. These compounds also
have more complex structures (Figure 18) and are more difficult to isolate from natural sources [74–79].
We used oridonin as the starting material to semi-synthesize enmein- and spirolactone-type core
structures by the ring-opening reaction between C-6 and C-7. A compound library containing more
than 100 enmein- and spirolactone-type diterpenoid derivatives was built up mainly by our research
group for further medicinal study.
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3.2.1. Enmein-Type 6,7-seco-ent-Kaurane Diterpenoid Derivatives

Several series of ester derivatives (35) of enmein-type diterpenoid at 14-O were synthesized
from commercially-available oridonin by efficient and practical synthetic methods (Figure 19) [33,36].
The antiproliferative activity was evaluated against a set of human cancer cell lines. Some derivatives
showed even smaller IC50 values than positive control paclitaxel. The apoptotic properties of the
selected Compound 36 (IC50 = 0.71 µM) in human hepatocarcinoma Bel-7402 cells were evaluated.
It caused cell-cycle arrest at the G2/M phase and induced apoptosis. Moreover, Compound 36 exhibited
potent antitumor activity in vivo in MGC-803 mice. These results warranted further preclinical
investigations of these enmein-type diterpenoid derivatives as potential anticancer agents.

Int. J. Mol. Sci. 2016, 17, 1395 11 of 18 

 

potent antitumor activity in vivo in MGC-803 mice. These results warranted further preclinical 
investigations of these enmein-type diterpenoid derivatives as potential anticancer agents. 

 
Figure 19. Enmein-type 6,7-seco-kaurane diterpenoid derivatives 35 and 36. 

The antimycobacterial activity of some enmein-type 6,7-seco-kaurane diterpenoid derivatives (35) 
was also evaluated [31,32]. Most of the derivatives showed antimycobacterial activity against M. phlei, 
of which Compounds 37–39 (Figure 19) exhibited the strongest activity with MIC of 0.5 μg/mL and 
were 15-fold stronger than that of oridonin (8 μg/mL). The trans-cinnamic acid moiety benefitted the 
antimycobacterial activity. Compounds 38 and 40 (Figure 20) also showed moderate antitubercular 
activity against M. tuberculosis H37Rv with MICs of 28.8 and 24.0 μg/mL, respectively. These findings 
could provide new insights into the development of novel antitubercular agents from enmein-type 
6,7-seco-kaurane diterpenoid derivatives. 

 
Figure 20. Antimycobacterial enmein-type 6,7-seco-kaurane diterpenoid derivatives 37–40. 

Figure 19. Enmein-type 6,7-seco-kaurane diterpenoid derivatives 35 and 36.

The antimycobacterial activity of some enmein-type 6,7-seco-kaurane diterpenoid derivatives (35)
was also evaluated [31,32]. Most of the derivatives showed antimycobacterial activity against M. phlei,
of which Compounds 37–39 (Figure 19) exhibited the strongest activity with MIC of 0.5 µg/mL and
were 15-fold stronger than that of oridonin (8 µg/mL). The trans-cinnamic acid moiety benefitted the
antimycobacterial activity. Compounds 38 and 40 (Figure 20) also showed moderate antitubercular
activity against M. tuberculosis H37Rv with MICs of 28.8 and 24.0 µg/mL, respectively. These findings
could provide new insights into the development of novel antitubercular agents from enmein-type
6,7-seco-kaurane diterpenoid derivatives.

In this year, a series of NO-donating enmein-type diterpenoid derivatives (41) was designed
and synthesized (Figure 21) [19]. The target derivatives showed potent antibacterial activity against
Gram-positive bacteria S. aureus and B. subtilis with the most promising MICs of 4 and 2 µg/mL,
respectively, while the MICs of oridonin were both 32 µg/mL. The antiproliferative activity against
human tumor and human normal cells was also tested. Most of these NO-releasing molecules showed
good cytotoxic selectivity and released high levels (above 20 µmol/L) of NO at the time point of
60 min. Compound 42 was the most promising one with IC50 values of 1.68, 1.11, 3.60 and 0.72 µM
against K562, MGC-803, CaEs-17 and Bel-7402 cells and 18.80 µM against normal liver cell line L-02.
The selectivity index (SI) of 42 between tumor and normal liver cells was about 26.1, while the SI of
oridonin was only 2.4. Compound 42 also induced apoptosis by the mitochondria-related pathway
and arrested Bel-7402 cell cycle at the S phase.
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3.2.2. Spirolactone-Type 6,7-seco-ent-Kaurane Diterpenoid Derivatives

The spirolactone-type 6,7-seco-ent-kaurane diterpenoid derivatives (43) were also obtained
from commercial-available oridonin (Figure 22) [34,37]. These derivatives showed improved
antiproliferative activity against a panel of human cancer cell lines, and some of them were more potent
than the positive control Taxol. For example, the most potent Compound 44 with chloro substitution at
the ortho-position of the benzene ring showed IC50 values of 0.39, 1.28, 0.60 and 1.39 µM against K562,
MGC-803, CaEs-17 and Bel-7402 cells, which were 11.2-, 3.4-, 17.4- and 4.3-fold stronger than oridonin,
correspondingly. The cellular mechanisms showed that Compound 44 could induce apoptosis at low
micromolar concentrations in human hepatoma Bel-7402 cells.
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3.3. ent-Kaurane Diterpenoid Dimers

Many ent-kaurane diterpenoid dimers with diverse structures were isolated from natural
sources [80–82]. It was found that oridonin could be a good lead to semi-synthesize ent-kaurane
diterpenoid dimer derivatives to achieve the final drug candidate. A 3,4-dihydro-2H-pyran ring
was firstly constructed in the A-ring of oridonin using an optimized IED HDA (inverse electron
demand hetero-Diels–Alder) reaction. ent-Kaurane diterpenoid dimers were synthesized through a
homo-HDA reaction by a self-dimerization of the exocyclic enone in the A-ring (Figure 23) [62]. The
antiproliferative effects were evaluated against four breast cancer cell lines, MCF-7, MDA-MB-468,
MDAMB-231 and MCF-7/ADR, by the MTT method, and the IC50 values were in the submicromolar
range with a significantly improved capability to overcome chemoresistance.
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In summary, there is an increasing number of studies advocating the medicinal chemistry field 
of the lead oridonin especially in the treatment of cancer. We propose ent-kaurane tetracyclic 
diterpenoids as natural multi-target agents represent promising therapeutic agents. However, further 
studies are required to elucidate the detailed molecular mechanisms of their actions. Structural 
modification should focus on the enhancement of potency and activity spectrum and, thereby, 
counter resistance mechanisms. Meanwhile, improving water solubility, the reduction of toxicity and 
increasing metabolic stability will continue to make significant contributions to the drug 
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4. Conclusions

In summary, there is an increasing number of studies advocating the medicinal chemistry
field of the lead oridonin especially in the treatment of cancer. We propose ent-kaurane tetracyclic
diterpenoids as natural multi-target agents represent promising therapeutic agents. However, further
studies are required to elucidate the detailed molecular mechanisms of their actions. Structural
modification should focus on the enhancement of potency and activity spectrum and, thereby,
counter resistance mechanisms. Meanwhile, improving water solubility, the reduction of toxicity and
increasing metabolic stability will continue to make significant contributions to the drug development
of oridonin. Furthermore, the synthesis of some bioactive natural rare ent-kaurane diterpenoid
analogues will be another key research direction for oridonin, which will provide structurally simpler
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compounds with retained bioactivities. It is also an economic strategy for the development of natural
product-derived drugs.
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Abbreviations

Mw molecular weight
NP natural product
SAR structure activity relationship
DMAP 4-dimethylaminopyridine
NO nitric oxide
rt room temperature
THF tetrahydrofuran
TEA triethylamine
Ac acetyl group
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
MIC minimal inhibitory concentration
DR5 death receptor 5
IED inverse electron demand
HDA hetero-Diels–Alder
SI selectivity index
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