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Abstract: Recent evidence suggests that C-X-C chemokine receptor type 4 (CXCR4) heteromerizes
with α1A/B-adrenoceptors (AR) and atypical chemokine receptor 3 (ACKR3) and that
CXCR4:α1A/B-AR heteromers are important for α1-AR function in vascular smooth muscle cells
(VSMC). Structural determinants for CXCR4 heteromerization and functional consequences of
CXCR4:α1A/B-AR heteromerization in intact arteries, however, remain unknown. Utilizing proximity
ligation assays (PLA) to visualize receptor interactions in VSMC, we show that peptide analogs of
transmembrane-domain (TM) 2 and TM4 of CXCR4 selectively reduce PLA signals for CXCR4:α1A-AR
and CXCR4:ACKR3 interactions, respectively. While both peptides inhibit CXCL12-induced
chemotaxis, only the TM2 peptide inhibits phenylephrine-induced Ca2+-fluxes, contraction of VSMC
and reduces efficacy of phenylephrine to constrict isolated arteries. In a Cre-loxP mouse model to
delete CXCR4 in VSMC, we observed 60% knockdown of CXCR4. PLA signals for CXCR4:α1A/B-AR
and CXCR4:ACKR3 interactions in VSMC, however, remained constant. Our observations point
towards TM2/4 of CXCR4 as possible contact sites for heteromerization and suggest that TM-derived
peptide analogs permit selective targeting of CXCR4 heteromers. A molecular dynamics simulation of
a receptor complex in which the CXCR4 homodimer interacts with α1A-AR via TM2 and with ACKR3
via TM4 is presented. Our findings further imply that CXCR4:α1A-AR heteromers are important
for intrinsic α1-AR function in intact arteries and provide initial and unexpected insights into the
regulation of CXCR4 heteromerization in VSMC.
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1. Introduction

G protein-coupled receptors (GPCR) comprise the largest group of cell surface receptors and
mediate a multitude of important cell functions. It is well established that the physiological range of
GPCR-mediated signaling events and functions is amplified through cross-talk between GPCRs [1–6].
One molecular mechanism underlying GPCR cross-talk is receptor hetero-oligomerization, which is
thought to be of importance for many aspects of GPCR function [7–11]. The structural determinants of
GPCR heteromerization, however, are largely unknown, and the biological relevance of heteromeric
receptor complexes is still under debate.

Multiple lines of evidence suggest that chemokine receptors and adrenergic receptors (AR) may
form heteromeric receptor complexes with receptors of the same family and that chemokine receptors
may also form heteromeric complexes with adrenergic receptors [10,12–29]. More recently, we provided
evidence that C-X-C chemokine receptor 4 (CXCR4) forms heteromeric complexes with atypical
chemokine receptor 3 (ACKR3) and α1A/B-adrenergic receptors (AR) on the cell surface of vascular
smooth muscle cells (VSMC). As interference with CXCR4:α1A/B-AR heteromerization inhibited
α1-AR mediated responses of VSMC, these data suggested that CXCR4:α1A/B-AR heteromerization is
important for normal α1-AR function. Furthermore, we have previously reported that a peptide analog
of transmembrane helix (TM) 2 of CXCR4 disturbs heteromeric complex formation between CXCR4
and α1A/B-AR, but does not influence CXCR4:ACKR3 heteromerization [30]. Whether it is possible
to interfere with CXCR4:ACKR3 heteromerization without affecting CXCR4:α1A/B-AR heteromers,
however, is unknown and the effects of CXCR4:α1A/B-AR heteromerization in VSMC on the function
of intact arteries or on blood pressure regulation remain to be determined.

Here we show that CXCR4:α1A-AR and CXCR4:ACKR3 can be selectively targeted utilizing
peptide analogs of transmembrane domain (TM) 2 and 4 of CXCR4, respectively, suggesting TM2 and
TM4 of CXCR4 as possible contact sites in heteromeric receptor complexes. Accordingly, we modeled
a hetero-hexameric receptor complex in which the CXCR4 homodimer interacts with α1A-AR via TM2
and with ACKR3 via TM4. Furthermore, we provide evidence that CXCR4:α1A/B-AR heteromers
regulate intrinsic α1-AR function in intact arteries and new insights into the regulation of CXCR4
heteromerization in vascular smooth muscle from observations in a Cre-loxP mouse model.

2. Results

2.1. Transmembrane Domain-Derived Peptide Analogs of CXCR4 Selectively Interfere with Receptor Proximity
and Function

To test whether TM peptide analogs may permit selective targeting of CXCR4 heteromers,
we sought to evaluate the effects of TM peptide analogs of CXCR4 in PLA with hVSMC. The
TM1 peptide analog, however, had solubility below 0.1 µM and the TM3 peptide analog was
insufficiently hydrophobic to insert into a membrane bilayer, which precluded testing in VSMC
assays [31]. Furthermore, TM5 and TM7 peptide analogs had no or little effects on CXCR4 function
and crystallographic structures revealed that CXCR4 exists as a homodimer in which TM5 and TM6
form the main interface between the receptor protomers, which make TM5/6 of CXCR4 as interaction
sites with other GPCRs unlikely [31,32]. Therefore, we chose TM2 and TM4 peptide analogs for the
present study as both peptides are known to inhibit CXCR4 [31,33]. This provides the advantage that
possible differences in their effects on receptor heteromerization cannot be attributed to differences in
their effects on CXCR4 function. Figure 1A shows typical proximity ligation assay (PLA) images for
the detection of CXCR4:α1A-AR and CXCR4:ACKR3 interactions in human VSMC (hVSMC) incubated
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with or without the TM peptide analogs and Figure 1B,C show the quantification of the PLA signals
from three independent experiments. As observed previously [30], we detected that a TM2 peptide
analog reduced the PLA signals corresponding to CXCR4:α1A-AR complexes, but did not affect PLA
signals for CXCR4:ACKR3 interactions (Figure 1B). In contrast, incubation of hVSMC with a TM4
peptide analog did not affect PLA signals for CXCR4:α1A-AR complexes, whereas PLA signals for
CXCR4:ACKR3 complexes were significantly reduced (Figure 1C).
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dihydrochloride (DAPI) signals and are representative of 3 independent experiments. hVSMC were 
incubated with or without TM peptides (100 μM, 15 min at room temperature) prior to PLA; (B) 
Quantification of the number of PLA signals per cell for CXCR4:α1A-AR interactions as in A. Ab ctrl.: 
Antibody control; the primary antibodies were omitted. n = 3 (10 randomly selected non-overlapping 
vision fields were analyzed per experiment). *: p < 0.05 vs. untreated cells; (C) Quantification of the 
number of PLA signals per cell for CXCR4:ACKR3 interactions as in A. Ab ctrl.: Antibody control; the 
primary antibodies were omitted. n = 3 (10 randomly selected non-overlapping vision fields were 
analyzed per experiment). *: p < 0.05 vs. untreated cells; (D) FACS analyses of receptor cell surface 
expression levels in hVSMC after incubation with the TM peptides (100 μM, 15 min at room 
temperature). Grey: Unstained cells; Thin blue line: IgG control; Thick blue line: Cells incubated 
without TM peptides; Thick red line: Cells incubated with TM peptides; FITC: Fluorescein 
isothiocyanate; (E) FACS analyses of receptor cell surface expression after incubation hVSMC with 
non-targeting siRNA (thick blue line) or siRNA specific for each receptor (thick red line). Grey: 
Unstained cells; Thin blue line: IgG control. 

Figure 1. (A) Interactions between CXCR4 and α1A-AR (top) and between CXCR4 and ACKR3 (bottom)
were visualized by PLA. Images show merged PLA/41,6-diamidino-2-phenylindole dihydrochloride
(DAPI) signals and are representative of 3 independent experiments. hVSMC were incubated with or
without TM peptides (100 µM, 15 min at room temperature) prior to PLA; (B) Quantification of the
number of PLA signals per cell for CXCR4:α1A-AR interactions as in A. Ab ctrl.: Antibody control;
the primary antibodies were omitted. n = 3 (10 randomly selected non-overlapping vision fields
were analyzed per experiment). *: p < 0.05 vs. untreated cells; (C) Quantification of the number of
PLA signals per cell for CXCR4:ACKR3 interactions as in A. Ab ctrl.: Antibody control; the primary
antibodies were omitted. n = 3 (10 randomly selected non-overlapping vision fields were analyzed
per experiment). *: p < 0.05 vs. untreated cells; (D) FACS analyses of receptor cell surface expression
levels in hVSMC after incubation with the TM peptides (100 µM, 15 min at room temperature). Grey:
Unstained cells; Thin blue line: IgG control; Thick blue line: Cells incubated without TM peptides;
Thick red line: Cells incubated with TM peptides; FITC: Fluorescein isothiocyanate; (E) FACS analyses
of receptor cell surface expression after incubation hVSMC with non-targeting siRNA (thick blue line)
or siRNA specific for each receptor (thick red line). Grey: Unstained cells; Thin blue line: IgG control.

To address the possibility that the observed changes in PLA signals are caused by TM peptide
analog-induced receptor internalization, we then studied receptor expression levels on hVSMC by
FACS analyses. As shown in Figure 1D, incubation of hVSMC with the TM peptide analogs did not
affect cell surface expression levels of CXCR4, ACKR3 or α1A-AR, when compared with untreated
hVSMC. To confirm that the antibodies that we used for PLA and FACS analyses are suitable to detect
changes in receptor expression levels [34,35], we then incubated hVSMC with non-targeting siRNA
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or siRNA specific for each receptor and measured receptor expression levels by FACS analyses. As
shown in Figure 1E, all antibodies reported with a significant reduction of the fluorescence signals after
incubation of hVSMC with the corresponding receptor-specific siRNA (% reduction in fluorescence
signal vs. non-targeting siRNA: CXCR4 siRNA—73%, ACKR3 siRNA—72.5%, α1A-AR siRNA—70%).

Next, we studied how interference with receptor heteromerization by the TM-derived peptides
influences receptor function. To assess the effects of the TM peptide analogs on CXCR4-mediated effects,
we first measured CXCL12-induced chemotaxis as a functional read-out. As shown in Figure 2A, both
TM peptide analogs inhibited migration of human VSMC and human monocytes towards CXCL12.
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Figure 2. (A) Effects of the TM peptides on CXCL12 (100 nM, +; control: vehicle, ´)-induced chemotaxis
of hVSMC (n = 5; left) and freshly isolated human monocytes (hMo, n = 4; right). Cells were incubated
in the absence (´, control) or presence of the TM peptides (100 µM). *: p < 0.05 vs. control; (B) Effects of
the TM peptides on Ca2+ fluxes in A7r5 cells. Cells were pre-incubated with vehicle or 100 µM of the
TM peptides for 15 min at room temperature. Arrows: Time point of phenylephrine administration
(PE); Open circles: control (vehicle); Grey squares: Cells pretreated with the TM2 peptide; Black
squares: Cells pretreated with the TM4 peptide. n = 3–4 independent experiments. *: p < 0.05 vs. vehicle
and TM4; (C) Left: Typical images of MASMC before (start) and after phenylephrine (10 µM, PE)
administration. Scale bar: 20 µm; Right: Quantification of the percentage of MASMC contracting upon
stimulation with phenylephrine. Cells were pre-incubated with vehicle (´; control) or 100 µM of the
TM peptides for 15 min at 37 ˝C. *: p < 0.05 vs. control; (D–G) Vasoconstriction was measured as change
of the outer diameter (o.d.) in pressure myography experiments. Dose responses to phenylephrine
(PE) in the presence (grey squares) and absence (vehicle, open circles) of the TM2 (n = 8, (D)) or TM4
(n = 4, (E)) peptide analogs (10 µM). Dose responses to arginine vasopressin (aVP) in the presence (grey
squares) and absence (vehicle, open circles) of the TM2 (n = 4, (F)) or TM4 (n = 5, (G)) peptide analogs
(10 µM).

To assess the effects on α1-AR function, we then tested whether the TM peptide analogs affect
signaling and function of VSMC upon exposure to the selective α1-AR agonist phenylephrine. The
TM2 peptide analog significantly inhibited phenylephrine-induced Ca2+ mobilization, whereas the
TM4 peptide analog did not (Figure 2B). Similarly, the TM2 peptide analog reduced the percentage of
freshly isolated rat mesenteric artery smooth muscle cells contracting in response to phenylephrine,
whereas the TM4 peptide analog had no effects, as compared to cells exposed to phenylephrine in
the absence of TM peptide analogs (% of VSMC contracting in response to phenylephrine: control:
70% ˘ 4%; TM2: 48% ˘ 7% (p < 0.05 vs. control); TM4: 60% ˘ 7%; Figure 2C).
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To confirm physiological relevance of these observations in VSMC, we then studied the effects
of the TM peptide analogs on phenylephrine-induced constriction of isolated rat mesenteric arteries
in pressure myography experiments. When tested in parallel experiments with arteries from the
same animals, the EC50 for phenylephrine to induce vasoconstriction was 1.3 ˘ 0.04 µM and maximal
constriction in response to phenylephrine was 54% ˘ 3% of the outer diameter (o.d.) in the absence
of TM peptide analogs. In the presence of the TM2 peptide analog, the EC50 for phenylephrine
was 2.3 ˘ 0.1 µM and maximal constriction 43% ˘ 3% of the o.d. (p < 0.001 vs. control, Figure 2D).
In contrast, the TM4 peptide analog did not affect EC50 for phenylephrine or maximal constriction when
compared with untreated arteries in parallel experiments (Figure 2E). None of the peptides affected
arginine vasopressin-induced vasoconstriction in pressure myography experiments (Figure 2F,G).

2.2. Effects of CXCR4 Knockdown in Vascular Smooth Muscle

To provide proof-of-concept that CXCR4:α1A/B-AR heteromeric complexes are important for
α1-AR function, we then sought to deplete CXCR4:α1A/B-AR heteromers in vascular smooth muscle
utilizing a Cre-loxP mouse model that permits tissue specific and inducible knockdown of CXCR4
in smooth muscle. Mice carrying the CreERT2 transgene and homozygous for the CXCR4 loxP allele
(Figure 3) developed without noticeable abnormalities. Similarly, after Cre induction with tamoxifen,
there were no noticeable changes in behavior or food/water intake. Histology of tissues harvested
1–3 weeks after the last tamoxifen or vehicle injection did not reveal obvious differences between
vehicle and tamoxifen injected animals (not shown).
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Figure 3. Genotyping of transgenic mice. Lane 1: molecular weight markers; Lanes 2 and 3: males,
heterozygous for the CXCR4 loxP allele carrying the CreERT2 transgene on the Y chromosome;
Lane 4: male, homozygous for the CXCR4 loxP allele carrying the CreERT2 transgene in the Y
chromosome = experimental animals; Lane 5: female, homozygous for the CXCR4 loxP allele.

To document CXCR4 knockdown following tamoxifen injection, we then isolated aortic smooth
muscle cells and analyzed receptor expression by PLA. Figure 4A,B shows typical PLA images for the
detection of individual receptors (Figure 4A) and receptor interactions (Figure 4B) and Figure 4C,D
the quantification of the PLA signals from 7–8 individual animals after tamoxifen or vehicle injection.
As compared with vehicle injected animals, PLA signals for CXCR4 were reduced by 60% ˘ 3% after
tamoxifen injection (p < 0.0001 vs. vehicle, Figure 4C). PLA signals for α1A/B-AR and ACKR3 in
VSMC were not altered after Cre induction, as compared with vehicle injected animals (Figure 4C).
When PLA was performed to detect receptor interactions (Figure 4D), we observed that signals for
CXCR4:α1A/B-AR and CXCR4:ACKR3 interactions were not altered after tamoxifen injection, when
compared with animals after vehicle injection.

Furthermore, there were no differences in the reactivity of isolated mesenteric arteries to
phenylephrine in pressure myography experiments (Figure 5A) and in long-term blood pressures or
heart rates between animals injected with tamoxifen or vehicle (Figure 5B).
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Figure 5. (A) Vasoconstriction was measured as change of the outer diameter (o.d.) in pressure 
myography experiments. Open squares: Mesenteric arteries from transgenic animals after vehicle 
injection, n = 12; Grey circles: Mesenteric arteries from transgenic animals after tamoxifen injection,  
n = 12; (B) Systolic (SBP), diastolic (DBP) and mean arterial blood pressures (MAP) in mmHg and 
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(grey squares, n = 4) injection. Arrows indicate time points of tamoxifen/vehicle administration. 
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Figure 4. (A,B) Individual receptors (A) and interactions between CXCR4 and α1A/B-AR and between
CXCR4 and ACKR3 (B) were visualized by PLA in VSMC from transgenic mice after treatment with
vehicle (left) or tamoxifen (right). Images show merged PLA/DAPI signals. Ctrl.: Antibody control;
the primary antibody was omitted; (C,D) Quantification of the number of PLA signals per cell for
individual receptors (C) and receptor–receptor interactions (D) in VSMC from transgenic mice after
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of vehicle treated animals. *: p < 0.05 vs. ctrl. (vehicle).
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injection, n = 12; Grey circles: Mesenteric arteries from transgenic animals after tamoxifen injection,
n = 12; (B) Systolic (SBP), diastolic (DBP) and mean arterial blood pressures (MAP) in mmHg and heart
rate (bpm, beats per minute) in transgenic animals after vehicle (open circles, n = 5) or tamoxifen (grey
squares, n = 4) injection. Arrows indicate time points of tamoxifen/vehicle administration.
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2.3. Structural Modeling and Molecular Dynamics Simulation of a Hetero-Hexameric Receptor Cluster

As our observations from experiments with TM peptide analogs point towards TM2 and TM4 of
CXCR4 as contact sites in heteromeric receptor complexes, we then studied the structural configuration
of the receptor heteromers in silico. We modeled a hetero-hexameric receptor cluster consisting of the
CXCR4 homodimer, ACKR3 and α1A-AR. Because crystallographic structures of human ACKR3 and
α1A-AR are currently not available, we modeled human ACKR3 and human α1A-AR structures and
refined them by molecular dynamics simulation. We used the primary sequences of the receptors for
secondary structure prediction followed by multiple sequence and structure alignments with other
G protein-coupled receptors whose experimental structures are available via the Phyre2 server. The
structural models of ACKR3 and α1A-AR were built based on human CXCR4 and β2-AR, respectively.
The coverage of aligned sequences was 83% and 68% for ACKR3 and α1A-AR, respectively. The
matched sequences were evenly distributed through the entire sequence. We visually inspected the
models and confirmed that the transmembrane regions of the receptors of interest did not significantly
diverge from template structures.

For molecular dynamics simulations, we used the human CXCR4 homodimer (PDB ID: 3ODU)
as the core of a hetero-hexameric receptor cluster. We assumed TM2 of CXCR4 as a likely contact
site for α1A-AR and arranged the α1A-AR model next to TM2 of CXCR4. In an effort to guide this
interaction based on an experimentally determined crystal structure, we utilized the turkey β1-AR
dimer (PDB ID: 4GPO), whose dimerization interface is on the opposite side compared to the CXCR4
dimer, as a reference structure. We aligned the β1-AR subunit A (not shown) with the CXCR4 subunit
A (Figure 6A) so the β1-AR subunit B could be used for the arrangement of the α1A-AR model. Next,
based on the observed effects of the TM4 peptide, we arranged the ACKR3 model next to TM4 of
CXCR4. In a similar manner as for α1A-AR, we aligned subunit A of the human histamine H1 receptor
dimer (PDB ID: 3RZE) (not shown), whose TM4 is in its dimerization interface, with the CXCR4
subunit A so the histamine H1 receptor subunit B could be used for the arrangement of the ACKR3
model (Figure 6A). Likewise, the second set of α1A-AR and ACKR3 subunits were arranged next to
the CXCR4 subunit B. Prior to molecular dynamics simulation, missing side chains were built by the
Prime software and the hydrogen interaction was corrected. A predefined lipid bilayer, TIP3P water,
and NaCl were included (Figure 6B).
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Figure 6. Structural modeling (A) and molecular dynamics simulations (B) of a hetero-hexameric
receptor cluster consisting of the CXCR4, α1A-AR and ACKR3. Transmembrane (TM) helices of
CXCR4 (gray), α1A-AR (yellow), and ACKR3 (green) are colored differently. TM helices of CXCR4 that
participate in heteromerization interfaces with α1A-AR and ACKR3 are colored in purple.

Then, we energy minimized the initial model and performed molecular dynamics simulation by
using the Desmond software from Schrödinger. We analyzed the quality of the resulting model using
the built-in module in Maestro and did not find any steric clash between receptors. Non-covalent
bonding interactions were analyzed and summarized in Figure 7. TM2 and TM4 of CXCR4 revealed
major interactions with α1A-AR and ACKR3, respectively. The final structural coordinates of the
receptor cluster (File S1; PyMol Session File) and a movie of the molecular dynamics simulation
(File S2) are available as Supplemental Materials.
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3. Discussion

In the present study, we further evaluated the physiological roles and regulation of CXCR4
heteromers in VSMC utilizing pharmacological and genetic approaches. There are several new findings
from the present study. First, TM-derived peptide analogs of CXCR4 permit selective targeting of
CXCR4 heteromers, suggesting TM2 and TM4 of CXCR4 as possible contact sites in heteromeric
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receptor complexes with α1A-AR and ACKR3, respectively; Second, a TM2 peptide analog of CXCR4,
which interferes with CXCR4:α1A-AR heteromerization in isolated VSMC, inhibits α1-AR mediated
constriction of intact isolated mesenteric arteries; Third, despite significant reduction of CXCR4 in
VSMC in a Cre-loxP mouse model, signals corresponding to close proximity between CXCR4 and
α1A/B-AR or ACKR3 in VSMC remained unaffected.

We have previously shown that heteromeric CXCR4:α1A/B-AR and CXCR4:ACKR3 complexes can
be detected at a single molecule resolution by PLA [30,36]. As co-immunoprecipitation experiments in
a HeLa expression system and in native VSMC suggested that the observed proximity between the
receptors corresponds to direct receptor–receptor interactions [30], we utilized PLA to visualize and
quantify interactions between CXCR4 and α1A/B-AR or ACKR3 in the present study.

Disruption of transmembrane domains of GPCRs with TM-derived peptides can inhibit receptor
function and receptor dimerization through interference with the target membrane protein [37,38].
Our observations that the TM peptide analogs of CXCR4 inhibited CXCR4 mediated chemotaxis
are consistent with previously described effects of the peptides on CXCR4 mediated Ca2+ fluxes
in U87 cells stably expressing CXCR4 and on CXCR4 mediated cAMP levels in CXCR4 transfected
HEK293T cells [36,37]. Furthermore, these data confirm our previous findings that a PEGylated TM2
peptide analog of CXCR4 reduced CXCR4:α1A-AR interactions without affecting CXCR4:ACKR3
heteromerization or expression levels of individual receptors [30].

The findings from the present study that the TM4 peptide analog interfered with CXCR4:ACKR3
heteromerization but did not affect CXCR4:α1A-AR heteromers or α1-AR-mediated effects have
several implications. While the differential effects of the TM2 and TM4 peptide analogs on
CXCR4 heteromerization serve as a rigorous control for each other, our findings also provide initial
proof-of-concept that selective pharmacological targeting of a specific CXCR4 heteromer is possible.
Furthermore, these observations suggest that the inhibitory effects of the TM2 peptide analog on
α1-AR function are specific and can be attributed to selective interference with the formation of
CXCR4:α1A/B-AR heteromeric complexes [30].

Our findings on the effects of the TM2 peptide analog from pressure myography experiments
are in agreement with the effects of this peptide on VSMC and now provide evidence for inhibitory
effects on intrinsic α1-AR function in intact arteries. As the TM2 peptide analog did not affect arginine
vasopressin-induced vasoconstriction in pressure myography experiments, these data underline
specificity for α1-AR and are consistent with the lack of effect of the PEGylated form of this peptide on
arginine vasopressin-induced Ca2+-fluxes in VSMC that we described previously [30].

The effects of the TM-derived peptide analogs of CXCR4 on CXCR4 heteromerization point
towards TM2 and TM4 as possible CXCR4 contact sites in heteromeric receptor complexes.
Heteromerization of CXCR4 with ACKR3 via TM4 or with α1A-AR via TM2 may not interfere with
the constitutive homodimeric CXCR4 complex, and thus could provide a conceivable structure-based
explanation for the formation of higher order hetero-oligomeric CXCR4 complexes [32]. As information
on the structural configuration of higher-order receptor heteromers is currently not available, we
developed in silico a structure-based hetero-hexameric receptor model, in which TM2 and TM4 of
CXCR4 participate in heteromerization with α1A-AR and ACKR3, respectively. This model suggests
that such a receptor configuration is possible and now provides testable hypotheses that await further
validation. Crystallographic structures of heteromeric receptor complexes, however, will ultimately be
required to confirm the exact contact sites in CXCR4.

While effects of TM2- and TM4-derived peptide analogs of CXCR4 on other native receptor
heteromers are unknown, TM2 and TM4 peptide analogs have previously been reported not to
interfere with the CXCR4 homodimer or the CXCR4:CCR2 heterodimer bioluminescence resonance
energy transfer (BRET) signals in a HEK293T expression system [33]. The TM peptides, however,
reduced CXCL12-promoted BRET changes of the homo- and heteromeric receptors, suggesting that
the peptides bound to CXCR4. Therefore, it could be speculated that CCR2 forms another interface
with CXCR4, which is distinct from the interfaces for α1A-AR and ACKR3 [13,33]. Whether TM2 and
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TM4 of CXCR4 could also be involved in heteromeric complex formation between CXCR4 and other
GPCRs, such as CCR5, CXCR3, ChemR23, β2-AR or α1B-AR [16,27,30,39,40], remains to be evaluated.

To gain initial information on the physiological role of CXCR4:α1A/B-AR heteromers on vascular
function, we then utilized a Cre-loxP mouse model to delete CXCR4 in smooth muscle. CreERT2

positive mice, in which Cre-mediated recombination occurs exclusively in smooth muscle cells,
have been used previously to study various aspects of vascular smooth muscle function [41]. As
expected, CXCR4 expression in VSMC was significantly reduced after tamoxifen injection in CreERT2

positive mice homozygous for the CXCR4 loxP allele, as compared with mice after injection of vehicle.
Quantification of the degree of knockdown revealed 60% reduction of CXCR4 expression on VSMC.
This indicates incomplete excision of the loxP-flanked gene after Cre induction and is in agreement
with incomplete deletion of loxP-flanked genes that have been observed in other transgenic mouse
models utilizing smooth muscle myosin heavy chain CreERT2 [42–45].

The finding that CXCR4:α1A/B-AR and CXCR4:ACKR3 heteromeric complexes in VSMC were
not reduced, despite significant reduction of PLA signals for CXCR4, was unexpected. We previously
showed that CXCR4 gene silencing in cultured human VSMC resulted in reductions of PLA signals for
CXCR4 heteromers, in proportion to the degree of CXCR4 knockdown [30]. Our observations from
the present study suggest that the relative abundance of CXCR4 that is expressed as a protomer
or homodimer alone, compared with CXCR4 expressed within a heteromeric receptor complex,
may not be a direct function of total CXCR4 expression levels. While the underlying molecular
mechanisms remain to be determined, our findings could be interpreted as a preferential formation
of CXCR4 heteromers, e.g., due to the interaction affinity between the receptors. According to this
interpretation, free CXCR4 protomer/homodimers would occur only when CXCR4 is present in excess
of the interacting receptor partners. Thus, the effects of CXCR4 knockdown on CXCR4 heteromerization
would depend on the ratio between the expression levels of CXCR4 and the interacting receptor
partners; PLA signals for CXCR4 heteromers would remain constant as long as the molecular ratio is
high. Our previous finding that CXCR4 gene silencing reduced PLA signals for CXCR4 heteromers
in cultured human VSMC may not be contradictory because receptor expression levels in freshly
isolated mouse VSMC that we used in the present study, and in cultured human VSMC that we utilized
previously, could be substantially different [30].

Alternatively, it could be speculated that regulatory mechanisms occur in our genetic model, which
promote CXCR4 heteromerization, and that such regulation is absent in cell cultures. Nevertheless,
our finding that phenylephrine-reactivity of isolated arteries in pressure myography experiments and
blood pressures of conscious mice were not affected after reduction of CXCR4 in VSMC is consistent
with the maintenance of CXCR4: α1A/B-AR heteromer expression levels in VSMC in this transgenic
mouse model.

Although our observations provide initial insights into the regulation of receptor heteromerization,
our experimental approach was unable to evaluate the physiological function of CXCR4:α1A/B-AR
heteromers in VSMC as those were maintained after CXCR4 knockdown. This documents an
unexpected outcome of a genetic animal model despite a straight forward experimental approach
that was based on findings from cell culture experiments. Thus, genetic models that permit complete
CXCR4 knockdown to abolish CXCR4:α1A/B-AR heteromers or in which mutated CXCR4 that is unable
to interact with α1A/B-AR is expressed in VSMC will be required to answer this question in the future.

In conclusion, our findings point towards TM2 and TM4 of CXCR4 as possible contact sites for
heteromerization with α1A/B-AR and ACKR3, respectively, and suggest that TM-derived peptides
permit selective targeting of CXCR4 heteromers. We anticipate that further development and
refinement of TM-derived peptide analogs or small molecules that target specific receptor–receptor
interaction sites can serve as useful tools to clarify the roles and mechanisms of GPCR heteromerization
and may lead to the development of new compounds with therapeutic applicability. Our findings
further support the notion that CXCR4:α1A/B-AR heteromers are important for intrinsic α1-AR
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function in intact arteries and provide initial and unexpected insights into the regulation of CXCR4
heteromerization in VSMC.

4. Materials and Methods

4.1. Ethics Statement

All procedures involving healthy blood donors were conducted in accordance with the Declaration
of Helsinki-Ethical Principles for Medical Research Involving Human Subjects and the National
Institutes of Health human subjects policies and guidance and were approved by the Loyola University
Chicago Health Sciences Division Institutional Review Board for the Protection of Human Subjects.
Informed consent was obtained from all blood donors. All procedures involving animals were
conducted in accordance with the Guide for the Care and Use of Laboratory Animals, 8th Edition and
were approved by the Institutional Animal Care and Use Committee of Loyola University Chicago
(#205102, 10 July 2013).

4.2. Proteins and Reagents

Phenylephrine was purchased from Sigma-Aldrich (St. Louis, MO, USA) and CXCL12
from Protein Foundry, Milwaukee, WI, USA. siRNA reagents were purchased from GE
Dharmacon (Lafayette, CO, USA). The peptide analogs of transmembrane helix 2 (TM2)
(LLFVITLPFWAVDAVANWYFGNDD-NH2) and TM4 (VYVGVWIPALLLTIPDFIFANDD-OH) of
CXCR4 were generated using the Fmoc protected amino acids in a solid-phase synthesis on a
433A Applied Biosciences Peptide Synthesizer and Liberty Blue Microwave peptide synthesizer
(CEM Corporation, Charlotte, NC, USA) using Fmoc chemistry. The peptides were cleaved from
the resin and deprotected with a mixture of 90.0% (v/v) trifluoroacetic acid (TFA) with 2.5%
water, 2.5% triisopropyl-silane, 2.5% 2,21-(ethylenedioxy)diethanethiol and 5% thioanisol. Peptides
were purified on a preparative (25 mm ˆ 250 mm) Atlantis C3 reverse phase column (Agilent
Technologies, Santa Clara, CA, USA) in a 90 min gradient of 0.1% (v/v) trifluoroacetic acid in water
and 0.1% trifluoroacetic acid in acetonitrile, with a 10 mL/min flow rate. The fractions containing
peptides were analyzed on Agilent 6100 LC/MS spectrometer (Agilent Technologies, Santa Clara, CA,
USA) with the use of a Zorbax 300SB-C3 PoroShell column and a gradient of 5% acetic acid in water
and acetonitrile. Fractions that were more than 95% pure were combined and freeze dried.

4.3. Cells and Cell Lines

Human aortic vascular smooth muscle cells (hVSMC) and the A7r5 rat aortic smooth muscle
cell line were obtained from American Type Culture Collection (ATCC, Manassas, VA, USA) and
cultured as described [30]. Mesenteric artery smooth muscle cells (MASMC) were isolated from male
Sprague-Dawley rats and aortic smooth muscle cells were isolated from transgenic mice as described
elsewhere [46–48]. In brief, small pieces (3–5 mm) of artery were cleaned from connective tissue and
placed in a glass vial containing 0.5 mL of 140 mM NaCl, 5.36 mM KCl, 0.34 mM Na2HPO4, 0.44 mM
KH2PO4, 1.2 mM MgCl2, 0.05 mM CaCl2, 10 mM HEPES and 10 mM D-Glucose at pH 7.2, 298 mOsm
and incubated for 30 min at 37 ˝C. Arteries were then digested in the same buffer containing 2 mg/mL
collagenase Type XI, 2 mg/mL BSA fraction V and 0.16 mg/mL elastase type IV for 35 min at 37 ˝C.
After digestion, arteries were washed and triturated with a Pasteur pipette. Freshly isolated MASMCs
were kept on ice until use in contraction assays.

Human monocytes were isolated from whole blood from healthy volunteers. In brief, whole
blood was drawn and peripheral blood mononuclear cells were isolated by standard density gradient
centrifugation. Monocytes were then positively selected using the EasySepTM Human CD14 positive
selection kit (Stemcell Technologies, Vancouver, BC, Canada) and suspended in RPMI supplemented
with 10% fetal bovine serum, 100 U/mL penicillin and 100 µg/mL streptomycin.
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4.4. Transgenic Mice

Female B6.129P2-Cxcr4tm2Yzo/J mice and male B6.FVB-Tg(Myh11-cre/ERT2)1Soff/J were
purchased form Jackson Laboratory (Bar Harbor, ME, USA) and mated. B6.129P2-Cxcr4tm2Yzo/J
mice possess loxP sites on either side of exon 2 of the CXCR4 gene [49]. In B6.FVB-Tg(Myh11-cre/
ERT2)1Soff/J mice, CreERT2 expression, a fusion protein of the Cre recombinase with the modified
estrogen receptor binding domain, is under control of the mouse smooth muscle myosin, heavy
polypeptide 11, smooth muscle (Myh11) promoter/enhancer regions on the bacterial artificial
chromosome (BAC) transgene, which is inserted on the Y chromosome [41]. Male offspring
heterozygous for the loxP allele were then mated back to female B6.129P2-Cxcr4tm2Yzo/J mice. Male
progeny carrying the CreERT2 transgene and homozygous for the loxP allele were then mated to female
B6.129P2-Cxcr4tm2Yzo/J mice and male progeny selected as experimental animals. For Cre-induction,
mice ě12 weeks-old were injected intraperitoneally with 1 mg/kg body weight tamoxifen or vehicle
(corn oil) for five consecutive days. Tissues were harvested not earlier than 7 days after the final
tamoxifen injection.

4.5. Genotyping

Genotyping of transgenic mice with DNA extracted from tail-snips was performed using standard
PCR according to the Jackson Laboratory protocols Cxcr4tm2Yzo (primers: 51-CCA CCC AGG ACA
GTG TGA CTC TAA-31 and 51-GAT GGG ATT TCT GTA TGA GGA TTA GC-31; mutant gene: 550 bp;
wild type: 481 bp) and Tg(Myh11-cre/ERT2)1Soff (primers: 51-TGA CCC CAT CTC TTC ACT CC-31

and 51-AGT CCC TCA CAT CCT CAG GTT-31; transgene: 287 bp).

4.6. Blood Pressure and Heart Rate Measurements via Telemetry

Direct blood pressure measurements in conscious mice were performed utilizing implantable
radio telemetry devices, as described [50]. In brief, mice were anesthetized with isoflurane, the catheter
of a Data Sciences International (DSI, St. Paul, MN, USA) PhysioTel PA-C10 pressure transmitter was
inserted into the left common carotid artery and advanced in the aortic arch. The telemetry device was
then implanted subcutaneously along the flank of the animal. Post-operatively, animals received three
doses of ampicillin (25 mg/kg intramuscularly) in 8 h intervals and were kept on a rodent warming
pad for 24 h. Seven days post telemetry device implantation, telemetry transmitters were activated
and blood pressures and heart rates were averaged over 10 s in 2 h intervals via the DSI telemetry
receiver and Dataquest A.R.T. ™ Gold Acquisition Version 4.30 software (DSI, St. Paul, MN, USA).

4.7. Pressure Myography

Pressure myography was performed as described in detail previously with slight
modifications [51]. Animals were anesthetized with 3.5% isoflurane. The mesentery was immediately
removed and placed in 130 mM NaCl, 4.7 mM KCl, 1.18 mM KH2PO4, 1.17 mM MgSO4¨ 7H2O, 14.9 mM
NaHCO3, 5.5 mM D-Glucose, 0.026 mM EDTA, 1.16 mM CaCl2 aerated with 95% O2, 5% CO2 at 37 ˝C.
The animal was than euthanized by cardiectomy and bilateral decompression of the lungs. Third or
4th order mesenteric arteries were dissected free from the mesentery, mounted onto two glass cannulae
with United States Pharmacopeia (USP) scale 11-0 sutures and pressurized as required in a DMT 110P
Pressure myograph system (DMT-USA, Ann Arbor, MI, USA). The intraluminal solution and the vessel
bath solution were the same as described before. The vessel bath solution was continuously aerated
with 95% O2, 5% CO2 throughout the experiment. The outer o.d. of the pressurized vessel was then
continuously measured and recorded via digital video-edge detection. For each condition or drug
treatment, the vessel was observed for 7 min and the mean o.d. during the final minute of the dosing
period calculated as percent of the o.d. before drug treatment.
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4.8. Receptor Gene Silencing by RNA Interference

CXCR4, ACKR3 and α1A-AR siRNA gene silencing were performed as described
previously [30,52]. In brief, hVSMC cells were grown in 1 mL Accell siRNA delivery media per
well (Thermo Scientific Dharmacon, Waltham, MA, USA) in 12 well plates (Nunc, Rochester, NY, USA).
Commercially available Accell CXCR4, ACKR3 and α1A-AR siRNA were reconstituted with siRNA
buffer to a stock concentration of 100 µM. Cells were then transfected with 10 nmol CXCR4, ACKR3 or
α1A-AR siRNA and incubated for 72 h at 37 ˝C, 5% CO2. Accell non-targeting (NT) siRNA pool was
used as negative control. After 72 h, cells were assayed for receptor cell surface expression.

4.9. Vascular Smooth Muscle Cell Contraction Assay

Contraction assays were performed as described previously [30]. In brief, freshly isolated
MASMCs were dispensed onto a glass coverslip base of the recording chamber and allowed to
adhere for approximately 15 min at room temperature. MASMCs were pretreated with vehicle or 100
µM of the TM peptide analogs for 15 min at room temperature. All experiments were performed with
continuous perfusion of the bath solution containing 140 mM NaCl, 5.36 mM KCl, 1.2 mM MgCl2,
2 mM CaCl2, 10 mM HEPES, and 10 mM D-glucose, pH 7.3, 298 mOsm/L. Images were acquired
using C-Imaging System (Compix Inc., Lake Oawego, OR, USA) with an Olympus 1X71 inverted
epifluorescence microscope (10ˆ objective, phase contrast) and Simple PCI software (Vers.5.3.1.,
Olympus, Center Valley, PA, USA) every 2 s for 1 min prior to the application of 10 µM phenylephrine
and for additional 3 min after phenylephrine application. The total number of the cells and the
number of the cells that contracted in response to phenylephrine were counted in each field. For each
experiment, cells from a single animal were tested in triplicate or quadruplicate.

4.10. Proximity Ligation Assays (PLA)

The Duolink proximity ligation assay was purchased from Sigma-Aldrich and performed in
a format suitable for the detection of single proteins and protein-protein interactions, as described
in detail previously [30,53,54]. In brief, hVSMC and mouse VSMC were fixed on eight well tissue
culture slides (Nunc). After blocking in 3% BSA/PBS, hVSMC were incubated with rabbit anti-ACKR3
(LS-B1815, LSBio, Seattle, WA, USA)/mouse anti-CXCR4 (M04, clone 2G9, Abnova, Walnut, CA,
USA) (1:400) or mouse anti-CXCR4 (M04, clone 2G9, Abnova)/rabbit anti-α1A-AR (ab137123, Abcam,
Cambridge, MA, USA) (1:400) antibodies at 37 ˝C for 2 h in a humidifying chamber to visualize
receptor–receptor interaction. Mouse VSMC were incubated either with rabbit anti-CXCR4 (AbCam
ab2074) (1:500), mouse anti-ACKR3 (R&D Systems MAB42273, Minneapolis, MN, USA) (1:500), mouse
anti-α1A-AR (AbCam ab87990) (1:500) or goat anti-α1B-AR (Santa Cruz sc27136, Dallas, TX, USA)
for detection of individual receptors or with the following antibody combinations (all 1:500) for the
detection of receptor–receptor interactions: rabbit anti-CXCR4 (AbCam ab2074)/mouse anti-ACKR3
(R&D Systems MAB42273), rabbit anti-CXCR4 (AbCam ab2074)/mouse anti-α1A-AR (AbCam ab87990)
and rabbit anti-CXCR4 (AbCam ab2074)/goat anti-α1B-AR (Santa Cruz sc27136). Slides were then
incubated with secondary anti-species specific antibodies conjugated with plus and minus Duolink
II PLA probes (1:5), as appropriate. As controls, slides were incubated with PBS instead of primary
antibody or with rabbit anti-CXCR4 (AbCam ab2074) in combination with a single secondary probe.
After washing, slides were then incubated with ligation-ligase solution (30 min, 37 ˝C) followed by
incubation with amplification-polymerase solution (2 h, 37 ˝C). Slides were then mounted with a
minimal volume of Duolink II Mounting medium with 41,6-diamidino-2-phenylindole (DAPI) for
15–30 min and PLA signals (Duolink In Situ Detection Reagents Green (λexcitation/emission 495/ 527 nm)
or Red (λexcitation/emission 598/634 nm)) were identified as fluorescent spots under a fluorescence
microscope using 40ˆ or 100ˆ objectives. The number of PLA signals per cell were analyzed using
the Duolink Image Tool software (Sigma-Aldrich). Images were imported in merged.tiff formats
containing both signal and nuclei channels. Merged images were checked visually and verified for
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analytical quality. Comparisons and statistical analyses were performed only when PLA assays were
performed on the same day in parallel experiments and fluorescence microscopy was performed with
identical settings. For hVSMC, 10 vision fields were analyzed for each condition and experiment. For
mouse VSMC, 6–15 vision fields were analyzed for each condition and animal (n = 7–8).

4.11. Fluorescence-Activated Cell Sorting (FACS) Analyses

FACS analyses were performed as described previously [30,53]. Cells were labeled with
monoclonal mouse anti-CXCR4 (M04, clone 2G9, Abnova), polyclonal rabbit anti-α1A-AR (ab137123,
Abcam) and polyclonal rabbit anti-ACKR3 (LS-B1815, LSBio) in combination either with anti-rabbit
FITC conjugated goat IgG (ab6717, Abcam) or anti-mouse FITC conjugated goat IgG (ab6785). Rabbit
IgG (GWB-3274CD, R&D Systems) in combination with FITC conjugated anti-rabbit goat IgG (ab6717,
Abcam) was used as a negative control. The geometric fluorescence intensities of at least 3 ˆ 104 cells
were recorded and analyzed using the FlowJo software (Tree Star, Ashland, OR, USA).

4.12. Ca2+ Assays

Intracellular Ca2+ in A7r5 cells was measured using the Fluo-4 NW Calcium Assay Kit (Molecular
Probes, Eugene, OR, USA), as described [30,52,55,56].

4.13. Chemotaxis Assay

Cell migration of hVSMC and monocytes towards CXCL12 was assessed using the
ChemoTx96-well cell migration system (30 µL well plate, 8 µm filter pore size; Neuroprobe,
Gaithersburg, MD, USA). ChemoTX filters were pre-coated with 100 µg/mL Collagen IV for 48 h at
25 ˝C when hVSMC were tested. The bottom wells were loaded with 30 µL of test solutions (100 ng/mL
CXCL12). Twenty-five microliters of cell suspension containing 105 cells were loaded onto the
ChemoTX filter over each well and incubated for 2 h at 37 ˝C, 5% CO2. After incubation, transmigrated
cells were washed, fixed and stained with Accustain Wright-Giemsa stain (Sigma-Aldrich). Stained
cells were counted under a light microscope (400ˆ) and average cell numbers were determined by
counting the cells in three random non-overlapping vision fields. The chemotactic index was calculated
as the ratio of cells that transmigrated through the filter in the presence versus absence (=PBS/control)
of the test solutions.

4.14. Light Microscopy

Tissue biopsies (lung, heart, liver, kidney, gut, urinary bladder and vasculature) were fixed in
10% formalin, embedded in paraffin, sectioned and stained with hematoxylin and eosin (H&E). Slides
were examined under light microscopy by a pathologist who was blinded as to the origin of the tissues.

4.15. Sequence Alignments

Structure-based sequence alignments were performed with the web-based GPCRdb similarity
search tool (Available online: http://gpcrdb.org/), where sequence similarity is defined as the
percentage of similar amino acids and similar is defined as a BLOSUM62 score >0 [57,58].

4.16. Structural Modeling and Molecular Dynamics Simulation

Structural modeling of ACKR3 and α1A-AR were conducted via the Protein Homology/analogY
Recognition Engine (Phyre2) server [59]. Experimental and modeled structures were aligned in PyMol
(Schrödinger, New York, NY, USA) prior to molecular dynamics simulation. Molecular dynamics
simulation was carried out using Desmond (Schrödinger) installed on the Discovery fast computing
server at the Edward A. Doisy Department of Biochemistry and Molecular Biology at the Saint Louis
University School of Medicine.
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4.17. Data Analyses

Data are expressed as mean ˘ standard error of the mean (SEM) from n independent experiments
that were performed on different days. Data were analyzed with non-linear regression analyses
and with one-way analyses of variance (ANOVA) with Bonferroni’s multiple comparison post-hoc
test or with two-way ANOVA with Sidak’s multiple comparisons test for multiple comparisons, as
appropriate. Best-fit values were compared with the extra sum-of-squares F test. All analyses were
calculated with the GraphPad-Prism 6 software (GraphPad Software, La Jolla, CA, USA). A two-tailed
p < 0.05 was considered significant.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/
17/6/971/s1. File S1: Final structural coordinates of the hetero-hexameric receptor cluster (PyMol file S1.pse);
File S2: Movie (sampling interval 4.8 ps, 250 frames) of the molecular dynamics simulation (S2.mpeg).
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ACKR3 Atypical chemokine receptor 3
AR Adrenergic receptor
aVP arginine vasopressin
CCR chemokine (C-C motif) receptor
Chem23R G protein-coupled receptor 27, chemerin receptor
Cre Cre recombinase
CreERT2 Cre recombinase fused to a triple mutant form of the human estrogen receptor
CXCR4 chemokine (C-X-C motif) receptor 4
DAPI 41,6-diamidino-2-phenylindole
DBP diastolic blood pressure
EC50 half-maximal effective concentration
FACS Fluorescence-activated cell sorting
GPCR G protein-coupled receptor
loxP locus of crossover in P1
MAP mean arterial blood pressure
o.d. outer diameter
PE Phenylephrine
PLA proximity ligation assay
PCR polymerase chain reaction
siRNA small interfering ribonucleic acid
SBP systolic blood pressure
TIP3P water model
TM transmembrane-domain
VSMC vascular smooth muscle cell
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