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Abstract: Largemouth bass (Micropterus salmoides) are common hosts of an epizootic bacterial infection
by Nocardia seriolae. We conducted transcriptome profiling of M. salmoides to understand the host
immune response to N. seriolae infection, using the Illumina sequencing platform. De novo assembly
of paired-end reads yielded 47,881 unigenes, the total length, average length, N50, and GC content
of which were 49,734,288, 1038, 1983 bp, and 45.94%, respectively. Annotation was performed
by comparison against non-redundant protein sequence (NR), non-redundant nucleotide (NT),
Swiss-Prot, Clusters of Orthologous Groups (COG), Kyoto Encyclopaedia of Genes and Genomes
(KEGG), Gene Ontology (GO), and Interpro databases, yielding 28,964 (NR: 60.49%), 36,686 (NT:
76.62%), 24,830 (Swissprot: 51.86%), 8913 (COG: 18.61%), 20,329 (KEGG: 42.46%), 835 (GO: 1.74%),
and 22,194 (Interpro: 46.35%) unigenes. Additionally, 8913 unigenes were classified into 25 Clusters of
Orthologous Groups (KOGs) categories, and 20,329 unigenes were assigned to 244 specific signalling
pathways. RNA-Seq by Expectation Maximization (RSEM) and PossionDis were used to determine
significantly differentially expressed genes (False Discovery Rate (FDR) < 0.05) and we found that
1384 were upregulated genes and 1542 were downregulated genes, and further confirmed their
regulations using reverse transcription quantitative PCR (RT-qPCR). Altogether, these results provide
information on immune mechanisms induced during bacterial infection in largemouth bass, which
may facilitate the prevention of nocardiosis.

Keywords: [llumina paired-end sequencing; immune response; largemouth bass (Micropterus salmoides);
Nocardia seriolae; transcriptome

1. Introduction

During intensive aquaculture, fish are always exposed to stressors which may facilitate host infection
by opportunistic pathogens existing in the water [1]. Indeed, detecting the invading pathogens depends
on the host’s ability to recognize the pathogens [2,3]. Therefore, for rapid elimination of pathogens, fish
rely on innate or nonspecific immune responses [1]. Against this background, transcriptome profiling
analysis during infection in the host can facilitate genome studies and functional gene identification.
However, in fish the broad identification of immune-related genes at the genome or transcriptome
levels are limited to a few species [4,5]. Since the genome sequence for many non-model fish species is
unknown, the study on immune genes is difficult. Moreover, the introduction of RNA deep sequencing
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technologies (i.e., Solexa/Illumina RNA-Seq and digital gene expression) have contributed much to
the identification of important immune-related genes in fish [6-9].

In this study, we concentrated on Nocardia seriolae, a Gram-positive, acid-fast bacterium with
branched hyphae which causes nocardiosis in cultured marine and freshwater fish in Taiwan, Japan, and
China [10-16]. Nocardia seriolae infections frequently result in considerable economic loss to fish farmers
in Taiwan. Recently, after infection with pathogenic microorganisms Aeromonas hydrophila in zebrafish
(Danio rerio) [17] and Vibrio anguillarum infection in sole (Cynoglossus semilaevis) [18], the transcriptome
profile has been reported. Additional examples of transcriptome profiling analyses include the
orange-spotted grouper (Epinephelus coioides) [19], blunt snout bream (Megalobrama amblycephala) [20],
Chilean abalone Concholepas (Gastropoda, Muricidae) [21], grass carp (Ctenopharyngodon idella) [22],
blowfish or fugu (Takifugu rubripes) [23], large yellow croaker (Larimichthys crocea) [24], and Nile
tilapia (Oreochromis niloticus) [25,26]. Several studies have also reported transcriptome profiles
for L. crocea in response to immune stimuli, pathogenic infection, or environmental stress [27-29].
However, to our knowledge there are no studies related to fish transcriptomes for identification of
gene expression profiles in response to Nocardia seriolae infection. In this study, we assembled the
transcriptome of largemouth bass (M. salmoides) spleen and compared the gene expression profiles
among Nocardia seriolae-infected and control groups to exhibit the molecular fitness mechanisms against
bacterial infection and frame a possible strategy to prevent the outbreak of nocardiosis.

2. Results

2.1. Transcriptome Sequence Assembly

Of 47,881 unigenes, 37,712 (78.76%) were annotated using at least one database, including 36,686
(97.27%) in NT, 28,964 (76.80%) in NR, 24,830 (65.81%) in Swiss-Prot, 8913 (23.63%) in KOG, 20,329
(563.90%) in KEGG, 22,194 in Interpro (58.85%), and 835 (2.21%) in GO (Tables S1 and S2).

2.2. Functional Classification

Overall, 8913 (23.63%) annotated putative proteins from COG were grouped into 25 different
categories (Figure 1). After filtering the poorly characterised proteins (“general function prediction
only” and “function unknown”) based on the number of unigenes, the top three functional clusters
were determined to be “replication recombination and modification” (1491, 16.72%), which is followed
by “transcription” (1354, 15.19%) and “translation, ribosomal structure, and biogenesis” (1263, 14.17%)
(Figure 1).

Furthermore, 37,712 (78.76%) unigenes were assigned to 835 GO terms based on sequence
homology and a total of 52 functional groups were clustered into biological process, cellular component,
and molecular function (Figure 2). The unigene sequences from molecular function were clustered
into 13 different classifications. Further, the largest subcategory within molecular function was
“binding”, followed by “catalytic activity” In the biological process, sequences were distributed into
24 classifications. The most represented subcategories were “cellular processes” and “metabolic
processes”. “Cell part” and “cell” were the most represented among 13 subcategories within the
cellular component category.

Overall, 20,329 (53.90%) sequences had significant matches were allocated to 244 KEGG pathways.
Moreover, the highest number of genes categorised from KEGG analysis related to human disease
accounted for 9567 (28.10%) genes, with sub-groups from bacterial infectious diseases (1850 genes),
viral infectious diseases (1862 genes), and cancer-related genes (1349 genes). Further, 6919 (20.32%)
genes were related to organismal systems where the majority of the genes were categorised as immune
system-related (2076 genes), followed by endocrine system-related (988 genes), nervous system-related
(977 genes), digestive system-related (894 genes), and development-related (778 genes) (Figure 3).
Subsequently, metabolism, cellular processes, environmental information processing, and genetic
information processing accounted for 5959 (17.50%), 4823 (14.17%), 3514 (10.32%), and 3256 (9.56%)
genes, respectively.
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Figure 1. The cluster of orthologous groups (COG) classification. 8913 (23.63% of the total annotated
putative proteins) were grouped into 25 different categories.
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Figure 3. KEGG classification of assembled unigenes from control and treated groups. (A) Cellular
processes; (B) Environmental information processing; (C) Genetic information processing; (D) Human
diseases; (E) Metabolism; and (F) Organismal systems.

2.3. Differentially Expressed Genes after Nocardia seriolae Challenge

A total of 1384 transcript-derived unigenes were upregulated, whereas 1542 genes were
downregulated in phosphate buffered saline (PBS) control and bacterial infection groups, respectively
(Figure S1). The top 20 enriched pathways are shown in Figure 4, with genes involved in
immune-related “Cell adhesion molecule”, “Cytokine receptor interaction”, “Hematopoietic cell
lineage”, and “Phagosome” categories being the most significantly enriched. Natural killer
cell-mediated cytotoxicity, hematopoietic cell lineage, toll-like receptor signalling, Fc y R-mediated
phagocytosis, antigen processing and presentation, NOD-like receptor signalling, and chemokine
signalling (Table S3) were differentially expressed3among immune-related categories. These results
suggest an important role for these unigenes during N. seriolae infection in largemouth bass.
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Figure 4. Scatterplot of the top 20 enriched KEGG pathways. Rich Factor is the ratio of differentially
expressed gene numbers annotated in this pathway terms to all gene numbers annotated in this
pathway term. g < 0.05 as significantly enriched.

The differential expression in immune-related genes were identified from 13 pathways (Table S3)
and were mapped to the KEGG database and observed their association among cytokines and their
receptors (e.g., IL6, ILS, IL8R, IL4R, IL13RA1, IL12RB2, CXCL12, CXCR4, CCR5), toll-like receptor
signalling (TLR) pathways (Figure S2) (e.g., LBP, CASPS8, IKK v, IKK «, IKK 3, TRAF6, RIP1, CTSK,
TLR3, IFN-afR, IKKe, STAT1, IRF3, IRF7, p38, TNF «, IL13, IL12, IL8, RANTES, CD40, CD86, IP10),
and T cell receptor signalling (e.g., TCR, CD3, CD4/8, CD28). N. seriolae infection also influenced genes
significantly related to transcriptional regulation, including NF-«B signalling (Figure S3) (NEMO,
TRIM25, IKBKG, and RIP1), and JAK-STAT signalling (Figure 54) (STAM, STAT1, SOCS, and SHP2).
Unigenes representative of genes differentially expressed during bacterial infection are listed in Table 1.
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Table 1. Immune-related differentially expressed genes (DEGs) regulated after infection.

Name Description Fold Change  Change
RIG I like receptor
trim25 Tripartite motif-containing protein 25 1.32 Up
dhx58 ATP-dependent RNA helicase dhx58 3.41 Up
ddx3x ATP-dependent RNA helicase ddx3x 6.28 Up
ikbke Inhibitor of nuclear factor x-B kinase subunit epsilon 2.54 Up
ikbkg Inhibitor of nuclear factor x-B kinase subunit -y 2.87 Up
irf3 Interferon regulatory factor 3 2.50 Up
irf7 Interferon regulatory factor 7 1.10 Up
casp8 Caspase 8 1.35 Up
casp10 Caspase 10 1.08 Up
ikkp Inhibitor of nuclear factor x-b kinase subunit —1.62 Down
traf6 TNF receptor-associated factor 6 3.11 Up
p38 p38 MAP kinase —8.64 Down
il-8 Interleukin-8 2.27 Up
ip-10 Chemokine (c-x-c motif) 10 2.32 Up
tnf-a Tumor necrosis factor superfamily, member 2 2.32 Up
il-12 Interleukin-12a 3.41 Up
Ibp Lipopolysaccharide-binding protein 2.94 Up
casp8 Caspase 8 1.35 Up
ripl Receptor-interacting serine/threonine-protein kinase 1 1.31 Up
ctsk Cathepsin K —11.52 Down
tlr-3 Toll-like receptor 3 1.16 Up
ifnarl Interferon receptor 1 1.67 Up
stat1 Signal transducer and activator of transcription 1 2.38 Up
il1b Interleukin 1, B 2.44 Up
rantes Chemokine (c-c motif) 5 2.03 Up
cd40 Tumor necrosis factor receptor superfamily, member 5 1.15 Up
cd86 cd86 antigen -1.22 Down
Cytokine-cytokine receptor interaction
cxcl7 Platelet basic protein -1.51 Down
cxcl10 Chemokine (c-x-c motif) 10 2.27 Up
cxcll3 Chemokine (c-x-c motif) 13 2.27 Up
cxcll4 Chemokine (c-x-c motif) 14 —2.59 Down
il8rb Interleukin 8 receptor, B —1.16 Down
il8ra interleukin 8 receptor, « -1.16 Down
cxcr3 Chemokine (c-x-c receptor) type 3 1.13 Up
xerl Chemokine xc receptor 1 3.82 Up
ccl20 Chemokine (c-c motif) 20 5.16 Up
ccl25 Chemokine (c-c motif) 25 -1.17 Down
ccl19 Chemokine (c-c motif) 19 5.16 Up
ccl21 Chemokine (c-c motif) 21 -1.17 Down
ccld Chemokine (c-c motif) 5 2.03 Up
ccr3 Chemokine (c-c receptor) type 3 3.82 Up
ilr Interleukin 6 receptor -2.11 Down
illlra Interleukin 11 receptor « 4.20 Up
csfr Colony-stimulating factor receptor (granulocyte) 1.76 Up
il13ral Interleukin 13 receptor, a-1 291 Up
il12rb2 Interleukin 12 receptor, B-2 1.76 Up
il23r Interleukin 23, receptor 1.76 Up
csf2ra Granulocyte-macrophage colony-stimulating factor receptor o 291 Up
illra Interleukin 1 receptor, & 1.15 Up
il21r Interleukin 21, receptor —2.67 Down
epor Erythropoietin receptor —1.85 Down
ghr Growth hormone receptor —9.49 Down
mpl Thrombopoietin receptor -1.26 Down
flt1 FMS-like tyrosine kinase 1 118 Up
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Table 1. Cont.
Name Description Fold Change  Change
Cytokine-cytokine receptor interaction
met Proto-oncogene tyrosine-protein kinase met —2.17 Down
egf Epidermal growth factor -1.07 Down
egfr Epidermal growth factor receptor —1.64 Down
csflr Macrophage colony-stimulating factor 1 receptor 1.80 Up
ifnarl Interferon receptor, 1 1.67 Up
ifnar2 Interferon receptor, 2 152 Up
il10ra Interleukin 10 receptor, x 4.20 Up
il10rb Interleukin 10 receptor, B —1.50 Down
tnfsf11b Tumor necrosis factor receptor superfamily, member 11B 1.80 Up
tnfsf12 Tumor necrosis factor ligand superfamily, member 12 —1.10 Down
Tnfb Tumor necrosis factor b (TNF superfamily, member 2) 2.33 Up
tnfsf14 Tumor necrosis factor (receptor) superfamily, member 14 1.20 Up
tnfsf6b Tumor necrosis factor (receptor) superfamily, member 6b 1.80 Up
faslg Tumor necrosis factor (ligand) superfamily, member 6 1.13 Up
cd40 Tumor necrosis factor (receptor) superfamily, member 5 1.15 Up
tnfsf13b Tumor necrosis factor (ligand) superfamily, member 13B -1.19 Down
tgfbr2 TGF-p receptor type-2 —2.10 Down
Antigen processing and presentation
psmel Proteasome activator subunit 1 1.57 Up
hsp70 Heat shock 70 kDa protein 4.01 Up
hsp90 Molecular chaperone HtpG 2.00 Up
tap1/2 ATP-binding cassette, subfamily b (MDR/TAP), member 2 2.72 Up
tapbp Tap binding protein (tapasin) 2.46 Up
pdia3 Protein disulfide isomerase family a, member 3 10.67 Up
mhci Major histocompatibility complex, class I 5.19 Up
b2m B-2-microglobulin 1.25 Up
mbhcii Major histocompatibility complex, class IT 1.99 Up
ciita Class II, major histocompatibility complex, transactivator 1.74 Up
ter-u T cell receptor a chain v region —9.97 Down
Natural Killer Cell Mediated Cytotoxity
cd48 cd48 antigen 2.29 Up
trailr Tumor necrosis factor (receptor) superfamily, member 10 —1.02 Down
prfl Perforin 1 9.91 Up
grb Granzyme B —1.74 Down
igg Immunoglobulin heavy chain g 5.30 Up
feyr3 Low affinity immunoglobulin -y Fc region receptor 111 1.59 Up
fasl Tumor necrosis factor (ligand) superfamily, member 6 1.13 Up
shp-2 Tyrosine-protein phosphatase non-receptor type 11 9.78 Up
dap-12 Tyro protein tyrosine kinase binding protein —2.26 Down
vavl Guanine nucleotide exchange factor vav 1.24 Up
3bp2 sh3-domain binding protein 2 9.78 Up
slp-76 Lymphocyte cytosolic protein 2 -3.12 Down
shel SHC-transforming protein 1 9.78 Up
can Serine/threonine-protein phosphatase 2B catalytic subunit 1.58 Up
pkc Classical protein kinase c « type 1.0 Up

2.4. Differentially Expressed Gene Validation Using Real-Time PCR

We identified immune-related gene sequences that were upregulated from DEG in largemouth
bass (Table S4), and evaluated their homology with those from other fish species using the NCBI
database. These sequences will be used for our future studies in immune response of largemouth bass

to Nocardia seriolae. The expression levels of seven differentially expressed genes related to pathways
including TLR, RIG I-like receptors, cytokine-cytokine receptor interaction, natural killer cell mediated
cytotoxicity, and antigen processing and presentation (T-cell receptor (TCR)) were evaluated from
spleen tissue. The expression levels were largely consistent with the transcriptome profile analyses
suggesting that the transcriptome data were reliable (Figure 5).



Int. ]. Mol. Sci. 2016, 17,1315 9of 16

16
m gPCR ®mRNA-seq *
14
12

10

I e

IL-12 p40 IL-8 IL-1 TCR CD40 IL-1p TNF

Figure 5. Comparative gene expression analysis from qPCR and RNA-Seq in spleen from the infected
largemouth bass with N. seriolae and compared with those in the control at the 24 h time point.
Expression of target genes was normalized to B-actin as a reference gene. Statistically significant
differences from control are presented, with * p < 0.05.

3. Discussion

In the present study, lllumina sequencing of control and infection treatment groups yielded 47,881
merged unigenes from spleen tissue of largemouth bass (M. salmoides). This study selected the spleen
of largemouth bass 24 h after challenge as experimental samples. After challenge with N. seriolae
we observed upregulations of many immune-related genes in the largemouth bass. Noticeably,
immune-related pro-inflammatory cytokines and signal transduction related genes, including IL-1f3,
TNF receptor, CXC chemokine, TGF-f3, and NF-«B, were the most significantly upregulated transcripts.

After assembly, 47,881 unigenes were generated with an average length of 1038 bp and an N50 of
1983 bp, longer than the sequences achieved in previous studies using a Roche GS FLX 454 system
(Basel, Switzerland) with a MIRA assembler [30] or an Illumina/Hiseq-2000 with assembling program
SOAP [31]. This difference in sequence quality may be explained by differences in the sampling
tissue and de novo assemblers. Since largemouth bass has an absence of a reference genome in the
database, the Trinity program used in this study showed better performance compared to other tools in
transcriptome assembly [32,33]. In contrast to Trinity, SOAP or MIRA assemblies adopted in previous
studies [30,31] have been shown to be more fragmented with high levels of errors in sequencing
and polymorphism [33,34]. In this study, the largemouth bass transcriptome yielded 47,881 merged
unigenes from the Illumina/Hiseq-2000 RNA-Seq platform compared to 29,682 unigenes from the
Roche 454 system and 2139 unigenes from a SMART ¢cDNA library [35].

It is noteworthy that only 37,712 unigenes were annotated from the databases in this study
based on sequence similarity; this annotation limitation also exists in other marine organism
transcriptomes [36]. This could be explained due to the absence of a genomic database and genomic
studies on commercially important aquaculture species [32,37-39]. The GO, COG, and KEGG databases
used in this study for functional annotation provide valuable information about biological features
of largemouth bass challenged by N. seriolae. For example, in the KEGG analysis of 20,329 sequences
assigned to 244 KEGG pathways, genetic information processing accounted for 9567 pathways related
to pathogen infection (Figure 3). Together, these findings indicate that primary host immune pathways
are conserved in largemouth bass which are activated to protect against pathogen infections.

Cytokines are proteins which transfer information among cells to initiate complex intracellular
biological processes upon binding to corresponding cell-surface receptors. Moreover, cytokine levels
initiate an inflammatory response to bacterial exposure which guides towards leukocyte attraction and
activation of antimicrobial pathways [40,41]. Against this background, tumour necrosis factor alpha
(TNF-o), which is a first cytokine released during infection activates the downstream expression
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of other cytokines such as IL-1p and chemokines [42,43]. In the present study, after N. seriolae
infection it was observed that different cytokines and cytokine receptor families are upregulated
in cytokine—cytokine receptor interaction signalling pathways (Table 1), including chemokine receptors
(CXCL10, CXCR3, XCR1, CCL 20, 25, 19, 21, 5, CCR3), hematopoietin receptors (IL11RA IL6R), TNF
receptors (SF11B, TNFSF12, SF14, and SF6B), TGF-f3 receptors (TGFBR2), and IL-1 receptors (IL-1f3,
IL-18, and IL-1R1). These data indicate that, in the case of largemouth bass in early stages of N. seriolae
infection, cytokine—cytokine receptor interaction may represent an important anti-bacterial mechanism.

In the host, pattern-recognition receptors (PRRs) recognise pathogen-associated molecular
patterns (PAMPs) to defend against pathogen invasion and activate immune responses through
signalling pathways, such as TLRs, RIG-I-like receptors (RLRs), NOD-like receptors (NLRs) [44], and
C-type lectin receptors (CLRs) [45,46]. In this study, a total of 29 gene transcripts, which are involved
in the TLR signalling pathway, are found to be upregulated, including the fish-specific TLRs (TLR22),
and downstream effector molecules, such as LBP, CASPS, IKK «, IKK 3, TRAF6, TAK, TBK, IKK, and
RANTES. Additionally, we observed downstream effector molecules of cytokines and transcription
factors including p38, IRF3, IRF7, STAT1, IL-12, IL-8, CD40, CD86, and IP10. These suggest that
TLR mechanisms are conserved from fish to mammals. We observed upregulations in the expression
of pro-inflammatory cytokines in our study after N. seriolae infection including IL-13, IL-8, and
TNF-« (Figures S2 and S3). Our results on TNF-« and IL-1(3 were in agreement with the study on
Japanese flounder (Paralichthys olivaceus) in spleen after immersion challenge with N. seriolae, wherein
TNF-« and IL-f3 were upregulated at 24 h post challenge, while CC chemokine downregulated [47].
Moreover, in the case of human monocytes, cytokines induced within 24 h following Gram-positive
and Gram-negative bacterial infections [48].

The Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathway initiated
due to interleukins, IFNs, and growth factors present in the surrounding microenvironment [49].
Different cytokine receptors are associated with JAK for proliferation, survival, and differentiation in
lymphoid cell precursor [50,51], while STAT1 activated upon IFN-y signalling, resulting in enhanced
bacteria killing and protection [48]. In this study, the members of the JAK-STAT, including STAM and
Stat1, were upregulated (Figure S4). This can suggest that, the JAK-STAT pathway activated upon
N. seriolae infection in largemouth bass, which can further induce other pathways, namely NF-«B
signalling, the TGF-§3 activated SMAD pathway, and apoptosis [52].

4. Materials and Methods

4.1. Animal Maintenance

Healthy largemouth bass (Micropterus salmoides) without pathogen infection weighing 125 + 10 g
were used in this study. The fish were kept in an indoor facility at a constant temperature of 26 °C
and fed daily with commercial feed. The experiment was performed two weeks after acclimatisation.
Fish were anaesthetised for handling with 2-phenoxyethanol. Approval for the following animal
studies was obtained from the Centre for Research Animal Care and Use Committee of the National
Pingtung University of Science and Technology under protocol number 101-027, dated 19 March 2012.

4.2. Isolation, Cultivation, and Challenge with Nocardia seriolae

The bacterium N. seriolae was isolated from striped bass and found to be highly virulent in farmed
fish [53]. The species was identified by API ZYM and 16S rDNA sequencing, grown in Brain Heart
Infusion (BHI) broth for five days at 25 °C, and enumerated prior to the challenge test. Fifteen fish
were anaesthetised and injected intraperitoneally with 1.0 x 10° cfu N. seriolae that were suspended in
100 uL phosphate-buffered saline (PBS, pH 7.2). The remaining 15 fish per group received only PBS
(pH 7.2) as a control. After the fish were returned to the observation tanks, samples were taken at 24 h
post infection (hpi). Three fish each from the challenge (treatment) and control groups (n = 3) were
examined. Spleen tissue was dissected and total RNA was isolated.
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4.3. Total RNA Extraction, Preparation of cDONA Library, and Sequencing

Total RNA was extracted using TRIzol® reagent (Invitrogen Corp., Carlsbad, CA, USA). RNA
integrity was assessed using Agilent Bioanalyzer 2100 system (Agilent Technologies, Palo Alto, CA,
USA). A TruSeq™ RNA Sample Preparation Kit (Illumina, Inc., San Diego, CA, USA) was used for
cDNA library construction. Further, 40 pg total RNA was used for mRNA isolation using poly-T
oligo-attached magnetic beads. First-strand cDNA was synthesized using random hexamer primers
and Superscript III (Invitrogen, Carlsbad, CA, USA); this was followed by second-strand cDNA
synthesis, end repair, and adaptor ligation. The RNA-Seq library was sequenced on the Illumina
HiSeq™ 2000 (Illumina, Inc., San Diego, CA, USA) platform as paired-end reads to 100 bp at Genomics
Bioscience Technology Co., Ltd. (Taipei, Taiwan). The transcriptome raw sequencing datasets are
available from Sequence Read Archive (SRA) database in NCBI and the accession numbers are
SRX1739692 and SRX1738842. All of the information on the assembled unigene sequences and
annotations are available from the corresponding authors upon request.

4.4. Filtering of Sequencing Reads

Raw reads were defined as adaptor-polluted reads containing low-quality or unknown base (N)
reads; these reads were removed before downstream analyses. Internal software was used to filter
reads, removing (1) reads with adaptors; (2) reads in which unknown bases comprised greater than 5%
of the read; and (3) low quality reads (defined as the percentage of bases for which quality is less than
10 and greater than 20% in a read). After filtering, the remaining reads were called “Clean Reads” and
stored in FASTQ [54] format.

4.5. De Novo Transcriptome Assembly

Trinity [55] was used to perform de novo assembly with clean reads. Next, TIGR Gene Indices
clustering tools, or Tgicl, was used to cluster transcripts to unigenes. In the case of two or more samples,
Tgicl would be re-executed with each sample’s unigene to obtain the final unigene for downstream
analysis. Unigenes were divided into two classes: clusters (CL), comprised of several unigenes with
shared similarity greater than 70%, and singletons (Unigenes).

4.6. Functional Unigene Annotation and Classification

For gene annotation, following database were used; NCBI non-redundant protein database [56],
gene ontology (GO) [57], Clusters of Orthologous Groups [58], and the Kyoto Encyclopaedia of Genes
and Genomes [59] with E-values less than 10~° using BlastP (Version 2.2.25) [60]. With functional
annotation, we selected the region of the unigene that best mapped to functional databases in a priority
order of NR, SwissProt, KEGG, and COG as its coding sequence (CDS), and displayed this sequence
region from 5’ to 3’ in FASTA format. Unigenes that could not be aligned to any database mentioned
above were predicted by ESTScan [61] using Blast-predicted CDS as the model.

4.7. Differentially Expressed Genes

Expression data from two libraries (treatment and control) were determined by mapping to the
transcriptome assembly using Bowtie2 software [62,63]. The fragments per kilobase of transcripts per
million fragments mapped (FPKM) values were analysed further using RESM [64] to get differentially
expressed genes (DEGs) in the spleen between the control and infected groups. Further, to determine
the threshold p-value in multiple tests, a false discovery rate (FDR) was used. Furthermore, significant
enrichment was calculated when FDR was <0.05 and FPKM values showed at least a two-fold difference
between the two samples reads.
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4.8. Real-Time Polymerase Chain Reaction

PCR primers were designed based on transcriptome sequences using Primer 2 Plus software
(Table 2). cDNA was synthesised from 2 g of total RNA using 200 U of M-MLYV reverse transcriptase
(Promega). -Actin served as internal control and RT-qPCR was performed using iQSYBR Green
Supermix (Bio-Rad Laboratories, Hercules, CA, USA), and each sample was run in triplicate.
The thermal gradient feature (CFX96, Bio-Rad Laboratories) was used to determine the optimal
annealing temperature for all primers. The real-time PCR program used was 95 °C for 3 min, followed
by 40 cycles of 95 °C for 15 s, 58 °C for 15 s, and 72 °C for 35 s. Dissociation and melting curves of
amplification products were performed and results were analysed using the CFX Manager Software
package (Bio-Rad Laboratories). The 2AACt method was chosen as the calculation method [65].
The difference in the cycle threshold (C;) value of the target gene and its housekeeping gene (S-actin),
called AC;, was calculated using the following equation: AAC; = (AC; of bacterial challenge or
PBS-injected group for the target gene at each time point) — (AC; of the initial control).

Table 2. Primer name, sequence, target gene, and their application used in the present study.

Name Sequence Target Gene Application
LMBIL-12 F1Q TCTTCCATCCTTGTGGTCTTCC 1L-12p40
LMBIL-12 R1Q CAGTTCCAGGTCAAAGTGGTC P
LMBIL-8 F1Q GAGCCATTTTTCCTGGTGACT 118
LMBIL-8 R1Q TCCTCATTGGTGCTGAAAGATC :
LMBIL-1 F1Q CAAGATGCCTAAGGGACTGGA -1
LMBIL-1 R1Q AGGTGAACTTTGCGGTTCTC :
LMBTCR F1Q ATCATCTTTGGAAGTGGAACC TCR
LMBTCR R1Q GATGTTGAAGACGACGGTCTT qPCR
LMBCD40 F1Q TACAAGTGAAACATGGGGCAAC CD40
LMBCD40 R1Q TGATGAAGAGTCCACCTTACCG
LMBB-Actin375F ~ CCACCACAGCCGAGAGGGAA B-actin
LMBf-Actin375R TCATGGTGGATGGGGCCAGG
LMBIL-13F TTGCCATAGAGAGGTTTA 116
LMBIL-18R ACACTATATGCTCTTCCA
LMBTNF«-F CTAGTGAAGAACCAGATTGT TNE
LMBTNF«-R AGGAGACTCTGAACGATG “

4.9. Statistical Analyses

Statistical analyses were performed using SPSS 16.0 software. All data are given as mean + SD.
Significant differences between samples were analysed by one-way analysis of variance (ANOVA),
and Duncan’s tests at a significance level of 0.05.

5. Conclusions

This study provides necessary information on differential immune gene transcriptome profiling in
largemouth bass (M. salmoides) infected with N. seriolae. Moreover, this transcriptome assembly could
be used as a reference for studies related to comparative biology within the genus or family. Of course,
we acknowledge that this transcriptome-level response to N. seriolae infections is a preliminary study
and larger scale studies are required to further understand the defence mechanisms in largemouth bass.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/8/1315/s1.
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Abbreviations

DGE digital gene expression

Tgicl is a pipeline for analysis of large Expressed Sequence Tags (EST)
NR NCBI non-redundant protein

NT NCBI nucleotide

COG Clusters of Orthologous Groups

KEGG Kyoto Encyclopedia of Genes and Genomes

ORF open reading frame

KO KEGG Orthology

CDs coding region of protein

INDEL insertion and deletion
HISAT is a fast and sensitive spliced alignment program for mapping RNA-Seq reads

GATK The Genome Analysis Toolkit

FPKM fragments per kilobase of transcripts per million fragments mapped

RESM is a software package for estimating gene and isoform expression levels from RNA-Seq data
FDR False discovery rate

NLR NOD-like receptors

TLR Toll-like receptors

PAMP Pathogen-associated molecular patterns

PRR Pattern-recognition receptors

CLR C-type lectin receptors

SRA NCBI Sequence Read Archive

SSR Simple Sequence Repeat

SNP single nucleotide polymorphism
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