Supplementary Materials: Cell Type-Specific Modulation of Respiratory Chain Supercomplex Organization

Dayan Sun, Bin Li, Ruyi Qiu, Hezhi Fang and Jianxin Lyu

Figure S1. Organization of respiratory chain supercomplex (**A**) In-gel activity assay of complexes I and IV from the liver of C57BL/6J mice; (**B**) Sequence analysis of Cox7a2l allele in C57BL/6J mice with following primers: forward, 5'-GCTGTCTTCAGACACTCCAGAAGAGG-3'; reverse, 5'-CAAAG TGAACCAGTCCTCCACAGG-3'; (**C**,**D**) BN-PAGE/immunoblot analysis of C2C12 (**C**) and 143B cells (**D**) solubilized with digitonin at ratios of 4, 6, and 8 g/g digitonin/protein (**E**) BN-PAGE/IB analysis of mitochondrial protein extracted from 143B cybrids of three different mitochondrial DNA background (haplogroup B4, D4, and F2) with digitonin at a ratio of 6 g/g digitonin/protein. Blots were probed with anti-Grim19, anti-Core2, and anti-COX IV antibodies; Blots were probed with a red dotted line.

Figure S2. 2D BN/SDS-PAGE and western blotting of respiratory complexes in mitochondria prepared with digitonin from 143B cells (**A**) and HIB1B cells (**B**). The blots were probed with anti-Grim19, anti-Core2, and anti-COX IV, respectively. The LSC is indicated with a dotted line.

Figure S3. BN-PAGE and western blot analysis of mitochondrial protein from digitonin-permeabilized cells from immortalized lymphoblastoid cell lines derived from three healthy subjects. The blots were probed with anti-Grim19, anti-Core2, and anti-COX IV.

Figure S4. Relative mtDNA copy number of HIB1B cells after 0 and 72 h of treatment with chloramphenicol (CAP). NS, not significance

Figure S5. (**A**) HIB1B and (**B**) C2C12 cells were treated with 40 µg/mL chloramphenicol (CAP) for 4–5 days; cell pellets were collected after drug removal at 0, 4, 8, 12, 24, and 48 h. BN-PAGE and western blot analysis of whole-cell lysates from digitonin-permeabilized cells. The blots were probed with anti-Core2. The integrated optical density (IOD) of each band was determined and is indicated in the figure; (**C**) HIB1B and (**D**) C2C12 cells were treated with CAP for 24 h. BN-PAGE and western blot analysis of digitonin-treated whole-cell lysates. Blots were probed with anti-Core2. Because of large SDs, results are representative of three independent experiments.

	G131S
Bos	WASNSKYALIGALRAVAQTISYEVTLAIILLSVLLMSGS
Sus	WASNSKYALIGALRAVAQTISYEVTLAIILLSVLLMNGS
Ursus	WASNSKYALIGALRAVAQTISYEVTLAIILLSVLLMNGS
Dugong	WASNSKYALIGALRAVAQTISYEVSLAIILLPTMLMNGS
Macropus	WASNSKYALIGALRAVAQTISYEVTLAIILLSIMLINGS
Tarsius	WASNSKYALIGALRAVAQTISYEVTLAIILLAILLMSGS
Gorilla	WASNSNYALIGALRAVAQTISYEVTLAIILLSTLLMNGS
Pan	WASNSNYALIGALRAVAQTISYEVTLAIILLSTLLMSGS
Cebus	WASNSNYALIGALRAVAQTISYEVTLAIILLSTLLMSGS

Figure S6. Conservation analysis of the m.3697G>A transition in the MT-ND1 gene (G131S substitution). G, Gly; S, Ser.

Figure S7. Next-generation sequencing of MT-ND1 gene from the blood of patient 1 (indicated by a black arrow) (total reads of 3697 in next-generation sequencing: 3322; G = 0; A = 3322). Blood from the mother of the patient were Sanger sequenced in the gene of MT-ND1 (indicated by a red arrow).

Figure S8. PCR-RFLP analysis of MT-ND1 sequences from L and H cells using *Hha*I. Fragment (832 bp) of L cells without m.3697G>A was cut into two small fragments of 528 bp and 304 bp; Fragment of H cells with a homoplasmic m.3697G>A was cut into three small fragments of 528 bp, 270 bp, and 34 bp. M: DNA marker.

Figure S9. Whole cell of clones L and H were solubilized with RIPA buffer and subjected to SDS-PAGE and western blot analysis. The blots were probed with anti-Grim19, anti-SDHA, anti-Core2, anti-COX IV, and anti-ATP5A, respectively. Actin was used as internal control. Results were representative of three independent experiments. Error bars, ±SD.

Figure S10. BN-PAGE and western blot analysis of whole-cell lysates from digitonin-treated cells. Western blots of control (**left**: 0% m.14487T>C) and patient 2 (**right**: 100% m.14487T>C) samples were probed with anti-Grim19.

Cell Line	Cell Type	Strain	LSC	Ref.
A9	fibroblast (areolar and adipose)	C3H/An mouse	$I_n + III_n$	[45]
3A19	Lewis Lung	C57BL mouse	$I_n + III_n$	[20]
HIB1B	fibroblasts (brown preadipocytes)	Swiss Webster mouse	In + IIIn	[22]
C2C12	myoblast (muscle)	C3H mouse	$I_n + III_n + IV_n$	[19]
3T3-L1	fibroblast (Embryo)	Swiss albino mouse	$I_n + III_n + IV_n$	[21]
Hela	Epithelial (Cervix)	Cervical cancer (African American)	In + IIIn	[46]
143B	osteosarcoma cells	Osteosarcoma (Caucasian)	$I_n + III_n + IV_n$	[47]
MDA-MB-231	Epithelial (Mammary Gland)	Breast adenocarcinoma (Caucasian)	$I_n + III_n + IV_n$	[48]

Table S1. Genetic backgrounds of eight cell lines.

LSC: lowest supercomplex; $I_n + III_n$: respiratory chain supercomplex $I_n + III_n$; $I_n + III_n + IV_n$: respiratory chain supercomplex $I_n + III_n + IV_n$.

Table S2. Analysis of whole mitochondrial genome in patient 1.

Position	Gene	rCRS Base	Mutation (L)	Mutation (H)	AA Change	mtDNA Databases *
73	D-loop	А	G	G	no	Polymorphic Sites
207	D-loop	G	А	А	no	Polymorphic Sites
263	D-loop	А	G	G	no	Polymorphic Sites
502	D-loop	G	А	А	no	Polymorphic Sites
16136	D-loop	Т	С	С	no	Polymorphic Sites
16183	D-loop	А	С	С	no	Polymorphic Sites
16189	D-loop	Т	С	С	no	Polymorphic Sites
16218	D-loop	Т	С	С	no	Polymorphic Sites
16310	D-loop	А	G	G	no	Polymorphic Sites
16355	D-loop	С	Т	Т	no	Polymorphic Sites
750	12s rRNA	А	G	G	no	Polymorphic Sites
827	12s rRNA	А	G	G	no	Polymorphic Sites
1438	12s rRNA	А	G	G	no	Polymorphic Sites
1719	16s rRNA	G	А	А	no	Polymorphic Sites
2220	16s rRNA	А	G	G	no	Polymorphic Sites
2706	16s rRNA	А	G	G	no	Polymorphic Sites
2831	16s rRNA	G	А	А	no	Polymorphic Sites

Position	Gene	rCRS Base	Mutation (L)	Mutation (H)	AA Change	mtDNA Databases *
3697	ND1	G	G	Α	Gly>Ser	Pathogenic Mutation
4769	ND2	А	G	G	no	Polymorphic Sites
4820	ND2	G	А	А	no	Polymorphic Sites
8860	ATPase6	А	G	G	Thr>Ala	Polymorphic Sites
10310	ND3	G	А	А	no	Polymorphic Sites
11719	ND4	G	А	А	no	Polymorphic Sites
13590	ND5	G	А	А	no	Polymorphic Sites
14766	Cytb	С	Т	Т	Ile>Thr	Polymorphic Sites
15301	Cytb	G	А	А	no	Polymorphic Sites
15326	Cytb	А	G	G	Thr>Ala	Polymorphic Sites
15535	Cytb	С	Т	Т	no	Polymorphic Sites
15754	Cytb	С	Т	Т	no	Polymorphic Sites
6023	COXI	G	А	А	no	Polymorphic Sites
6216	COXI	Т	С	С	no	Polymorphic Sites
6413	COXI	Т	С	С	no	Polymorphic Sites
7028	COXI	С	Т	Т	no	Polymorphic Sites

Table S2. Cont.

* databases: MITOMAP, mtDB and mtSNP; AA: amino acid.