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Abstract: Abdominal aortic aneurysm (AAA) is a vascular condition that causes permanent dilation
of the abdominal aorta, which can lead to death due to aortic rupture. The only treatment for AAA is
surgical repair, and there is no current drug treatment for AAA. Aortic inflammation, vascular smooth
muscle cell apoptosis, angiogenesis, oxidative stress and vascular remodeling are implicated in AAA
pathogenesis. Kallistatin is a serine proteinase inhibitor, which has been shown to have a variety of
functions, potentially relevant in AAA pathogenesis. Kallistatin has been reported to have inhibitory
effects on tumor necrosis factor alpha (TNF-α) signaling induced oxidative stress and apoptosis.
Kallistatin also inhibits vascular endothelial growth factor (VEGF) and Wnt canonical signaling, which
promote inflammation, angiogenesis, and vascular remodeling in various pre-clinical experimental
models. This review explores the potential protective role of kallistatin in AAA pathogenesis.

Keywords: kallistatin; serine proteinase inhibitors; abdominal aortic aneurysm; vascular remodelling;
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1. Introduction

Abdominal aortic aneurysm (AAA) is usually defined as a permanent dilation of the abdominal
aortic wall beyond a maximum diameter of ě30 mm [1,2]. Progressive AAA dilatation can lead to
rupture of the aorta, which causes bleeding and commonly death. AAAs most commonly affect men
aged over 65 years [3], and clinical practice lacks effective treatment other than surgical approaches
to repair AAAs [4]. Patients who have small AAAs (<55 mm), which are at low risk of rupture,
are generally monitored through imaging surveillance. Patients with large (ě55 mm), rapidly
growing (>10 mm/year) or symptomatic AAAs usually undergo repair by open surgical techniques or
endovascular stents. However, postoperative morbidity and mortality are still common [2,5].

Studies of pre-clinical AAA animal models and biopsies of large human AAAs have implicated
a range of mechanisms to be involved in the pathogenesis of AAA including degradation of the
aortic extracellular matrix by a range of proteolytic enzymes, such as matrix metalloproteinases
(MMPs); dysfunction of aortic vascular smooth muscle cells (VSMC) associated with their loss from
the aortic media through apoptosis [6–9]; and inflammatory cells infiltration into the aortic wall
which once activated produce pro-inflammatory cytokines, chemokines and proteolytic enzymes,
which promote cell migration and vessel remodeling [2,10–14]. Other mechanisms implicated in
AAA pathogenesis include angiogenesis [15] and oxidative stress [16]. AAA is often accompanied by
atherosclerosis. This is in contrast to the aneurysms observed in genetic disorders, such as Marfan and
Loeys-Dietz Syndromes.

Kallistatin is a member of the serine proteinase inhibitors (SERPIN) family. In human, it is encoded by
the SERPINA4 gene. It was first identified as a kallikrein binding protein that regulates the kinin-kallikrein

Int. J. Mol. Sci. 2016, 17, 1312; doi:10.3390/ijms17081312 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2016, 17, 1312 2 of 14

pathway [17,18]. Kallikrein produces kinin from kininogens by proteolysis. Kallistatin binds to
kallikrein to inhibit this process. Kallistatin has also been shown to have direct vascular effects,
such as promoting vasodilation within rat models when human kallistatin is administered through
gene overexpression [19]. Kallistatin is expressed in both endothelial cells (ECs) and VSMCs [20].
Kallistatin is also found in plasma, which is believed to reflect its production in the liver [17].
Decreased kallistatin levels have been previously associated with various disease conditions [21,22].
For example, Ma et al. reported decreased kallistatin level in the vitreous fluids in patients with
diabetic retinopathy [21]. Zhu et al. reported decreased plasma kallistatin levels in apparently healthy
African American adolescents with increased adiposity and cardio-metabolic risk [22].

Recent work has revealed potential protective functions of kallistatin in many pathophysiological
processes implicated in AAA, such as inflammation [23–26], oxidative stress [25,27], angiogenesis [26,28,29],
and hypertension [19,30,31]. The heparin binding domain of kallistatin is considered important for
these functions [32–34]. Evidence from pre-clinical studies suggests that reducing inflammation [35],
decreasing oxidative stress [36,37] and inhibiting angiogenesis [38] may limit AAA progression.
Hence, in clinical management of AAAs, treatments targeting these mechanisms are considered to
have potential benefits in managing AAAs [39]. In this review, we sought to highlight the potential
regulatory roles of kallistatin in mechanisms relevant in AAA pathogenesis and also the downstream
signaling pathways through which kallistatin exerts its actions.

2. Potential Roles of Kallistatin in AAA Pathogenesis

2.1. Kallistatin Attenuates Oxidative Stress

Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that has been consistently
reported to be upregulated in AAAs [40]. TNF-α signaling initiates through binding of its membrane
bound receptors TNFR-1 and 2. TNFR-2 is mainly expressed in immune cells and its functions remain
unclear, while TNFR-1 initiates three major signaling pathways in cells, such as EC, as shown in
Figure 1 [41,42]. Kallistatin has been shown to inhibit TNF-α induced oxidative stress and subsequent
inflammation and apoptosis in experimental studies (Table 1) [25,27,43–45]. The inhibitory effects of
kallistatin on TNF-α was discovered to be through competitive binding of TNF-α to the TNFRs through
its heparin binding domain, thus inhibiting its signaling, which resulted in attenuated inflammation,
oxidative stress and apoptosis of ECs [24,26,27].

Table 1. Studies showing the inhibitory effects of kallistatin mediated through blocking TNF-α
signaling on pathologies relevant to abdominal aortic aneurysm such as oxidative stress, inflammation
and apoptosis.

Inhibited Pathology In Vitro Model In Vivo Model References

Oxidative
stress/inflammation

Proximal tubular
cells, mesangial cells Dahl-salt sensitive rats [45]

HUVEC – [43]

– Hypertensive rats [25]

Oxidative
stress/apoptosis

Rat and human endo-PC Deoxycorticosterone acetate
salt-hypertensive rats [44]

HUVEC Rats [27]

Abbreviations: endo-PC—endothelial progenitor cells; HUVEC—human umbilical vein endothelial cells;
TNF-α—tumor necrosis factor alpha.
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Figure 1. Kallistatin inhibits oxidative stress, inflammation and apoptosis through inhibiting TNF-α 
signaling and promotes NO production through eNOS stimulation. Kallistatin blocks TNF-α 
signaling through competitive binding to TNFR. This inhibits downstream signaling pathways that 
are activated by TNF-α, such as IκB/NF-κB and p38 MAPK pathway, which activate many 
pro-inflammatory and pro-angiogenic markers, such as TNF-α, VEGF, interleukins, MCP-1, MMPs 
and adhesion molecules. Kallistatin also inhibits TNF-α induces oxidative stress and the caspase 
cascade to induce apoptosis through TNFR-1. Alternatively, kallistatin is able to directly inhibit 
NADPH oxidase activity to attenuate ROS production, as well as activating eNOS through KLF4 to 
produce NO, which neutralizes ROS [43]. Abbreviations: endo-PC-endothelial progenitor cell, 
HUVEC-human umbilical vein endothelial cell, TNF-α-tumor necrosis factor alpha. Abbreviations: 
Akt/PKB—protein kinase B; ATF1—activating transcription factor 1; Bim—Bcl2 binding protein; 
eNOS—endothelial nitric oxide synthase; IκB—inhibitor of nuclear factor κ B; IKK—IκB kinase; 
JNK—c-Jun N-terminal kinase; KLF4—kruppel like factor 4; MAPK—mitogen activated protein 
kinase; MKK—MAPK kinase; NADPH—nicotinamide adenine dinucleotide phosphate; 
NF-κB—nuclear factor κB; NO—nitric oxide; P—phosphorylation; PI3K—phosphoinositide 3 kinase; 
ROS—reactive oxygen species; TNF-α—tumor necrosis factor alpha; TNFR—TNF-α receptor. The 
blue arrow lines indicate promotional activity; the red stop lines indicate inhibiting activity; the red 
dashed cross indicates degradation. 

Oxidative stress is caused by excessive production of reactive oxygen species (ROS). The ROS 
signaling pathway is also known as redox signaling [46]. High level of ROS have been shown to 
promote apoptosis of ECs, while continuous low level of ROS promote EC proliferation and 
migration that promote angiogenesis [47,48]. Nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase is the main source of ROS in ECs [46]. Interestingly, redox signaling and vascular 
endothelial growth factor (VEGF) signaling appear to be in feedback interaction in ECs [46,49]. 
Numerous stimuli are able to activate NADPH oxidase in ECs including VEGF, angiopoietin-1, 
angiotensin II, cytokines, shear stress and hypoxia [47,50,51]. 

There is a close relationship between oxidative stress and kallistatin activity. Oxidative stress 
has been shown to suppress circulating levels of kallistatin and EC specific expression of kallistatin 
[52,53], while kallistatin has been shown to suppress ROS production in cardiac and renal cells 
[45,54]. Many studies have suggested that kallistatin has anti-oxidative stress functions through 
inhibiting NADPH oxidase activities in various cell types, such as cardiac, epithelial progenitor cells 
(epi-PCs) and endothelial progenitor cells (endo-PCs), as well as in experimental models of 
myocardial infarction, hypertension and diabetes in rodents [44,54–56]. Furthermore, administration 
of anti-kallistatin antibody to rats has been reported to increase superoxide formation within the 
aorta and increased NADPH activity in the kidney and heart which eventually led to organ 
hypertrophy, inflammation and fibrosis. This was evidenced by a concomitant increased expression 
of pro-inflammatory genes such as TNF-α [25,54]. 

Figure 1. Kallistatin inhibits oxidative stress, inflammation and apoptosis through inhibiting TNF-α
signaling and promotes NO production through eNOS stimulation. Kallistatin blocks TNF-α signaling
through competitive binding to TNFR. This inhibits downstream signaling pathways that are activated
by TNF-α, such as IκB/NF-κB and p38 MAPK pathway, which activate many pro-inflammatory
and pro-angiogenic markers, such as TNF-α, VEGF, interleukins, MCP-1, MMPs and adhesion
molecules. Kallistatin also inhibits TNF-α induces oxidative stress and the caspase cascade to induce
apoptosis through TNFR-1. Alternatively, kallistatin is able to directly inhibit NADPH oxidase
activity to attenuate ROS production, as well as activating eNOS through KLF4 to produce NO,
which neutralizes ROS [43]. Abbreviations: endo-PC-endothelial progenitor cell, HUVEC-human
umbilical vein endothelial cell, TNF-α-tumor necrosis factor alpha. Abbreviations: Akt/PKB—protein
kinase B; ATF1—activating transcription factor 1; Bim—Bcl2 binding protein; eNOS—endothelial
nitric oxide synthase; IκB—inhibitor of nuclear factor κ B; IKK—IκB kinase; JNK—c-Jun N-terminal
kinase; KLF4—kruppel like factor 4; MAPK—mitogen activated protein kinase; MKK—MAPK kinase;
NADPH—nicotinamide adenine dinucleotide phosphate; NF-κB—nuclear factor κB; NO—nitric oxide;
P—phosphorylation; PI3K—phosphoinositide 3 kinase; ROS—reactive oxygen species; TNF-α—tumor
necrosis factor alpha; TNFR—TNF-α receptor. The blue arrow lines indicate promotional activity; the
red stop lines indicate inhibiting activity; the red dashed cross indicates degradation.

Oxidative stress is caused by excessive production of reactive oxygen species (ROS). The ROS
signaling pathway is also known as redox signaling [46]. High level of ROS have been shown to
promote apoptosis of ECs, while continuous low level of ROS promote EC proliferation and migration
that promote angiogenesis [47,48]. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is
the main source of ROS in ECs [46]. Interestingly, redox signaling and vascular endothelial growth
factor (VEGF) signaling appear to be in feedback interaction in ECs [46,49]. Numerous stimuli are able
to activate NADPH oxidase in ECs including VEGF, angiopoietin-1, angiotensin II, cytokines, shear
stress and hypoxia [47,50,51].

There is a close relationship between oxidative stress and kallistatin activity. Oxidative stress has
been shown to suppress circulating levels of kallistatin and EC specific expression of kallistatin [52,53],
while kallistatin has been shown to suppress ROS production in cardiac and renal cells [45,54].
Many studies have suggested that kallistatin has anti-oxidative stress functions through inhibiting
NADPH oxidase activities in various cell types, such as cardiac, epithelial progenitor cells (epi-PCs) and
endothelial progenitor cells (endo-PCs), as well as in experimental models of myocardial infarction,
hypertension and diabetes in rodents [44,54–56]. Furthermore, administration of anti-kallistatin
antibody to rats has been reported to increase superoxide formation within the aorta and increased
NADPH activity in the kidney and heart which eventually led to organ hypertrophy, inflammation
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and fibrosis. This was evidenced by a concomitant increased expression of pro-inflammatory genes
such as TNF-α [25,54].

A study by Shen et al. reported that kallistatin attenuated aortic superoxide formation in salt
induced hypertension in rats as well as inhibited TNF-α induced NADPH activity, oxidative stress
and apoptosis through the PI3K-Akt-eNOS pathway in ECs [27]. ECs produce nitric oxide (NO)
through endothelial nitric oxide synthase (eNOS), which neutralizes ROS. However, in oxidative stress
conditions, the formation of peroxynitrite from superoxide and NO causes eNOS uncoupling and
production of ROS [57,58]. ROS is known to induce apoptosis through inducing c-Jun NH2-terminal
kinase (JNK) mediated Bim (a Bcl2 binding protein) nuclear translocation [53]. In an alternative
pathway, kallistatin induces NO production through kruppel like factor–4 (KLF4) mediated eNOS
activation and expression [43]. Thus, the switch of eNOS to produce NO by kallistatin stimulation
inhibits ROS induced JNK-Bim mediated apoptosis [27]. Since ROS and cell apoptosis are implicated in
AAA, stimulating kallistatin to upregulate NO production and limit cell apoptosis could be a potential
target for therapy for AAA (Figure 1) [19,24,26,27,42–44,54,56,59–64].

2.2. Kallistatin Attenuates Angiogenesis and Inflammation

A previous study has shown that AAAs is associated with a marked angiogenic response directly
related to the extent of inflammation within the aortic wall [65]. In this process, ECs proliferate and
produce inflammatory cytokines, chemokines and MMPs. This initiates an influx of inflammatory
cells which produce more cytokines, chemokines and MMPs that foster further endothelial activation,
proliferation and inflammatory cell recruitment [66–71]. Upregulation of pro-angiogenic cytokines and
medial neovascularization have been reported at the site of AAA rupture in human samples suggesting
that angiogenesis plays an important role in AAA rupture [72]. VEGF is the most well-known
and potent pro-angiogenic factor, especially the VEGF-A isoform [73–77]. There are three VEGF
receptors—1, 2 and 3, identified so far. Among them, the type 2 receptor, VEGFR-2, which is also
known as kinase insert domain receptor (KDR), a type III receptor tyrosine kinase, is the one that
mediates downstream signaling of VEGF-A to induce EC activation and proliferation and promote
angiogenesis (Figure 2) [29,32,44,46,48,54,56,77–99].

Kallistatin had been shown to inhibit VEGF signaling within in vitro studies. Huang and
colleagues showed that recombinant human kallistatin inhibited VEGF165 mediated tyrosine
phosphorylation of VEGFR-2 in human umbilical vein endothelial cells (HUVECs). Furthermore,
it was also shown that the kallistatin mediated inhibition of VEGFR-2 was also accompanied by
reduced downstream Akt and ERK phosphorylation [29]. The study reported by Miao and colleagues
provided direct evidence of the ability of kallistatin to inhibit VEGF signaling by competitive binding
to a VEGF receptor in human dermal microvascular endothelial cells (HDMECs). Using a site directed
mutant of human kallistatin (K312A/K313A), they also confirmed that the heparin binding domain of
kallistatin is important to this function [34].

The Wingless (Wnt) signaling pathway is a tightly regulated, highly complex system which
mediates a diverse range of cellular activities including proliferation, apoptosis, migration and
differentiation, all of which are relevant in AAA pathogenesis. There are 19 potential Wnt ligands that
are able to bind to 10 transmembrane G-protein-coupled receptors of the Frizzled (Fzd) family [100].
The signaling pathways activated as a consequence of Wnt/Fzd binding are categorized into canonical
and non-canonical pathways (Figure 3) [101–108]. In vitro experiments suggest that kallistatin inhibits
the Wnt pathway at the extracellular or the receptor level. Kallistatin binds to the extracellular domain
of low density lipoprotein receptor-related protein 6 (LRP6) which blocks Wnt canonical pathway
signaling through β-catenin [105,109,110]. This has potential anti-angiogenic and anti-inflammatory
effects as shown by Liu et al. in a diabetic mouse model of retinopathy [105]. It was shown that
overexpression of human kallistatin in the retina of Akita mice, significantly decreased the expression
of pro-angiogenic factors such as VEGF, intercellular adhesion molecule (ICAM)-1 as well as the
number of CD11+ b leukocytes suggesting that overexpression of kallistatin suppressed Wnt signaling
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induced by ischemia or diabetes [105]. They also demonstrated that human kallistatin reduced VEGF
and TNF-α levels which were increased in retinal cells treated with high glucose in culture [105].
Similar phenomenon of attenuated VEGF and TNF-α production by kallistatin were also observed in
breast cancer and wound healing models [110,111].Int. J. Mol. Sci. 2016, 17, 1312 5 of 14 
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Figure 2. Kallistatin inhibits angiogenesis and inflammation through blocking VEGF signaling and
NADPH oxidase activity. Kallistatin inhibits VEGF signaling through VEGFR-2 by its heparin-binding
domain. VEGF-VEGFR signaling through PI3K-Akt pathway; the p38 MAPK pathway; and the PLC
pathway leads to ROS/NO production, apoptosis, gene expression, cell migration, cell proliferation
and inflammation. All of which are involved in angiogenesis. Kallistatin also directly inhibits
NADPH oxidase activity and attenuates ROS production. NADPH oxidase is a complex consisting
of several components. NADPH activity and VEGF-A/VEGFR-2 signaling have close interaction
that is able to induce or activate many proangiogenic factors, such as MCP-1, VEGF, NF-κB, IL-8,
VCAM-1, VE-cadherin and HIF1α in endothelial cells. Abbreviations: Akt—also known as protein
kinase B—PKB; DAG—diacylglycerol; ERK—extracellular signal-regulated kinase; eNOS—endothelial
nitric oxide synthase; HIF1α—hypoxia induced factor 1 alpha; IκB—inhibitor of nuclear factor
κB; IL-8—interleukin-8; MAPK/MEK—mitogen activated protein kinase; MCP-1—monocyte
chemoattractant protein-1; NADPH—nicotinamide adenine dinucleotide phosphate; NF-κB—nuclear
factor κ B; NO—nitric oxide; PDK1/2—3-phosphoinositide dependent protein kinase 1 and 2;
PI3K—phosphatidylinositol-3 kinase; PIP2—phosphatidylinositol 4,5-bisphosphate; PKC—protein
kinase C; PLC—phospholipase C; PTP—protein tyrosine phosphatase; Rac1—small GTPase;
ROS—reactive oxygen species; SOD—manganese superoxide dismutase; Src—non-receptor tyrosine
kinase; VCAM-1—vascular cell adhesion molecule-1; VE—vascular endothelial; VEGF-A—vascular
endothelial growth factor-A; VEGFR-2—VEGF receptor-2. The blue arrow lines indicate promotional
activity; the red stop lines indicate inhibiting activity.
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Figure 3. Kallistatin inhibits Wnt canonical pathway induced angiogenesis and inflammation. In the 
Wnt canonical pathways, mostly mediated by Wnt1, 3, 3a, 7a and 7b, Wnt/Fzd binding 
phosphorylates the associated co-receptor LRP5/6. This recruits Dsh which leads to binding of Axin 
at the membrane. Axin forms a degradation complex with APC, CK1α and GSK3β for β-catenin 
degradation. The recruitment binding of Axin to the membrane caused by Wnt/Fzd leads to an 
inactive degradation complex and the accumulation of β-catenin. The accumulated β-catenin 
mediates Wnt signaling by activating transcription factors, such as TCF, which induces transcription 
of genes, such as VEGF, ICAM-1 and TNF-α. Kallistatin binds to LRP6 and prevents LRP6 from 
phosphorylation which results in β-catenin degradation. Without β-catenin, Wnt canonical signaling 
is blocked. Abbreviation: AP-1—activator protein-1; APC—adenomatous polyposis coli; 
CAMKII—calmodulin dependent protein kinase; CK1α—casein kinase 1α; Dsh—the protein 
disheveled; GSK3β—glycogen synthase kinase-3β; ICAM-1—intracellulcar adhesion molecule-1; 
LRP5/6—low density lipoprotein receptor-related protein 5 or 6; PCP—planar cell polarity; 
OPG—osteoprotegerin; OPN—osteopontin; TCF—T-cell factor; TNF-α—tumor necrosis factor alpha; 
VEGF—vascular endothelial growth factor; the red arrow indicates increase in level; the tubular 
structure on the left represents cytoskeleton. The blue arrow lines indicate promotional activity; the 
red stop lines indicate inhibiting activity; the red dashed cross indicates degradation. 

The Wnt non-canonical pathway is mostly mediated by Wnt4, 5a and 11 resulting in increased 
Ca2+ which activates PKC and CAMKII which often activate nuclear factor of activated T-cells that 
promotes VEGF induced angiogenesis. Another signaling pathway activated by the Wnt 
non-canonical pathway is JNK which leads to gene transcription by activating AP-1. The Wnt 
non-canonical pathway is also able to activate the PCP pathway which leads to cell polarization and 
cytoskeletal rearrangement in ECs. 

A number of preclinical studies have suggested that kallistatin had anti-angiogenic functions 
(Table 2) [26,28,105,112,113]. In animal models of diabetes or oxygen induced retinopathy and 
neovascularization, administering human kallistatin to retinal cells or overexpressing human 
kallistatin in transgenic mice ameliorated neovascularization through inhibiting VEGF activity, 
endo-PC release from bone marrow and reducing activation of the Wnt canonical pathway 
[105,112,113]. The Wnt canonical pathway has been shown to stimulate EC proliferation and 
survival through VEGF-A upregulation [104,114]. In addition, Wang and colleagues reported that 
kallistatin inhibited proliferation of HDMECs and reduced vessel density in the ankles of arthritic 
rats through reducing TNF-α [26]. TNF-α was previously shown to induce the gene expressions of 
VEGF-A, VEGFR-2 and its co-receptor neuropilin-1 [60]. Further to this, kallistatin was shown to 

Figure 3. Kallistatin inhibits Wnt canonical pathway induced angiogenesis and inflammation.
In the Wnt canonical pathways, mostly mediated by Wnt1, 3, 3a, 7a and 7b, Wnt/Fzd binding
phosphorylates the associated co-receptor LRP5/6. This recruits Dsh which leads to binding of
Axin at the membrane. Axin forms a degradation complex with APC, CK1α and GSK3β for β-catenin
degradation. The recruitment binding of Axin to the membrane caused by Wnt/Fzd leads to an inactive
degradation complex and the accumulation of β-catenin. The accumulated β-catenin mediates Wnt
signaling by activating transcription factors, such as TCF, which induces transcription of genes, such as
VEGF, ICAM-1 and TNF-α. Kallistatin binds to LRP6 and prevents LRP6 from phosphorylation
which results in β-catenin degradation. Without β-catenin, Wnt canonical signaling is blocked.
Abbreviation: AP-1—activator protein-1; APC—adenomatous polyposis coli; CAMKII—calmodulin
dependent protein kinase; CK1α—casein kinase 1α; Dsh—the protein disheveled; GSK3β—glycogen
synthase kinase-3β; ICAM-1—intracellulcar adhesion molecule-1; LRP5/6—low density lipoprotein
receptor-related protein 5 or 6; PCP—planar cell polarity; OPG—osteoprotegerin; OPN—osteopontin;
TCF—T-cell factor; TNF-α—tumor necrosis factor alpha; VEGF—vascular endothelial growth factor;
the red arrow indicates increase in level; the tubular structure on the left represents cytoskeleton.
The blue arrow lines indicate promotional activity; the red stop lines indicate inhibiting activity; the
red dashed cross indicates degradation.

The Wnt non-canonical pathway is mostly mediated by Wnt4, 5a and 11 resulting in increased
Ca2+ which activates PKC and CAMKII which often activate nuclear factor of activated T-cells that
promotes VEGF induced angiogenesis. Another signaling pathway activated by the Wnt non-canonical
pathway is JNK which leads to gene transcription by activating AP-1. The Wnt non-canonical
pathway is also able to activate the PCP pathway which leads to cell polarization and cytoskeletal
rearrangement in ECs.

A number of preclinical studies have suggested that kallistatin had anti-angiogenic functions
(Table 2) [26,28,105,112,113]. In animal models of diabetes or oxygen induced retinopathy and
neovascularization, administering human kallistatin to retinal cells or overexpressing human kallistatin
in transgenic mice ameliorated neovascularization through inhibiting VEGF activity, endo-PC
release from bone marrow and reducing activation of the Wnt canonical pathway [105,112,113].
The Wnt canonical pathway has been shown to stimulate EC proliferation and survival through
VEGF-A upregulation [104,114]. In addition, Wang and colleagues reported that kallistatin inhibited
proliferation of HDMECs and reduced vessel density in the ankles of arthritic rats through reducing
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TNF-α [26]. TNF-α was previously shown to induce the gene expressions of VEGF-A, VEGFR-2 and
its co-receptor neuropilin-1 [60]. Further to this, kallistatin was shown to inhibit the Wnt canonical
pathway through binding to LRP6 and inhibiting TNF-α in cancer cells, both of which also resulted in
reduced VEGF expression [28,110]. Thus, it is evident that kallistatin has anti-angiogenic effects.

Table 2. Studies assessing the inhibitory effects of Kallistatin mediated through blocking VEGF, TNF-α
and Wnt canonical signaling pathways on pathologies relevant to abdominal aortic aneurysm such as
angiogenesis and inflammation.

Inhibited Pathology Pathways In Vitro Model In Vivo Model References

Retinal neovascularisation/
angiogenesis VEGF Retinal

capillary ECs Brown Norway rats [112]

Angiogenesis in cancer TNF-α/VEGF MCF-7 cells,
HUVEC Fertilized chicken egg [28]

Angiogenesis/
inflammation arthritis TNF-α HDMEC Rats [26]

Angiogenesis/Inflammation
Diabetic or OIR

Wnt canonical
pathway Retinal cells

Kallistatin transgenic
mice with OIR or type

I diabetes
[105]

Oxygen induced
retinopathy/angiogenesis

Wnt canonical
pathway – Kallistatin transgenic

mice, bet-gal mice [113]

Abbreviations: EC—endothelial cells; HDMEC—human dermal microvascular endothelial cells;
HUVEC—human umbilical vein endothelial cells; MCF—Michigan Cancer Foundation (MCF-7 is a breast
cancer cell line); OIR—oxygen induced retinopathy; TNF-α—tumor necrosis factor alpha; VEGF—vascular
endothelial growth factor.

2.3. Kallistatin Attenuates Defective Vascular Remodeling

Vascular remodeling is a dynamic process that changes the structure of blood vessels to maintain
a healthy state however in excess it contributes to AAA formation. Over activation of several cellular
activities including apoptosis, proliferation, migration and degradation of the extracellular matrix
contribute to excess vascular remodeling [115]. TNF-α is involved in all these four processes through
inducing production of VEGF, interleukins, cellular adhesion molecules and MMPs. The ability of
kallistatin to inhibit TNF-α and thereby limit angiogenesis, apoptosis, oxidative stress, inflammation,
and cell proliferation and migration may ameliorate defective vascular remodeling and may play
a protective role in vascular disorders, such as AAA. Kallistatin was originally shown to inhibit kallikrein
and thereby limit kinin formation [17,18]. Kinins have been implicated in AAA formation within
rodent models. Kinin B2 receptor blockade has been reported to protect against AAA development,
growth and rupture in a mouse model, as well as reducing MMP secretion from human AAA explant
in vitro [116]. Kinin B2 receptor blockade also limited neutrophil activation and development of
an inflammatory phenotype in VSMCs in vitro. The inhibitory effect of kallistatin on tissue kallikrein
would be expected to limit kinin generation and thereby antagonize the pro-aneurysmal effects of
the kallikrein-kinin pathway. However, there is evidence suggesting that kallistatin also increases
MMP-2 activity in human endo-PCs through enhancing NO and VEGF levels by activating PI3K-Akt
signaling [44]. Although this may facilitate vascular repair and regeneration through promoting
migration of endo-PCs. MMP-2 activity also contributes to medial matrix degradation in AAAs and
possibly even rupture [9]. Thus, the protective role of kallistatin in maintaining positive vascular
remodeling remains to be investigated further in pre-clinical AAA models.

3. Conclusions

In summary, AAA is a vascular disorder that is characterized by inflammation, apoptosis and
extracellular matrix degradation. This review illustrates the potential of kallistatin in suppressing
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AAA development through attenuating a wide range of pathological mechanisms (Figure 4) including
VEGF induced angiogenesis and inflammation, oxidative stress induced angiogenesis and apoptosis,
TNF-α induced inflammation, apoptosis and MMPs production, as well as Wnt canonical signaling
induced angiogenesis and inflammation. Direct studies examining the role of kallistatin in AAA are
warranted and also should assess the potential beneficial effect of kallistatin. Since kallistatin has
a range of actions, some of which may be detrimental, as well as beneficial, future studies should
consider both systemic and local upregulation of kallistatin. Achieving elevated kallistatin levels
through recombinant protein delivery and transgenic overexpressing methods has been reported to
reduce blood pressure in animal models [19,31,117], which could be beneficial in treating AAA patients.
However, this warrants further preclinical studies using established AAA models.
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