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Abstract: Aquaporins (AQPs) play important roles in the water transport system in the human
body. There are currently 13 types of AQP, AQP0 through AQP12, which are expressed in various
organs. Many members of the AQP family are expressed in the intestinal tract. AQP3 is predominantly
expressed in the colon, ultimately controlling the water transport. Recently, it was clarified that several
laxatives exhibit a laxative effect by changing the AQP3 expression level in the colon. In addition,
it was revealed that morphine causes severe constipation by increasing the AQP3 expression level in
the colon. These findings have shown that AQP3 is one of the most important functional molecules
in water transport in the colon. This review will focus on the physiological and pathological roles of
AQP3 in the colon, and discuss clinical applications of colon AQP3.
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1. Introduction

Constipation and diarrhea are common clinical complaints that negatively affect quality of life.
In recent years, the number of patients with constipation has been rapidly increasing due to the
Westernization of dietary patterns and the aging society [1]. In palliative care, many patients are
taking morphine for pain control, and almost all of these patients suffer from constipation [2,3].
Although they have received symptomatic therapies using laxatives, an adequate therapeutic effect
is not always achieved. Therefore, it is necessary to develop a new strategy of constipation. On the
other hand, Crohn’s disease and ulcerative colitis patients who have severe diarrhea have also been
increasing [4]. In the rapidly increasing elderly population, drug-induced diarrhea in the elderly is
one of the problems for drug therapy [5]. Therefore, it is important to perform appropriate treatment
after clarified the diarrhea mechanism.

Recently, it has become clear that aquaporins (AQPs) play important roles in the water transport
system in the human body [6]. AQPs are water channels through which water and glycerol are
selectively transported. There are currently 13 types of AQP, AQP0 through AQP12, which are
expressed in various organs [7–10]. Many members of the AQP family are expressed in the
intestinal tract: AQP1, AQP3, AQP4, AQP7, AQP8, AQP9, and AQP10 are expressed in the colon,
which ultimately controls fecal water content [11–21]. In human colon, AQP3 is predominantly
expressed in mucosal epithelial cells [15,19]. Therefore, it is believed that AQP3 plays an important role
in water transport in the colon. However, the physiological role and the regulation of AQP3 expression
are little known. It is considered that analysis of AQP3 in the colon might lead to the development
of new treatments and a prevention method for constipation and diarrhea. This review will provide
an overview of the role of colon AQP3 under physiological and pathophysiological conditions, as well
as clinical applications involving AQP3.
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2. Localization of AQP3 in the Colon

In the mucosal epithelial cells in mice colon, AQP4 is predominantly expressed. Wang et al.
reported that fecal water content increases in AQP4 knockout mice relative to wild-type mice [22].
This result suggests that AQP expression in the mucosal epithelial cells in the colon is one important
factor that controls the water content of feces.

In human colon, the expression level of AQP4 is low, while AQP3 is predominantly expressed in
the mucosal epithelial cells [23]. Therefore, there are many reports about AQP3 in the colon [12,15,19,24].
Many reports have discussed the intracellular localization of AQP3. First, Silberstein et al. reported that
AQP3 was strongly expressed at the apical side of mucosal epithelial cells in human colon, while its
expression level at the basolateral side was low [15]. Subsequently, Mobasheri et al. reported that
AQP3 was present at the basolateral side [19]. In addition, Rai et al. clarified that NH2-terminal sorting
signal mediates the basolateral targeting of AQP3 [25]. It was also reported that AQP7 and AQP8 were
localized at the apical side and AQP3 was localized at the basolateral side [26–28]. On the other hand,
it was clarified that AQP3 is predominantly expressed at both the apical and basal sides of mucosal
epithelial cells in rat colon (Figure 1) [29].
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the colon of Crohn’s disease and ulcerative colitis patients [21]. When diarrhea occurred after small 
bowel resection and gradually improves due to intestinal adaptation, AQP3 in the colon were 
up-regulated during adaptation [31]. In previous studies, it has been reported that a gastrointestinal 
hormone such as vasoactive intestinal polypeptide (VIP) caused Verner–Morrison syndrome, which 
is associated with diarrhea [32]; diarrhea occurs after the intravenous administration of VIP to 
healthy individuals [33]; and AQP3 expression levels increase after VIP treatment in HT-29 cells 
derived from human colon cancer [24]. Based on these reports, it is considered that AQP3 plays an 
important role in water transport in the colon.  

3.1. Role of AQP3 in the Colon in the Laxative Effect of Magnesium Sulfate 

It is believed that osmotic laxatives, such as magnesium sulfate, induce diarrhea by causing an 
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3. Relation between AQP3 Expression and Diarrhea

Yamamoto et al. revealed that allergic diarrhea is associated with a downregulation in AQP4
and AQP8 in the colon [30]. It was also reported that AQP1, AQP3, and AQP11 were decreased
in the colon of Crohn’s disease and ulcerative colitis patients [21]. When diarrhea occurred after
small bowel resection and gradually improves due to intestinal adaptation, AQP3 in the colon were
up-regulated during adaptation [31]. In previous studies, it has been reported that a gastrointestinal
hormone such as vasoactive intestinal polypeptide (VIP) caused Verner–Morrison syndrome, which is
associated with diarrhea [32]; diarrhea occurs after the intravenous administration of VIP to healthy
individuals [33]; and AQP3 expression levels increase after VIP treatment in HT-29 cells derived from
human colon cancer [24]. Based on these reports, it is considered that AQP3 plays an important role in
water transport in the colon.

3.1. Role of AQP3 in the Colon in the Laxative Effect of Magnesium Sulfate

It is believed that osmotic laxatives, such as magnesium sulfate, induce diarrhea by causing
an increase in the osmotic pressure in the intestinal tract [34]. After oral magnesium sulfate administration
to rats, fecal water content and the AQP3 expression level in the colon increased significantly in
time-dependent manner. These changes in AQP3 expression level correlated well with the changes
in fecal water content. On the other hand, osmotic pressure in the colon decreased with time from
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the peak level observed at two hours after administration (Figure 2) [29]. Based on the above results,
the laxative effect of magnesium sulfate was considered to be exhibited via the following mechanism.
Under physiological conditions, water is transported from the luminal side, where the osmotic pressure
is low, to the vascular side, where the osmotic pressure is high, via AQP3. Water is transported from
the vascular side to the luminal side after the administration of magnesium sulfate, because the
osmotic pressure in the lumen of the colon has risen. At two hours after the administration, a large
amount of water was not transported, because the AQP3 expression level was not sufficiently elevated.
However, at subsequent time points, the AQP3 expression level significantly increased, which caused
the transport of a large amount of water to the luminal side, resulting in the occurrence of diarrhea
(Figure 3). Based on these findings, the laxative effect of magnesium sulfate is not simply caused
by a change in the osmotic pressure in the intestinal tract, but could be a response to increased
AQP3 expression.
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Figure 3. Water transport in the colon after magnesium sulfate administration.

The mechanism by which magnesium sulfate increased the AQP3 expression level was revealed
that an increase in the intracellular Mg2+ concentration may trigger cAMP response element binding
protein (CREB) phosphorylation through protein kinase A activation, and promote AQP3 gene
transcription [35].
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3.2. Role of AQP3 in the Colon in the Laxative Effects of Bisacodyl and Sennoside A

Bisacodyl, which is classified as a stimulant laxative, exhibits its laxative effect by enhancing
the peristaltic movements of the bowel [36,37]. After oral administration of bisacodyl to rats,
unlike magnesium sulfate, bisacodyl caused severe diarrhea without changing the osmotic pressure
inside the colon. The expression level of AQP3 decreased significantly from two hours after the
administration, and a good correlation was observed between this decrease and the increase in fecal
water content (Figure 4) [38]. Experiments using AQP3 inhibitors such as mercury chloride [39]
and copper sulfate [40] showed that diarrhea was induced when the AQP3 activity in the colon was
inhibited, without changing the osmotic pressure of the intestinal tract [41]. These results suggest
that laxative effect of bisacodyl might be attributable to the decrease in the AQP3 expression level.
Briefly, bisacodyl decreases AQP3 expression level in the colon, and causes a decrease in water
transport from the luminal side to the vascular side, resulting in exhibiting its laxative effect.
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Previous studies showed that bisacodyl activates macrophages in the colon [36,42]; that this
activation induces the secretion of inflammatory cytokines and prostaglandin E2 (PGE2) via an increase
in the expression of cyclooxygenase-2 (COX-2) [43,44]; and that tumor necrosis factor-α (TNF-α) [45–47]
and PGE2 [48,49] decrease the expression level of AQP. Accordingly, it has become clear that bisacodyl
activates directly colon macrophage, and increases the secretion of PGE2, which acts as a paracrine
factor and decreases AQP3 expression in colon mucosal epithelial cells [38]. In addition, it was revealed
that sennoside A, which is classified as a stimulant laxative, also exhibits a laxative effect by decreasing
the expression level of AQP3 in the colon via a mechanism similar to bisacodyl [50]. It was also shown
that pre-administration of indomethacin such as a COX inhibitor to rats suppressed the secretion of
PGE2, resulting in the suppression of the laxative effect of bisacodyl and sennoside A and the decrease
in the expression level of AQP3.

4. Relation between AQP3 Expression and Constipation

AQP3 in the colon of rat models with slow transit constipation was down-regulated and AQP4
and AQP8 were not changed [51]. In addition, it was reported that AQP9 in the colon of patients with
slow transit constipation was increased [52]. To date, little is known about the relation between AQP
and constipation.

Morphine is a narcotic analgesic that has high potency but causes severe constipation as an adverse
effect [2,3]. Morphine suppresses the peristaltic movements of the bowel, resulting in the development
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of constipation [53]. However, other mechanisms such as water transport in the colon have been
poorly understood. After the oral administration of morphine to rats, constipation was induced
and the expression level of AQP3 significantly increased. HgCl2 improved in the symptoms of
morphine-induced constipation [54]. Based on these results, it is suggested that morphine increases
the expression level of AQP3 in the colon, which enhances the water transport from the luminal side
to vascular side, resulting in hardening of the feces.

It was has been reported that morphine stimulates the release of serotonin from the intestinal
wall and suppresses peristaltic movements [55]. There is a large amount of serotonin in EC cells in the
intestinal tract [56]. Serotonin secreted from EC cells is metabolized after being taken into the cells by
serotonin reuptake transporter (SERT) [57]. Serotonin is a ligand for peroxisome proliferator-activated
receptor gamma (PPARγ), nuclear receptor, which contributes to epithelial cell proliferation and
turnover [58]. In contrast, PPARγ agonists increase the AQP3 expression level [59]. Accordingly,
morphine-induced serotonin secreted from the colon was taken into cells by SERT and activated
PPARγ, which subsequently increased AQP3 expression levels (Figure 5) [54].
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5. AQP and Clinical Application

5.1. Role of AQP3 in the Colon in the Concomitant Use of Laxatives

In a clinical practice, an osmotic laxative is prescribed as the first-line drug for treatment of
patients with severe constipation, and if it is not effective, other laxatives with different mechanisms
of action, including stimulant laxatives, are concomitantly used. However, since there is no clear
evidence that these enhance the laxative effects by concomitant use of different types of laxatives,
patients are currently receiving empirically-based treatment. When magnesium sulfate and bisacodyl
were concomitantly administered to rats, the observed laxative effect was lower than that observed
after administration of magnesium sulfate alone, and similar to that observed after administration
of bisacodyl alone. The fact was considered to be the reason that the expression pattern of AQP3 in
the colon after the concomitant administration was very similar to that after bisacodyl administration
alone (Figure 6) [60].

The above-mentioned results clearly show that the concomitant administration of different types
of laxatives does not always lead to an enhanced laxative effect. Currently, multiple laxatives are used
concomitantly in patients with severe constipation, without definite evidence of efficacy. The increase
in the number of drugs leads to an increase in drug–drug interactions. In the future, it is necessary
that the evidence supporting the therapeutic efficacy of laxatives be clearly identified to facilitate the
proper use of laxatives.
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Figure 6. Effect of combination of magnesium sulfate and bisacodyl on fecal water content (A);
and AQP3 protein expression in the rat colon (B). Dunnett’s test: ** p < 0.01, and *** p < 0.001 vs.
control group. Adapted with permission from Ikarashi et al. [60]. Copyright 2012 Elsevier.

5.2. Efficacy of Laxatives on Morphine-Induced Constipation and AQP3 in the Colon

Previously, morphine was considered to induce constipation by suppressing the peristaltic
movements of the bowel [55]. However, in many cases, it is difficult to treat morphine-induced
constipation, even with the use of stimulant laxatives such as sennoside A and bisacodyl. Based on
the previous findings [53], it was considered that these laxatives have no effect for morphine-induced
constipation for the following reasons. The treatment of pain in cancer patients is managed according to
the “WHO three-step analgesic ladder”, and a good analgesic effect is achieved by the concomitant use
of morphine and non-steroidal anti-inflammatory drugs (NSAIDs). However, it has become clear that
the laxative effect of bisacodyl and sennoside A cannot be exhibited when NSAIDs are concomitantly
used [38,50]. It is considered to be one of the reasons why these laxatives are not effective in the
treatment of morphine-induced constipation. Therefore, for the treatment of constipation in those
patients who have to take NSAIDs in cancer pain relief, a laxative that is not affected by NSAIDs,
such as a prostaglandin drugs, may improve the symptoms of constipation by lowering the expression
level of AQP3 in the colon. As mentioned above, it is necessary to analyze the laxative effect for
evidenced-based medicine.

6. Conclusions

Based on the above results, it has become clear that the expression level of AQP3 in the colon plays
an important role in the laxative effects by osmotic laxatives and stimulant laxatives. It was also shown
that an increase in the expression level of AQP3 is involved in onset of morphine-induced constipation.
Researchers should analyze the relation between AQP and constipation using other constipation
model because little is reported about this point. Although it is likely that AQP3 expressed at both
the apical and basal sides of mucosal epithelial cells in rat colon (Figure 1), there is the possibility
that key molecules of apical side in the colon are AQP7 and AQP8 [26–28]. Numerous discussions are
still underway regarding the intracellular localization of AQP3 in the intestinal tract. By continuing
efforts to examine the expression and functions of AQP other than AQP3 in the intestinal tract and
investigating the mechanism of water transport, new laxatives and antidiarrheal drugs targeting AQP
might be developed in the future.
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