Supplementary Materials: Duplication and Remolding of tRNA Genes in the Mitochondrial Genome of *Reduvius tenebrosus* (Hemiptera: Reduviidae)

120 10 20 30 40 50 60 70 100 110 NCR ATCTGCCTAAGTAGATCTCTGATGGTAATCTCTCCTTGCCTAATCAGAGAATTATTTAGTCTTATATT AATCTTAATACTTAT CTGTTAAGAATGATAATTAAATT ND2 TCTTATATI tottaatact at tctg ctaagtagatctctgatggtaatctctcctt cctaatcagagaattattta tottatatt ctgttaagaatgataattaaatt g at 130 140 150 160 170 180 190 200 210 220 230 240 بتليتL. TT<mark>C</mark>TATAACATGACAAAAT<mark>GCTGGA</mark> NCR TCCCAGAATTCTTGGAAAA GTTAGCTCTGCTA CTTTAATTATTATATCTCACATCGI GAAAAGAT ND2 гаатти TAA tcccagaa tcttggaaaa at ag g gtta ctct c a tt ataacatgacaaaa gctggacctttaattattatatctcacatcgt gacgtc ctaa 260 270 280 290 300 310 320 330 350 360 250 340liilı NCR GCAATTGGCGGACTCAGCCAAACATCCATCCGAAAGATTATAGG GCCTCC<mark>TA</mark>TTATTIGCGTTACTGT<mark>A</mark>ATCGTGGG TATICIT CCATTAACCACATAGGATGAATAA ND2 GTTATTIG GTGATCGT GGGGCGATTGGCGGACTT CACATAGGATGAATAA ttac gt atcgt aaccacataggatgaataa acctec ttatttdc gg gc attggcggact ccaaac t o tc :0 370 380 390 400 410 420 430 440 450 460 470 480 ulu. multil. ...l.i нĿ يتلبت шĿ NCRagtticataatga<mark>a</mark>ttitgaatcaaata<mark>t</mark>ctaattatctattcaatcattattacattaat<mark>g</mark>attta CTTTAATGTGTACT ACATTTTTTTATTAATC CTAATTAT ND2 AGTTTCATAATGA<mark>G</mark>TTTTGAATCAAATA TATTCAATCATTATTACATTAAT agtttcataatga ttttgaatcaaata ctaattatctattcaatcattattacattaat atttacacctttaatgt tactca cattttttattaatcaa :0 490 500 510 520 530 540 550 560 570 580 590 600 mlm multi iilii uuluu CGAAT<mark>CC</mark>TTA<mark>A</mark>AAAC T<mark>A</mark>AATTTTTAGAAAA NCR AATAACCCCGAAT CCTGACAATAACTAAACAATTCTTAAAATTAAAAGAACTATTCCTACTTTTAGA GCC<mark>TAAATGAT<mark>CAA</mark>TTA<mark>A</mark>TCAAGCAATAATTATC</mark> TGATAATCA ND2 aaataaccc aat tta aaa ctga aat caattc act ttttag g acc aaatgat tta tcaagcaataattato 610 620 CTCA<mark>A</mark>TCACAATTTTA CTCA<mark>C</mark>TCACAATTTTA NCR ND2 tca tcacaatttta 10 20 30 40 50 60 70 80 90 100 110 120 NCR CR TTAAAAA TAAAA ccatgacatatccctgaaataac 130 140 150 160 170 180 190 GTGGGAAAGGGTTCCATCGCTAGAAAGTTAAGAGTAAAATTACAAATCCAATTTTTGGAAAACCAAA NCR GAAAGTTAAGAGTAAAATTACAAATC tttgggtgggaaagggttccatcgc agaaagttaagagtaaaattacaaatccaattttt aaaac

Pei Jiang, Hu Li, Fan Song, Yao Cai, Jianyun Wang, Jinpeng Liu and Wanzhi Cai

Figure S1. Sequence matching between the non-coding regions (NCR) parts and *ND2* and control region (CR). The identical bases between two sequences are in navy blue and the white and sky blue ones indicate different bases between them.

Table S1. Organization of *Reduvius tenebrosus* mitochondrial (mt) genome. "F" indicates genes encoded on the majority strand and "R" indicates genes annotated on the minority strand. "T-" stands for the incomplete stop codon (a single T).

Gene	Direction	Loca	ation	Size	Anticodon	Codon Start	Codon Stop	Intergenic Nucleotides
trnI1	F	1	64	64	GAT			0
trnM	F	107	175	69	CAT			42
ND2	F	176	1177	1002		ATC	TAA	0
trnW	F	1176	1240	65	TCA			-2
trnC	R	1233	1294	62	GCA			-8
trnY	R	1303	1368	66	GTA			8
COI	F	1372	2905	1534		ATG	T-	3

Gene	Direction	Loca	ition	Size	Anticodon	Codon Start	Codon Stop	Intergenic Nucleotides
trnL2	F	2906	2970	65	TAA			0
COII	F	2971	3654	684		ATT	TAA	0
trnK	F	3672	3741	70	CTT			17
trnD	F	3742	3804	63	GTC			0
ATP8	F	3805	3963	159		ATT	TAA	0
ATP6	F	3957	4640	684		ATG	TAG	-7
COIII	F	4627	5413	787		ATG	Т-	-14
trnG	F	5414	5475	62	TCC			0
ND3	F	5476	5829	354		ATA	TAG	0
trnA	F	5829	5888	60	TGC			-1
trnR	F	5891	5954	64	TCG			2
trnN	F	6058	6124	67	GTT			103
trnS1	F	6124	6192	69	GCT			-1
trnE	F	6194	6258	65	TTC			1
trnF	R	6257	6323	67	GAA			-2
ND5	R	6324	8034	1711		ATT	T-	0
trnH	R	8035	8096	62	GTG			0
ND4	R	8097	9423	1327		ATG	T-	0
ND4L	R	9417	9713	297		GTG	TAA	-7
trnT	F	9716	9776	61	TGT			2
trnP	R	9777	9842	66	TGG			0
ND6	F	9845	10,345	501		ATT	TAA	2
CytB	F	10,345	11,481	1137		ATG	TAA	-1
trnS2	F	11,480	11,550	71	TGA			-2
ND1	R	11,696	12,613	918		GTG	TAG	145
trnL1	R	12,614	12,678	65	TAG			0
lrRNA	R	12,679	13,933	1255				0
trnV	R	13,934	14,001	68	TAC			0
srRNA	R	14,002	14,785	784				0
control region	F	14,786	16,036	1251				0
trnQ	R	16,037	16,105	69	TTG			0
trnI2	F	16,105	16,173	69	GAT			-1
NCR	F	16,174	17,090	917				0

Table S1. Cont.

Table S2. Base composition in *R. tenebrosus* mt genome.

Feature	Total	%T	%C	%A	%G	%A+T	%G+C	AT-Skew	GC-Skew
Whole genome	17,090	27.5	20.4	39.7	12.5	67.2	32.8	0.18	-0.24
Protein-coding genes	11,064	38.2	17.8	27.6	16.5	65.8	34.2	-0.16	-0.04
First codon position	3688	31.9	15.9	31.5	20.7	63.4	36.6	-0.01	0.13
Second codon position	3688	45.9	19.3	18.8	16.1	64.7	35.3	-0.42	-0.09
Third codon position	3688	36.7	18.1	32.5	12.6	69.2	30.8	-0.06	-0.18
Protein-coding genes-J	6819	30.6	22	32.8	14.6	63.4	36.6	0.03	-0.20
First codon postion	2273	24.3	19.4	35.5	20.7	59.8	40.2	0.19	0.03
Second codon position	2273	43.6	21.4	20.1	15	63.7	36.3	-0.37	-0.18
Third codon position	2273	23.9	25	42.8	8.2	66.7	33.3	0.28	-0.51
Protein-coding genes-N	4245	50.3	11.1	19.2	19.4	69.5	30.5	-0.45	0.27
First codon position	1415	44.1	10.2	25.1	20.6	69.2	30.8	-0.27	0.34
Second codon postion	1415	49.5	15.9	16.7	17.9	66.2	33.8	-0.50	0.06
Third codon position	1415	57.3	7.1	15.9	19.7	73.2	26.8	-0.57	0.47
Control region	1251	28.9	21.7	37.2	12.2	66.1	33.9	0.13	-0.28

Carly formiller	Cracias	Deerreecoment	Longth (her)	AT 0/		Codons	s for Ile	ConPont Accordian
Sublamily	Species	Kearragement	Length (bp)	AI 70	ATT	ATC	ATT + ATC	Gendank Accession
Triatominae	Triatoma dimidiata	none	17,019	69.5%	281 *	81 *	362	NC_002609
Salyavatinae	Valentia hoffmanni	none	15,625	73.7%	325	41	366	NC_012823
Harpactorinae	Agriosphodrus dohrni	none	16,470	72.2%	313	48	361	NC_015842
Ectrichodiinae	Brontostoma colossus	A - R - N \rightarrow R - A - R - N	16,625	73.4%	328	56	384	NC_024745
Peiratinae	Sirthenea flavipes	none	15,961	71.8%	328	51	379	NC_020143
Peiratinae	Peirates arcuatus	none	16,176	71.3%	343 *	42 *	385	NC_024264
Peiratinae	Peirates fulvescens	none	15,702	71.9%	318	53	371	KF913537
Peiratinae	Peirates atromaculatus	none	16,151	71.0%	309	61	370	KF913539
Peiratinae	Peirates turpis	none	15,703	72.0%	312	58	370	KF913540
Peiratinae	Peirates lepturoides	none	15,932	72.4%	329	59	388	KF913541
Stenopodinae	Oncocephalus breviscutum	none	15,948	74.4%	367 *	24 *	391	NC_022816
Tribelocephalinae	Opistoplatys sp.	none	15,615	75.6%	383 *	38 *	421	KC887533
Reduviinae	Reduvius tenebrosus	$I-Q-M \rightarrow Q-I-I-M$	17,090	67.2%	251 *	114 *	365	present study

Table S3. Structural features and codon usage for isoleucine (Ile) of sequenced assassin bug mt genomes.

Values with an asterisk signify that relative frequency of codons for ATT vs. ATC is significantly (p < 0.05) different from the averaged among 13 assassin bugs.

Amino Acid	Codon	Ν	RSCU	N+	RSCU	N-	RSCU
Phe (F)	UUU	235	1.41	78	0.97	157	1.83
	UUC	98	0.59	83	1.03	15	0.17
Leu (L)	UUA	186	2.08	87	1.83	99	2.37
	UUG	103	1.15	12	0.25	91	2.18
	CUU	76	0.85	32	0.67	44	1.05
	CUC	41	0.46	39	0.82	2	0.05
	CUA	104	1.16	94	1.97	10	0.24
	CUG	27	0.30	22	0.46	5	0.12
Ile (I)	AUU	251	1.38	155	1.21	96	1.76
	AUC	114	0.62	101	0.79	13	0.24
Met (M)	AUA	184	1.47	147	1.74	37	0.91
	AUG	66	0.53	22	0.26	44	1.09
Val(V)	GUU	89	1.72	30	1.01	59	2.68
	GUC	24	0.46	17	0.57	7	0.32
	GUA	66	1.28	57	1.92	9	0.41
	GUG	28	0.54	15	0.50	13	0.59
Ser (S)	UCU	106	2.25	23	0.88	83	3.88
	UCC	48	1.02	39	1.50	9	0.42
	UCA	71	1.51	63	2.42	8	0.37
	UCG	7	0.15	2	0.08	5	0.23
Pro (P)	CCU	60	1.71	31	1.16	29	3.52
	CCC	39	1.11	36	1.35	3	0.36
	<u>CCA</u>	36	1.03	35	1.31	1	0.12
	CCG	5	0.14	5	0.19	0	0.00
Thr (T)	ACU	69	1.56	35	1.01	34	3.58
	ACC	24	0.54	23	0.66	1	0.11
	ACA	74	1.67	73	2.10	1	0.11
	ACG	10	0.23	8	0.23	2	0.21
Ala (A)	GCU	49	1.21	16	0.57	33	2.69
	GCC	38	0.94	31	1.10	7	0.57
	<u>GCA</u>	65	1.60	62	2.19	3	0.24
	GCG	10	0.25	4	0.14	6	0.49
Tyr (Y)	UAU	108	1.32	31	0.81	77	1.77
	<u>UAC</u>	56	0.68	46	1.19	10	0.23

Table S4. Codon usage of protein-coding genes in the *R. tenebrosus* mt genome.

Amino Acid	Codon	Ν	RSCU	N+	RSCU	N-	RSCU
Stop (*)	UAA	6					
1 ()	UAG	3					
His (H)	CAU	37	0.99	26	0.85	11	1.57
	CAC	38	1.01	35	1.15	3	0.43
Gln (Q)	CAA	44	1.28	41	1.58	3	0.35
	CAG	25	0.72	11	0.42	14	1.65
Asn (N)	AAU	71	1.08	35	0.75	36	1.85
	AAC	61	0.92	58	1.25	3	0.15
Lys (K)	AAA	54	1.19	51	1.48	3	0.27
	AAG	37	0.81	18	0.52	19	1.73
Asp (D)	GAU	54	1.38	26	1.11	28	1.81
	GAC	24	0.62	21	0.89	3	0.19
Glu (E)	GAA	53	1.28	47	1.65	6	0.46
	GAG	30	0.72	10	0.35	20	1.54
Cys (C)	UGU	38	1.36	5	0.56	33	1.74
	<u>UGC</u>	18	0.64	13	1.44	5	0.26
Trp (W)	<u>UGA</u>	74	1.44	58	1.63	16	1.00
	UGG	29	0.56	13	0.37	16	1.00
Arg (R)	CGU	17	0.68	3	0.34	14	2.80
	CGC	4	0.16	3	0.34	1	0.20
	<u>CGA</u>	26	1.03	24	2.74	2	0.40
	CGG	8	0.32	5	0.57	3	0.60
Ser (S)	AGU	36	0.76	9	0.35	27	1.26
	AGC	15	0.32	9	0.35	6	0.28
	AGA	82	3.26	61	2.35	21	0.98
	AGG	14	0.56	2	0.08	12	0.56
Gly (G)	GGU	59	1.02	9	0.27	50	2.06
	GGC	27	0.47	15	0.44	12	0.49
	<u>GGA</u>	79	1.36	73	2.16	6	0.25
	GGG	67	1.16	38	1.13	29	1.20

|--|

N, the number of codons used in protein-coding genes; RSCU, relative synonymous codon usage. Values in bold type stand for the most commonly used codon for amino acid. Underlined stand for the cognate codon of tRNA for each amino acid.

<u>Cranitan</u>		Phe					Leu					Ile			Met				Val		
Species	UUU	UUC	%	UUA	UUG	CUU	CUC	CUA	CUG	%	AUU	AUC	%	AUA	AUG	%	GUU	GUC	GUA	GUG	%
Triatoma dimidiata	250	85	0.25	219	95	89	31	81	10	0.26	281	81	0.22	193	58	0.23	113	21	76	19	0.17
Valentia hoffmanni	292	55	0.16	323	52	82	9	53	7	0.13	325	41	0.11	250	31	0.11	92	9	86	9	0.09
Agriosphodrus dohrni	282	71	0.20	298	51	78	22	55	17	0.17	313	48	0.13	222	39	0.15	83	19	82	19	0.19
Brontostoma colossus	276	82	0.23	295	74	54	10	68	10	0.18	328	56	0.15	247	43	0.15	90	13	58	7	0.12
Sirthenea flavipes	283	62	0.18	264	68	67	17	82	11	0.19	328	51	0.13	217	64	0.23	91	20	78	16	0.18
Peirates arcuatus	278	64	0.19	275	56	76	15	68	18	0.18	343	42	0.11	209	50	0.19	91	15	78	15	0.15
Peirates fulvescens	269	75	0.22	331	61	56	22	46	10	0.18	318	53	0.14	216	49	0.18	106	11	74	17	0.13
Peirates atromaculatus	276	69	0.20	330	60	60	17	50	9	0.16	309	61	0.16	214	51	0.19	102	15	75	17	0.15
Peirates turpis	273	71	0.21	332	60	60	17	46	12	0.17	312	58	0.16	214	58	0.21	103	15	74	17	0.15
Peirates lepturoides	289	54	0.16	315	49	75	12	54	9	0.14	329	59	0.15	221	47	0.18	106	12	71	7	0.10
Oncocephalus breviscutum	287	61	0.18	325	45	84	9	35	6	0.12	367	24	0.06	251	22	0.08	94	5	74	13	0.10
Opistoplatys sp.	313	43	0.12	367	38	57	10	33	2	0.10	383	38	0.09	255	29	0.10	71	11	68	11	0.14
Reduvius tenebrosus	235	98	0.29	186	103	76	41	104	27	0.32	251	114	0.31	184	66	0.26	89	24	66	28	0.25
Average	277	68	0.20	297	62	70	18	60	11	0.18	322	56	0.15	223	47	0.17	95	15	74	15	0.15

Table S5. Codon usage of protein-coding genes in 13 sequenced assassin bug mt genomes.

Caradian			Ser					Pro					Thr					Ala				Tyr	
Species	UCU	UCC	UCA	UCG	%	CCU	CCC	CCA	CCG	%	ACU	ACC	ACA	ACG	%	GCU	GCC	GCA	GCG	%	UAU	UAC	%
T. dimidiata	130	26	76	3	0.12	67	21	41	4	0.19	77	37	69	5	0.22	60	35	61	4	0.24	130	37	0.22
V. hoffmanni	108	28	101	2	0.13	69	19	45	0	0.14	76	16	92	2	0.10	65	15	60	2	0.12	138	22	0.14
A. dohrni	110	22	88	2	0.11	54	22	47	2	0.19	97	25	80	5	0.14	56	23	67	5	0.19	137	38	0.22
B. colossus	108	22	85	9	0.14	63	20	51	5	0.18	61	23	101	7	0.16	48	12	55	3	0.13	145	29	0.17
S. flavipes	129	18	77	6	0.10	53	25	53	8	0.24	76	15	89	6	0.11	66	20	54	4	0.17	136	33	0.20
P. arcuatus	117	27	77	8	0.15	52	33	50	4	0.27	79	21	87	5	0.14	46	29	68	3	0.22	139	28	0.17
P.fulvescens	121	18	83	8	0.11	63	25	50	3	0.20	65	22	93	3	0.14	42	21	79	5	0.18	138	24	0.15
P. atromaculatus	123	18	84	5	0.10	63	26	53	3	0.20	66	20	96	1	0.11	41	21	78	5	0.18	140	23	0.14
P. turpis	124	16	85	6	0.10	62	27	52	3	0.21	66	20	95	2	0.12	42	19	78	5	0.17	140	23	0.14
P. lepturoides	123	12	94	2	0.06	74	17	50	3	0.14	77	16	84	1	0.10	55	19	82	4	0.14	140	24	0.15
O. breviscutum	125	20	86	6	0.11	70	8	56	2	0.07	71	17	91	5	0.12	66	15	49	6	0.15	161	11	0.06
<i>Opistoplatys</i> sp.	105	23	80	4	0.13	71	16	41	7	0.17	77	22	58	5	0.17	53	26	54	4	0.22	171	14	0.08
R. tenebrosus	106	48	71	7	0.24	60	39	36	5	0.31	69	24	74	10	0.19	49	38	65	10	0.30	108	56	0.34
Average	118	23	84	5	0.12	63	23	48	4	0.19	74	21	85	4	0.14	53	23	65	5	0.19	140	28	0.17

		11:-			Cla			A			Lara			A			Cla			Care	
Species		HIS			Gin			Asn			Lys			Asp			Glu			Cys	
species	CAU	CAC	%	CAA	CAG	%	AAU	AAC	%	AAA	AAG	%	GAU	GAC	%	GAA	GAG	%	UGU	UGC	%
T. dimidiata	49	30	0.38	48	9	0.16	105	44	0.30	50	35	0.41	48	25	0.34	61	26	0.30	41	14	0.25
V. hoffmanni	58	21	0.27	57	5	0.08	130	29	0.18	69	24	0.26	54	13	0.19	63	20	0.24	47	10	0.18
A. dohrni	55	24	0.30	47	16	0.25	130	40	0.24	69	39	0.36	54	21	0.28	70	21	0.23	53	1	0.02
B. colossus	55	22	0.29	47	9	0.16	128	38	0.23	92	15	0.14	54	15	0.22	58	12	0.17	56	6	0.10
S. flavipes	46	31	0.40	47	10	0.18	115	42	0.27	68	32	0.32	52	23	0.31	68	20	0.23	34	18	0.35
P. arcuatus	59	17	0.22	47	11	0.19	123	28	0.19	65	24	0.27	56	19	0.25	75	16	0.18	49	12	0.20
P.fulvescens	49	30	0.38	44	10	0.19	117	34	0.23	75	25	0.25	57	18	0.24	72	16	0.18	52	8	0.13
P. atromaculatus	47	30	0.39	47	8	0.15	117	34	0.23	71	29	0.29	56	19	0.25	72	19	0.21	51	9	0.15
P. turpis	48	29	0.38	47	8	0.15	117	34	0.23	71	31	0.30	57	18	0.24	72	17	0.19	51	9	0.15
P. lepturoides	51	27	0.35	47	8	0.15	125	26	0.17	59	39	0.40	64	12	0.16	71	17	0.19	46	12	0.21
O. breviscutum	57	17	0.23	55	9	0.14	144	17	0.11	84	17	0.17	62	6	0.09	81	12	0.13	46	6	0.12
<i>Opistoplatys</i> sp.	57	13	0.19	56	8	0.13	169	20	0.11	81	15	0.16	59	8	0.12	71	15	0.17	46	6	0.12
R. tenebrosus	37	38	0.51	44	25	0.36	71	61	0.46	54	37	0.41	54	24	0.31	53	30	0.36	38	18	0.32
Average	51	25	0.33	49	10	0.18	122	34	0.22	70	28	0.29	56	17	0.23	68	19	0.21	47	10	0.17

Spacios		Trp				Arg					Ser					Gly		
Species	UGA	UGG	%	CGU	CGC	CGA	CGG	%	AGU	AGC	AGA	AGG	%	GGU	GGC	GGA	GGG	%
T. dimidiata	77	23	0.23	18	1	33	4	0.09	27	7	92	9	0.12	72	20	109	27	0.21
V. hoffmanni	90	11	0.11	19	1	29	4	0.09	28	10	91	4	0.11	67	8	115	33	0.18
A. dohrni	83	22	0.21	16	2	32	2	0.08	35	9	82	11	0.15	68	14	76	45	0.29
B. colossus	78	16	0.17	14	4	25	6	0.20	34	9	72	8	0.14	69	19	111	31	0.22
S. flavipes	88	14	0.14	20	1	30	3	0.07	33	8	85	3	0.09	74	7	106	34	0.19
P. arcuatus	85	18	0.17	19	5	28	2	0.13	28	6	92	14	0.14	66	9	115	39	0.21
P.fulvescens	89	16	0.15	16	2	32	4	0.11	33	4	93	5	0.07	81	12	96	34	0.21
P. atromaculatus	86	17	0.17	16	2	31	5	0.13	31	6	94	5	0.08	80	12	97	34	0.21
P. turpis	86	17	0.17	16	2	31	5	0.13	31	6	94	3	0.07	78	13	98	33	0.21
P. lepturoides	90	13	0.13	15	2	32	5	0.13	31	5	89	7	0.09	79	10	102	34	0.20
O. breviscutum	91	12	0.12	19	1	30	5	0.11	35	4	87	3	0.05	88	0	120	19	0.08
<i>Opistoplatys</i> sp.	81	17	0.17	25	2	21	5	0.13	33	4	72	4	0.07	63	13	110	34	0.21
R. tenebrosus	74	29	0.28	17	4	26	8	0.22	36	15	82	14	0.20	59	27	79	67	0.41
Average	84	17	0.17	18	2	29	4	0.12	32	7	87	7	0.11	73	13	103	36	0.22

%: The ratios of codons ending in G or C vs. total codons of each amino acid.

Como							Start/Stop	Codon					
Gene	T. dimidiata	V. hoffmanni	A. dohrni	S. flavipes	B. colossus	P. arcuatus	O. breviscutum	Opistoplatys sp.	R. tenebrosus	P. fulvescens	P. atromaculatus	P. turpis	P. lepturoides
ND2	ATC/TAG	ATG/TAA	ATT/TAA	ATT/TAA	ATT/T-	ATG/TAA	ATT/T-	ATT/TAA	ATC/TAA	ATG/TAA	ATG/TAA	ATG/TAA	ATG/TAA
COI	ATG/T-	ATG/T-	ATG/T-	ATG/TAA	ATG/T-	ATG/T-	ATG/T-	ATG/TAA	ATG/T-	ATG/T-	ATG/T-	ATG/T-	ATG/T-
COII	ATA/T-	ATA/T-	ATC/TAA	ATA/TAA	ATT/T-	ATC/T-	ATG/T-	ATA/T-	ATT/TAA	ATC/T-	ATC/T-	ATC/T-	ATC/T-
ATP8	ATA/TAA	ATC/TAA	ATT/TAA	ATA/TAA	ATT/TAA	ATT/TAA	ATA/TAA	ATA/TAA	ATT/TAA	ATA/TAA	ATA/TAA	ATA/TAA	ATT/TAA
ATP6	ATG/TAA	ATG/TAG	ATG/TAA	ATG/TAG	ATG/TAA	ATG/TAA	ATG/TAG	ATG/TAA	ATG/TAG	ATG/TAG	ATG/TAG	ATG/TAG	ATG/TAG
COIII	ATG/TA-	ATG/T-	ATG/T-	ATG/T-	ATG/TAA	ATG/T-	ATG/T-	ATG/T-	ATG/T-	ATG/T-	ATG/T-	ATG/T-	ATG/T-
ND3	ATA/TA-	ATT/T-	ATA/TAA	ATA/T-	ATA/TAA	ATT/TAA	ATT/TA-	ATT/TAA	ATA/TAG	ATT/T-	ATT/T-	ATT/T-	ATT/T-
ND5	GTG/TA-	ATT/T-	ATG/T-	ATT/T-	ATT/T	ATT/TAA	ATT/T-	ATT/T-	ATT/T-	ATT/T-	ATT/T-	ATT/T-	ATT/T-
ND4	ATG/TAA	ATG/TAA	ATG/TAA	ATG/TAA	ATG/TAA	ATG/TAA	ATG/TAG	ATG/TAA	ATG/T-	ATG/TAA	ATG/TAA	ATG/TAA	ATG/TAA
ND4L	ATG/TAA	ATT/TAA	ATG/TAA	GTG/TAA	ATT/TAA	ATG/TAA	GTG/TAA	ATT/TAG	GTG/TAA	ATG/TAA	ATG/TAA	ATG/TAA	ATG/TAA
ND6	ATA/TAA	ATA/TAA	ATG/TAA	ATT/TAA	ATA/TAA	ATA/TAA	ATG/TAA	ATA/TAA	ATT/TAA	ATT/TAA	ATT/TAA	ATT/TAA	ATC/TAA
CytB	ATG/T-	ATG/TAG	ATG/TAA	ATG/TAG	ATG/T-	ATG/TAA	ATA/T-	ATG/TAG	ATG/TAA	ATG/TAA	ATG/TAA	ATG/TAA	ATG/TAA
ND1	ATA/TAA	GTG/TAA	GTG/TAA	GTG/T-	ATT/TAA	ATG/TAG	ATG/TAG	ATA/TAA	GTG/TAG	ATA/TAA	ATA/TAA	ATA/TAA	ATA/TAA

Unconventional start codons were highlighted by grey color.

No. Fragment	Primer ID	Nucleotide Sequence (5'-3')	Reference
1	TM-J210	AATTAAGCTATTAGGTTCATACCC	[49]
	TW-N1284	TTAACTTTGAAGGTTAATAGTTT	[49]
2	N2-J586	CCATTCCATTTYTGATTTCC	[49]
	C1-N1738	TTTATTCGTGGAAATGCTATGTC	[49]
3	F-1738	TTCAGCCACCCTATCCCTA	Present study
	R-2130	CGAGTGTCTACATCCATACCA	Present study
4	C1-J2183	CAACATTTATTTTGATTTTTTGG	[49]
	TL2-N3014	TCCAATGCACTAATCTGCCATATT	[49]
5	C1-J2756	ACATTTTTTCCTCAACATTT	[49]
	C2-N3665	CCACAAATTTCTGAACACTG	[49]
6	F-3665	TCTAACCCAAAGTCAGCCC	Present study
	R-4552	GGTCAAATGCTATGATGCC	Present study
7	F-4552	TGAAAGGACTAAGTTACCG	Present study
	R-4792	TATGTGGTTGATGGAGGA	Present study
8	F-4792	ACAAGCCCTCTTTATCAC	Present study
	R-6172	AGGTTATGGATTCTGGGT	Present study
9	TN-J6172	AGAGGCAATTTATTGTTAATAA	[49]
	N5-N7211	TTAAGGCTTTATTATTATATGTGC	[49]
10	F-7211	GGAAGACCACACAAGGAAAT	Present study
	R-7572	TTATTGGGAGGGACTCTGC	Present study
11	N5-J7572	AAACGGAAACTGAGCTCTCTTAGT	[49]
	N4-N8727	AAATCTTTAATTGCCTATTCTTC	[49]
12	N4-J8641	CCAGAAGAACACAAACCATG	[49]
	N4L-J9629	GTTTGTGAGGGTGCAATAGG	[49]
13	F-9629	CGCACTCAAACGCTCAGGCT	Present study
	R-11335	CTACTGTGAGAAGTTGCCCTAC	Present study
14	CB-J11335	CATATTCAACCAGAATGATA	[49]
	N1-N12067	AATCGTTCTCCATTTGATTTTGC	[49]
15	N1-J11876	CGAGGTAAAGTACCACGTACTCA	[49]
	N1-N12595	GTTGGATTTCTAACTTTATTRGARCG	[49]
16	N1-J12261	TACCTCATAAGAAATAGTTTGAGC	[49]
	LR-N13000	TTACCTTAGGGATAACAGCGTAA	[49]
17	LR-J12888	CCGGTCTGAACTCAGATCATGTA	[49]
	LR-N13889	ATTTATTGTACCTTTTGTATCAG	[49]
18	LR-J13342	CCTTTGCACAGTCAAAATACTGC	[49]
	SR-N14220	TTATGCACACATCGCCCGTC	[49]
19	SR-J14197	GTAAAYCTACTTTGTTACGACTT	[49]
	SR-N14745	GTGCCAGCAAYCGCGGTTATAC	[49]
20	F-14745	ATTAATGAGAGTGACGGGCGAT	Present study
	R-15114	TATGTGGTTGATGGAGGAGTAC	Present study
21	F-15114	ATGTCCTACTATCGTCAC	Present study
	R-210	GGGATGAATGCAATTAGG	Present study

Table S7. Primer pairs used in this study.

Order	Infroorder	Superfamily	Family	Species	GenBank
	miloorael				Accession
Outgroup					
		Pentatomoidea	Cydnidae	Macroscytus subaeneus	NC_012457
			Pentatomidae	Nezara viridula	NC_011755
Ingroup					
Hemiptera	Cimicomorpha	Reduvioidea	Reduviidae	Agriosphodrus dohrni	NC_015842
				Oncocephalus breviscutum	NC_022816
				Sirthenea flayipes	HQ645959
				Triatoma dimidiata	NC_002609
				Valentia hoffmanni	NC_012823
				Brontostoma colossus	NC_024745
				Peirates lepturoides	NC_026672
				Peirates arcuatus	NC_024264
				Reduvius tenebrosus	Present study
		Miroidea	Miridae	Adelphocoris fasciaticollis	NC_023796
				Apolygus lucorum	NC_023083
				Adelphocoris nigritylus	NC_027144
				Lygus hesperus	NC_024641
				Lygus lineolaris	NC_021975
				Nesidiocoris tenuis	NC_022677
			Tingidae	Corythucha ciliata	NC_022922
				Pseudacysta perseae	KM278221
		Naboidea	Nabidae	Alloeorhynchus bakeri	HM235722
				Gorpis annulatus	JF907591
				Gorpis humeralis	NC_019593
				Himacerus apterus	JF927831
				Nabis apicalis	JF907590
		Cimicoidea	Anthocoridae	Orius niger	EU427341