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Abstract: Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade
fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of
identifying features that are important for fiber formation. Although spiders and silkworms are very
distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms
produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due
to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are
produced and stored at a very high concentration in glands, and then transported along a narrowing
tube in which they change conformation in response primarily to a pH gradient generated by carbonic
anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert
from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors
that need to be optimized for successful production of artificial silk proteins capable of forming
tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins
throughout the purification and initial spinning processes.

Keywords: spidroin; fibroin; Bombyx mori; major ampullate gland; carbonic anhydrase; pH gradient;
protein conformation

1. Introduction

Spiders and silkworms produce silks with impressive properties. Not only do silk fibers represent
the strongest fibers in nature [1], they are also well tolerated when implanted in pigs [2], sheep [3],
and rats [4], and therefore represent interesting materials for a wide variety of applications. Spider
and silkworm silks are produced in specific glands from unique proteins that are spun under ambient
conditions. The domesticated silkworm Bombyx mori produces large amounts of silk for cocoons used
during the metamorphosis from larvae to moths, while spiders spin silk for a variety of purposes,
including web building, prey swathing, and reproduction, but only in small amounts. The ability
to produce silk has apparently evolved multiple times, in silkworms and spiders but also in other
members of the arthropod phylogeny [5]. The last common ancestor of silkworms and spiders lived
around 500 million years ago [6] and although the origin of their silk producing organs is different, there
are remarkable similarities in the way spiders and silkworms spin their silk, which are discussed herein.

2. Similar Gland Morphologies in Silkworms and Spiders

The silk glands in B. mori originate from salivary glands, which explains why the silk fiber exits
through a pore on the lower lip of the mouth of the silkworm. The silk glands are paired, but the
two filaments produced are fused into a single fiber near the pore [7]. The B. mori silk gland can be
divided into three macroscopic parts: the posterior silk gland (PSG), the middle silk gland (MSG) and
the anterior silk gland (ASG) (Figure 1a) [7,8].
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Figure 1. Macroscopic appearance of a B. mori silk gland with anterior silk gland (ASG), Funnel, 
middle silk gland (MSG) and posterior silk gland (PSG) identified (a) and a Major ampullate gland 
with Duct, Funnel, Sac and Tail indicated (b); Schematic image of a B. mori silk gland (c) and major 
ampullate gland (d) with pH values indicated in different parts. In (c) and (d) the regions containing 
epithelial cells with CA activity are shaded in grey, and fibroin/spidroin secreting parts are purple. 
Adapted from [8] (a,c) and [9,10] (b,d). 

In contrast to silkworms, most spiders have several different types of glands, which produce 
silks with varying mechanical properties [11,12]. In spiders, the silk glands are thought to have 
evolved from epidermal invaginations of the opisthosoma (abdomen), hence the spigots are 
positioned in a caudal ventral position on the opisthosoma [11]. Herein, we focus on the major 
ampullate gland, which produces the dragline silk. The major ampullate gland is present in pairs 
and is, similarly to the silkworm silk gland, divided into three parts; the tail, the sac and the duct 
(Figure 1b) [9,13]. 

The cells in the PSG of the B. mori silk gland, and the corresponding tail of the major ampullate 
gland, produce proteins—fibroins and spidroins, respectively—that are stored in the lumen of the 
MSG/sac [13,14] in a soluble state at a very high concentration [15]. The silk proteins are then 
transported through the ASG/duct where they change conformation in response to several factors 
(cf. below). Upon spinning, the fiber is pulled out by the motion of the head of the silkworm or by 
the motion of the spider’s leg or by other means (e.g., gravity if the spider is suspended, movement 
of the spider in the web, wind) [16]. 

Both the B. mori silk gland and the major ampullate gland epithelium consist of different types 
of single columnar cells in the PSG/tail and MSG/sac, respectively. The cells in the most proximal 
parts of the glands are responsible for secreting the major constituent of the silk, fibroins/spidroins 
(purple in Figure 1c,d) [8,9,17]. The cells in the MSG of B. mori glands secrete different types of 
sericin (purple, Figure 1c) [7,8,14], which will form a coat surrounding the fibroin. In the major 
ampullate gland, the cell types present in the proximal part of the sac produce spidroins (purple, 
Figure 1d) [9] while the epithelium of the most distal part of the sac and the duct produces carbonic 
anhydrase (CA) (grey, Figure 1d). CA interconverts H2O + CO2 and H+ + HCO3− and is responsible 
for the generation and maintenance of the pH gradient of the gland (cf. below) [10]. In analogy, the 
final cell type in the MSG and the cells along the ASG found in B. mori silk glands likewise produce 
CA (grey, Figure 1c) [8]. 

At the funnel, a cuticular intima appears that lines the apical (interior) part of the ASG/duct 
epithelium all the way to the lip pore/spigot [7–9]. The cuticular intima in spiders has been 

Figure 1. Macroscopic appearance of a B. mori silk gland with anterior silk gland (ASG), Funnel, middle
silk gland (MSG) and posterior silk gland (PSG) identified (a) and a Major ampullate gland with Duct,
Funnel, Sac and Tail indicated (b); Schematic image of a B. mori silk gland (c) and major ampullate
gland (d) with pH values indicated in different parts. In (c) and (d) the regions containing epithelial
cells with CA activity are shaded in grey, and fibroin/spidroin secreting parts are purple. Adapted
from [8] (a,c) and [9,10] (b,d).

In contrast to silkworms, most spiders have several different types of glands, which produce silks
with varying mechanical properties [11,12]. In spiders, the silk glands are thought to have evolved
from epidermal invaginations of the opisthosoma (abdomen), hence the spigots are positioned in a
caudal ventral position on the opisthosoma [11]. Herein, we focus on the major ampullate gland,
which produces the dragline silk. The major ampullate gland is present in pairs and is, similarly to the
silkworm silk gland, divided into three parts; the tail, the sac and the duct (Figure 1b) [9,13].

The cells in the PSG of the B. mori silk gland, and the corresponding tail of the major ampullate
gland, produce proteins—fibroins and spidroins, respectively—that are stored in the lumen of the
MSG/sac [13,14] in a soluble state at a very high concentration [15]. The silk proteins are then
transported through the ASG/duct where they change conformation in response to several factors
(cf. below). Upon spinning, the fiber is pulled out by the motion of the head of the silkworm or by the
motion of the spider’s leg or by other means (e.g., gravity if the spider is suspended, movement of the
spider in the web, wind) [16].

Both the B. mori silk gland and the major ampullate gland epithelium consist of different types of
single columnar cells in the PSG/tail and MSG/sac, respectively. The cells in the most proximal parts
of the glands are responsible for secreting the major constituent of the silk, fibroins/spidroins (purple
in Figure 1c,d) [8,9,17]. The cells in the MSG of B. mori glands secrete different types of sericin (purple,
Figure 1c) [7,8,14], which will form a coat surrounding the fibroin. In the major ampullate gland, the
cell types present in the proximal part of the sac produce spidroins (purple, Figure 1d) [9] while the
epithelium of the most distal part of the sac and the duct produces carbonic anhydrase (CA) (grey,
Figure 1d). CA interconverts H2O + CO2 and H+ + HCO3

´ and is responsible for the generation and
maintenance of the pH gradient of the gland (cf. below) [10]. In analogy, the final cell type in the MSG
and the cells along the ASG found in B. mori silk glands likewise produce CA (grey, Figure 1c) [8].

At the funnel, a cuticular intima appears that lines the apical (interior) part of the ASG/duct
epithelium all the way to the lip pore/spigot [7–9]. The cuticular intima in spiders has been
hypothesized to protect the underlying cells of the duct from laceration caused by the appearing
fiber [18]. It has also been suggested to act as a hollow dialysis membrane, aiding in dehydrating
the spinning dope [19]. The ASG in B. mori and duct of the major ampullate gland are very similar



Int. J. Mol. Sci. 2016, 17, 1290 3 of 14

in appearance and in a cross-section one can see epithelial cells with very abundant microvilli at the
apical cell membrane, lined by the cuticular intima surrounding a lumen [8,9] (Figure 2). The diameter
of the lumen in both the ASG and the duct is narrowing towards the lip pore/spigot. However, there
is a big difference in size and geometry between spiders and silkworms, which is modeled to affect
shear forces generated within the ASG/duct, cf. below [20]. The duct of the major ampullate gland has
a slow and steady decrease in diameter going from around 100 µm to <10 µm [21], while the silkworm
silk gland ASG diameter starts at 400 µm and after a sudden drop to 100 µm there is a slow decrease in
diameter until it ends at around 50 µm [7].
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of a cross-section of the ASG from a B. mori silk gland (b). Mv: microvilli, Lu: lumen, CI: Cuticular 
intima. Scale bars (a) 2 µm (b) 15 µm. In (a) the microvilli appear detatched from the cuticular intima, 
likely due to processing of the section for transmission electron microscopy. 

3. pH Gradients, Ions and Shear Forces Govern Silk Formation 

pH gradients have been inferred to be important for fiber formation in both silkworms and 
spiders, based on in vitro studies of regenerated silk proteins and recombinant spider silk proteins, 
but there are only a few reports on measured pH values in silk glands. The pH gradient in B. mori 
silk glands has been proposed to go from 6.9 in the PSG, to around 5 in the MSG and down to 4.8 in 
the ASG [22], but technical details for the underlying experiments were not described [17]. Another 
study, using injection of phenol red in the haemocoel of silkworms, showed that pH was 7–8 in the 
PSG and 5–6 in the MSG, while the dye could not penetrate the ASG [23]. Similar studies using pH 
sensitive dyes have been performed on major ampullate glands of spiders and have given pH values 
starting at ~7 in the sac going down to 6–6.5 in the duct [24,25]. pH sensitive dyes have low 
resolution, which likely explains why no difference in pH could be found between the beginning 
and end of the duct [24,25]. In two recent studies, pH was measured in silk glands of B. mori  
fifth instar larvae as well as in Nephila clavipes major ampullate glands using ion-selective 
microelectrodes [8,10]. The microelectrodes were very small, with tip sizes of 2–4 µm, which allowed 
for measurements also in the tiny PSG/tail and ASG/duct. In both the spider and the silkworm, pH 
was higher in the PSG/tail than previously reported, reaching >7.5 (Figure 1). In the major ampullate 
gland duct the pH was much lower than anticipated with a pH of 5.7 in the middle of the duct [10], 
while in the silkworm silk gland the lowest pH measured was 6.2 in the beginning of the ASG [8] 
(Figure 1). The pH gradients are apparently tightly controlled, since measured pH values are 
remarkably consistent, with less than 0.1 pH unit differences between individual spiders [10]. In 
none of the studies performed has the pH at the very end of the duct/ASG been possible to measure, 
since the duct/ASG is impenetrable for both dyes and microelectrodes. The exact mechanism 

Figure 2. Transmission electron micrograph of a cross-section of the third limb of the duct of an
Euprosthenops australis major ampullate gland (a) and a hematoxylin-eosin stained light micrograph of
a cross-section of the ASG from a B. mori silk gland (b). Mv: microvilli, Lu: lumen, CI: Cuticular intima.
Scale bars (a) 2 µm (b) 15 µm. In (a) the microvilli appear detatched from the cuticular intima, likely
due to processing of the section for transmission electron microscopy.

3. pH Gradients, Ions and Shear Forces Govern Silk Formation

pH gradients have been inferred to be important for fiber formation in both silkworms and
spiders, based on in vitro studies of regenerated silk proteins and recombinant spider silk proteins,
but there are only a few reports on measured pH values in silk glands. The pH gradient in B. mori
silk glands has been proposed to go from 6.9 in the PSG, to around 5 in the MSG and down to 4.8 in
the ASG [22], but technical details for the underlying experiments were not described [17]. Another
study, using injection of phenol red in the haemocoel of silkworms, showed that pH was 7–8 in the
PSG and 5–6 in the MSG, while the dye could not penetrate the ASG [23]. Similar studies using
pH sensitive dyes have been performed on major ampullate glands of spiders and have given pH
values starting at ~7 in the sac going down to 6–6.5 in the duct [24,25]. pH sensitive dyes have low
resolution, which likely explains why no difference in pH could be found between the beginning and
end of the duct [24,25]. In two recent studies, pH was measured in silk glands of B. mori fifth instar
larvae as well as in Nephila clavipes major ampullate glands using ion-selective microelectrodes [8,10].
The microelectrodes were very small, with tip sizes of 2–4 µm, which allowed for measurements also in
the tiny PSG/tail and ASG/duct. In both the spider and the silkworm, pH was higher in the PSG/tail
than previously reported, reaching >7.5 (Figure 1). In the major ampullate gland duct the pH was
much lower than anticipated with a pH of 5.7 in the middle of the duct [10], while in the silkworm silk
gland the lowest pH measured was 6.2 in the beginning of the ASG [8] (Figure 1). The pH gradients
are apparently tightly controlled, since measured pH values are remarkably consistent, with less than
0.1 pH unit differences between individual spiders [10]. In none of the studies performed has the pH
at the very end of the duct/ASG been possible to measure, since the duct/ASG is impenetrable for
both dyes and microelectrodes. The exact mechanism whereby acidification of the dope occurs is still
not fully elucidated. The generation and maintenance of the pH gradient has been attributed to CA
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activity in the ASG of silkworm silk glands [8] and in part of the sac and duct of the major ampullate
gland [10] as well as to ATPase driven proton pumps in the epithelium of silkworm glands [26] and in
the duct of major ampullate glands [27].

Ion concentration gradients have been suggested to play a role in fiber formation, and have been
studied in both B. mori silk glands and major ampullate glands. In silkworms, copper levels in different
parts of the silk gland were measured using proton induced X-ray emission, and an increase from PSG
to ASG was measured [28]. Furthermore, proton induced X-ray emission, inductively coupled plasma
mass spectroscopy and atomic adsorption spectroscopy showed that levels of sodium, potassium,
magnesium and zinc also increase from PSG to ASG, while calcium levels decreased significantly [29].
Potassium, phosphorus and sulphur levels increase from proximal to distal parts of the major
ampullate gland, while sodium and chloride levels decrease according to an analysis performed using
cryo-SEM-EDAX (scanning electron microscope-energy dispersive X-ray) [24]. The cryo-SEM-EDAX
data show statistically significant differences in ion levels at different locations, but there are large
variations in the measurements, making interpretations difficult. Moreover, the final point measured is
not in the duct, but in the fiber, and it is unclear if a correlation would be found if measurements were
confined to the duct. For example, in B. mori silk glands, the copper levels were significantly higher in
the fiber than in the end of the ASG [28].

The large total surface area provided by the microvilli at the apical end of the cells in the
ASG/duct [8,9] probably allow for efficient absorption of water from the dope [19], which contributes
to fiber formation. Shear forces are also important for fiber formation and a stress-induced phase
transition of the spinning dope is evident in both spiders and silkworms [7,30,31]. Although the ASG
and duct are similar in appearance and function, modeling suggests that the shear forces within the
ASG and duct are different [20], with significantly stronger forces within the major ampullate gland
duct, which might influence the tensile properties of the silk fibers. The difference in generated shear
force between silkworms and spiders is ascribed to the differences in ASG and duct geometry [20].

4. A Comparison of Fibroins and Spidroins

B. mori fibers consist of several different proteins: the fibroin light (around 25 kDa) and heavy
chain (around 350 kDa), fibroin p25 (a polypeptide which associates to the heavy and light chain by
hydrophobic interactions), and sericin [32,33]. The fibroin heavy chain consists of the two hydrophilic
N- and C-terminal domains (NT and CT), and a highly repetitive glycine and alanine-rich (GA) region
consisting of 12 repetitive GA segments with conserved linker sequences in between. The fibroin heavy
chain NT (FibNT) is 151 amino acid residues long [33] and adopts mainly a random coil conformation
at neutral pH, while it folds into a double-layered anti-parallel beta sheet dimer at low pH [34]. The pH
sensitivity is attributed to a cluster of acidic residues that are protonated around pH 6 and thereby the
conformational change can take place [34]. The fibroin heavy chain CT (FibCT) is 58 residues long, its
structure has not been characterized, and it is bound to the light chain by a disulfide bond. The fibroin
light chain is a nonrepetitive protein rich in arginine and lysine. The exact function and importance of
the fibroin light chain has been debated [35–37] but findings by Chen et al. [38] indicate that it plays an
important role in lysine-mediated cross links in silk, which are common also in for example collagen
and elastin.

Dragline silk also consists of several proteins, mainly major ampullate spidroins (MaSps) 1 and 2
that are very similar in primary structure [6]. The overall architecture of the MaSps is reminiscent of the
fibroin heavy chain, with a repetitive region rich in glycine and alanine amino acid residues, flanked
by two non-repetitive terminal domains, NT and CT. However, the amino acid sequences of NT, CT
and the repetitive part are very different between the fibroin heavy chain and MaSps. The FibNT [35]
and the spidroin NT (SpNT) [39] are not homologous, nor are FibCT [35] and spidroin CT (SpCT) [40].
The SpNT is an approximately 130 amino acid residue domain that folds into a five helix bundle
monomer with a dipolar charge distribution at high pH, while it dimerizes and forms an antiparallel
dimer at low pH [41–43]. In analogy to the FibNT, specific carboxylates prevent the dimerization of
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SpNT at high pH, and protonation of these side chains at around pH 6.5 mediates dimerization [43].
However, in contrast to FibNT, SpNT undergoes further stabilization at pH 5–6, which is mediated by
protonation of a specific carboxylate [43,44]. Moreover, SpNT is alpha helical at both high and low pH,
while FibNT is in random coil conformation at high pH and forms a beta sheet rich dimer structure
at low pH [34,43]. The SpCT is also a five helix bundle at high pH [10,45], and is a non-covalent or
covalently linked, via a disulfide bond, constitutive dimer [40]. Upon a lowering of pH, SpCT unfolds
and turns into beta sheet nuclei, which may trigger further beta sheet formation of the repetitive region
of spidroins (SpRep) [10,45]. Shear forces affect the SpCT in a similar way [46], and most likely pH
reduction and shear forces act together to mediate SpCT conformational changes during silk formation.

There are apparent similarities between structural conversions in fibroins and spidroins since
FibNT can convert to beta sheet structure at low pH [34] and SpCT unfolds and turns into
amyloid-like fibrils, built up from β-sheets, upon lowering of pH [10]. However, the former transition
is a bimolecular event that results in a defined soluble and globular structure, while the latter
transition involves multiple intermolecular interactions and results in insoluble fibrils. The SpCT
was recently found (using a web-based tool for prediction of amyloidogenic regions in proteins,
waltz-switchlab.org) [47] to contain three amyloidogenic regions (Figure S1) [48], which can also be
found using the Tango tool [49–51]. Analogous regions can be found in FibNT (Figure S1), further
pointing to the possibility that FibNT and SpCT have similar functions in the control of fiber formation.
Another candidate that may be responsible for nucleation dependent events in silkworm silk formation
is the light chain, which also has a high amyloid-forming capacity predicted by the Waltz (Figure S1)
and Tango tools.

Although the amino acid composition of the repetitive region in silkworms and spiders is quite
similar, their primary structures are very different. The repetitive part of fibroins (FibRep) and SpRep
are both glycine- and alanine-rich, but FibRep have (GAGAGAGS)n motifs separated by non-repetitive
linker regions [35], while SpRep have alternating poly-A and glycine rich repeats, mainly GGX (as in
MaSp1) or GPGXX (as in MaSp2) [52,53]. The repetitive region confers the mechanical properties to
the fiber, why these differences are likely responsible for the differences seen in secondary structure
and tensile properties of the fibers (cf. below). For schematic illustrations of the different spidroin and
fibroin domains and their structural conversions, see for example references [1,54–57].

5. Are There Post-Translational Modifications of Silk Proteins?

Post-translational modifications (PTMs), such as glycosylations and phosphorylations, of
silkworm silk and spider silk have been studied to some extent, but it is unclear what PTMs are
present, and also the effect of these potential PTMs on fiber formation and on the mechanical properties
of fibers remain to be established. MaSp1 and MaSp2 isolated from N. clavipes dragline silk fibers
contain phosphorylation sites in their respective repetitive regions [58,59], as does FibRep [38], the
fibroin light chain and the P25 [60]. The impact of these phosphorylations on the silk formation
process have not been thoroughly studied, but phosphorylation in general affect soluble proteins
by altering conformational states. Michal et al. [61] studied N. clavipes dragline silk fibers and
dope using solid state 31P-NMR, and found that the dragline silk proteins contain phosphotyrosine.
In another study, a phosphorylation site was included in a recombinant construct of spider dragline silk.
Phosphorylation of the expressed and purified protein increased the solubility level of the construct,
while dephosphorylation caused beta sheet aggregation of the protein [62]. How this relates to a
possible phosphorylation of the native silk proteins has not been studied.

6. Protein Structure Is Different in Solution and in Fibers

We have not yet fully understood the mechanisms by which the high solubility in the spinning
dopes is achieved. This feature has not been recapitulated in recombinant silk proteins or in regenerated
silk, which likely is caused by the use of denaturing conditions, but additional factors may be involved
as well. Both spidroins and fibroins have been hypothesized to be stored at high concentration in
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a soluble state in the form of protein micelles within their respective glands [21,34,55,63]. Another
theory states that the dope is stored as a liquid crystalline phase [21]. These theories are not mutually
exclusive and the exact state of storage of the highly aggregation prone proteins at high concentrations
remains to be determined.

The structure of soluble spidroins within the lumen of the major ampullate gland is believed to
be mostly alpha helical and/or random coil and some studies show that in the end of the gland, beta
sheets are starting to form [25,64]. In B. mori the poly-GA motifs in solution (silk I) contain repeated
beta-turn structures as shown by both solid-state and solution NMR [65,66], while the repeat units
containing tyrosines are in random coil conformation [67]. In both silkworm and spider silk fibers,
the Ala-rich regions form crystalline beta sheet structures in the fiber, while the glycine-rich regions
in SpRep and the linker regions in FibRep form a more amourphous and flexible strucure based on
beta spirals and random coils [68]. In silkworm silk fibers (referred to as silk II), the main structures
represented are beta sheet, distorted beta turns and distorted beta sheets [69,70]. It is still unclear
whether or not the beta sheets in silk fibers are parallel or antiparallel [35,71,72]. The difficulties in
conclusively showing a specific structure may be related to that the silk fibers are perhaps not as highly
organized as we tend to believe.

7. Fiber Architecture

B. mori fibers are 10–16 µm wide [73] while dragline silk fibers are significantly thinner, around
3–6 µm [74]. The B. mori fiber consists of two fibroin monofilaments originating from the two separate
glands, with a coat of sericin [73,75]. The architecture of dragline silk fibers has been debated,
and the fiber has been proposed to consist of two to five layers. A skin-core structure has been
suggested [9,76–78], but also four-layered [79] or five-layered structures [80] have been proposed.
The lack of conclusive data about the architecture of dragline silk probably relate to the fact that
these studies involve extensive treatment of the silk, such as dehydrating, embedding in plastic,
sectioning and staining [9,77,78], dipping silk fibers in urea and allowing them to supercontract [79]
or treating fibers using ether, triton x-100 and freeze-thaw cycles, after which they were embedded
and sectioned [80]. Most studies have, however, agreed upon the presence of micro- and nanofibrils
in parallel to the fiber axis within the dragline silk [78,80–83], which is also the case for silkworm
silk [75,83,84].

The presence of nano- and micro-fibrils within the fiber could be important for its tensile properties.
Twisted microfibrils would significantly increase the toughness of the fiber, a feature which is frequently
utilized in manmade fibers and ropes. Relaxation studies on native spider silk has pointed towards
a torsional memory in dragline silk [85,86], which may in part explain the high toughness of spider
silks. One aim of the production of artificial fibers has been to get fibers that are as homogenous as
possible, an ambition that may be questionable since native dragline silk fibers are apparently quite
heterogenous. A certain heterogeneity of the structure within the fiber may increase the strength of the
fiber, while too much or too little heterogeneity could cause fibers to be less strong [87].

8. Tensile Properties of Silk Fibers—Why Is Spider Silk Tougher?

Fibers spun by spiders and silkworms both have a very high toughness, compared to other natural
and manmade fibers, but spider silk is in general superior to silkworm silk. The stress/strain behaviors
show that the dragline silk from Argiope trifasciata is much stronger (higher maximum stress before
breaking) and also more extendible (higher strain) than B. mori fibers (Figure 3).
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There are likely several factors that lead to spider silk being tougher than silkworm silk,
and several models of how the toughness is mediated have been put forward, e.g., [57,68,90–92].
One hypothesis states that the presence of poly-GA repeats in the repetitive part of fibroins, as
compared to poly-A blocks present in spidroins, will create a lower binding strength of the beta
sheets [68], which likely also affects the tensile properties. Hayashi and co-authors modelled that the
poly-GA will form less stable beta sheets than poly-A since Gly lacks a side-chain that can mediate
hydrophobic interactions [68]. Comparing the binding strength of potential beta sheets of SpRep and
FibRep using the Zipper database [93], which can be used to predict amyloid fibril forming segments,
one can see that the energies of the poly-GA motifs in the FibRep are much higher than those of the
poly-A blocks in SpRep (Figure 4), which means that the poly-GA motifs are predicted to form much
weaker beta sheets. This observation further argues that the nature of the repetitive parts to a large
extent explains the lower toughness exhibited by silkworm silk.
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chain repetitive part (AF226688.1) (top) and three repetitive blocks from E. australis MaSp1 (GenBank
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The energies are color-coded, blue and green representing higher energies while orange and red
represents lower energies that are deemed to have high fibrillation propensity. Profiles generated by
ZipperDB [93].
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Neither the poly-GA nor the poly-A segments of the repetitive regions are intrinsically prone to
forming beta sheets. In fact, Ala is the naturally occurring residue with the highest α-helical propensity
and Gly is disfavoured in any secondary structure [94]. This may be a prerequisite for keeping the
proteins in solution before spinning, and any other stretch of amino acid residues could pose a danger
by being prone to aggregate prematurely [95].

9. Conclusions and Future Perspectives

By comparing silk spinning in two distantly related species, in which the ability to spin silk
apparently evolved after they separated during evolution [5,6], we find some features that appear to
be crucial for successful fiber formation. Firstly, the pH gradient is tightly controlled, is present in both
silk production systems, and mediates dramatic secondary structure transitions of the silk proteins,
via specific effects on the terminal domains; Secondly, the silk proteins are highly soluble at neutral
pH. The high overall solubility may be attributed to the highly soluble terminal domains, but also
the repetitive regions rich in alanine and glycine residues are water soluble, in contrast to stretches of
hydrophobic residues [96]; Thirdly, silk proteins are large, >300 kDa, which may be necessary in order
to obtain the great mechanical strength and extensibility displayed by the fibers, although alternative
explanations to the large sizes, based on general genetic mechanisms, are also possible [97].

We believe that using a biomimetic approach, wherein silk proteins are not denatured throughout
the purification and spinning processes, is vital for the generation of artificial silk fiber replicas with
the same structure and toughness as native silk fibers. Supporting this are results from experiments
on silkworm silk extracted from cocoons that are solubilized using high temperatures and lithium
bromide [98] before spinning fibers, which results in silk that is very different in structure and inferior
in toughness compared to native silkworm silk [88,99,100] likely due to the denaturation of the native
silk proteins. In contrast to silkworms, spiders produce very small amounts of silk, and therefore
largescale production of spider silk fibers requires expression in and purification from heterologous
hosts. Expression of highly repetitive sequences such as the MaSp repetitive region is difficult in
heterologous hosts, and therefore most constructs have been considerably smaller than the native
spidroins, often including only a small part of the repetitive region and lacking one or both of the
terminal domains. The water solubility levels of such constructs have still been very low (around
1% w/v [101,102]), and recombinant spidroins have therefore been dissolved in denaturing agents
(reaching solubility levels of 5%–25% w/v [103–105]), after which spinning into tough fibers has proven
difficult. In the same way that regenerated (denatured) silkworm silk cannot form fibers that are similar
to native silk, it is highly unlikely that artificial fibers spun from denatured recombinant spidroins can
capture the true structure and toughness of native spider silk.

Although the physiology and biochemistry of silk spinning has been studied quite thoroughly
over the past decade, there is apparently a lot that we still do not understand. For example, spidroins
and fibroins produced in the epithelial cells are stored in secretory granula. How are these extremely
pH sensitive and aggregation-prone proteins able to withstand the presumably quite low pH within the
secretory granules without starting to assemble? What chaperone systems are involved in successfully
transporting the silk proteins through the secretory pathway, a process that is demanding even for
“normal” proteins [106]? We look forward to further detailed studies of silk proteins and the silk
formation process, which can generate insights that have broad and important implications.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/8/1290/s1.

Acknowledgments: We thank Gustavo R. Plaza for providing the stress-strain graphs of dragline silk and B. mori
silk fibers.

Author Contributions: Marlene Andersson performed histology experiments; Marlene Andersson, Jan Johansson
and Anna Rising analyzed data; Marlene Andersson, Jan Johansson and Anna Rising wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2016, 17, 1290 9 of 14

Abbreviations

PSG Posterior silk gland
MSG Middle silk gland
ASG Anterior silk gland
CA Carbonic anhydrase
Cryo-SEM-EDAX Cryo scanning electron microscope energy dispersive X-ray
NT N-terminal domain
CT C-terminal domain
FibNT Heavy chain fibroin N-terminal domain
FibCT Heavy chain fibroin C-terminal domain
MaSp Major ampullate spidroin
SpNT Spidroin N-terminal domain
SpCT Spidroin C-terminal domain
SpRep Spidroin repetitive region
FibRep Heavy chain fibroin repetitive region
PTM Post-translational modification
NMR Nuclear magnetic resonance
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