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Abstract: The objective of the present review is to discuss the results of published studies that
show how nutrition affects the expression of genes involved in lipid metabolism and how diet
manipulation might change marbling and composition of fat in beef. Several key points in the
synthesis of fat in cattle take place at the molecular level, and the association of nutritional factors
with the modulation of this metabolism is one of the recent targets of nutrigenomic research. Within
this context, special attention has been paid to the study of nuclear receptors associated with fatty
acid metabolism. Among the transcription factors involved in lipid metabolism, the peroxisome
proliferator-activated receptors (PPARs) and sterol regulatory element-binding proteins (SREBPs)
stand out. The mRNA synthesis of these transcription factors is regulated by nutrients, and their
metabolic action might be potentiated by diet components and change lipogenesis in muscle. Among
the options for dietary manipulation with the objective to modulate lipogenesis, the use of different
sources of polyunsaturated fatty acids, starch concentrations, forage ratios and vitamins stand out.
Therefore, special care must be exercised in feedlot feed management, mainly when the goal is to
produce high marbling beef.
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1. Introduction

The amount, distribution and composition of fat in beef are some of the factors that exert the
greatest impact on the organoleptic and nutritional quality of this food. Procedures to modify and
control the formation of adipose tissue in cattle have been largely investigated in animal nutrition
and growth in the past decades. Understanding the physiology of the formation and composition
of fat in cattle might result in countless possibilities towards guiding nutrition and the production
of high-quality beef. Several studies have found correlations between marbling score and meat
flavor. Thus, nutrition and management strategies able to increase the intramuscular fat content might
contribute to increasing the added value of beef.

The formation and composition of fat in cattle and other ruminants is a complex process with
multifactorial regulation. Genetic factors, age at slaughter, growth rate and sex are the parameters that
exert the most impact on the amount and composition of animal fat. In addition, nutritional factors act
differently on lipid synthesis of ruminants and non-ruminants. In the latter, carcass fat profile is similar
to the profile of fatty acids consumed [1], while, in the former, ruminal biohydrogenation and fatty
acid tissue metabolism (mRNA synthesis, enzyme activity, etc.) interfere considerably with synthesis
and the profile of fatty acids that composes the meat fat [2].
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Two pathways of action should be studied with regard to lipid metabolism and beef quality.
One pathway is related to knowledge on the ruminal biohydrogenation of dietary fatty acids, and,
consequently, on the amount and concentration of fatty acids that are absorbed and transported to
the tissues. The other pathway is related to the action of fatty acids as metabolic modifiers, either by
directly altering the synthesis and deposition of fatty acids in the tissues or by affecting biological
processes in the animals, such as the modulation of gene expression in ruminants. In either case,
understanding the action of fatty acids in animal metabolism demands adequate knowledge of the
molecular processes involved in the synthesis and utilization of fatty acids in the tissues. The studies
addressing these subjects usually associate gene expression and nutrition; therefore, they are called
nutrigenomics or functional genomics.

Before discussing in detail how some nutrients, such as fatty acids, might change the expression
of definite genes, the main processes involved in adipogenesis and lipid metabolism will be briefly
reviewed, as several of the investigated genes encode enzymes or are transcription factors that
modulate the expression of genes involved in lipid metabolism.

2. Adipogenesis

Adipose tissue originates in the embryonic mesoderm and contains a variety of cells, including
mesenchymal stem cells (MSC), preadipocytes, fibroblasts, and adipocytes. Adipogenesis is an inclusive
term describing the commitment of progenitors (MSC) to pre-adipocytes (determination), proliferation
of pre-adipocytes, differentiation of pre-adipocytes into adipocytes, and conversion of cells into
lipid-assimilating cells found within fat tissue [3,4]. Adipogenesis is initiated around mid-gestation in
ruminant animals [5–7], is most active perinatally, and continues throughout the animal’s lifetime [8].
Prenatal adipogenesis occurs in an asynchronous manner [9], whereas postnatal adipogenesis occurs
more rapidly depending on availability of energy and regulatory mechanisms [10]. Adipose tissue
is a connective tissue [11] derived from multipotent MSC that, like muscle, bone and cartilage are
generally believed to have mesodermal origin. Mesenchymal stem cells are abundant during early
developmental stages, particularly in the fetus and neonate, but their occurrence diminishes as animals
become older.

2.1. Commitment

Currently, the mechanisms controlling adipogenesis in fetal and postnatal skeletal muscle in vivo
remain poorly defined, although numerous in vitro cell culture studies suggest that peroxisome
proliferator-activated receptor (PPARγ) and CCAAT-enhancer-binding proteins (C/EBP) are crucial
factors controlling adipogenesis from commitment of multipotent stem cells to differentiation into
adipocytes [12–14]. The current thought is that MSC at the initial stage of determination give rise
to myogenic factor five expressing (myf5(+)) and non-expressing (myf5(´)) cells [15]. Myf5 is a
crucial early myogenic transcription factor, expression of which is highly specific to committed
skeletal myoblastic cells [16]. Muscle and brown adipocytes develop from myf5(+) cells, whereas
chondrocytes, osteoblasts, fibroblasts and white adipoblasts develop from myf5(´) cells [4,17]. The
further commitment of myf5(+) and myf5(´) cells to myogenic, adipogenic, or osteogenic cells is
controlled by different groups of protein such as the zinc finger protein (ZFP) family, the wingless
(Wnt) protein family, the hedgehog protein family, the bone morphogenic protein (BMP) family, and
the nuclear hormone superfamily [18–20]. The outcomes of different transcription factors depend on
relative concentration, stage of differentiation, cell to cell interactions, and the nature of the extracellular
matrix. The exact stage at which they act is not well defined in the literature and needs further research
to elucidate the precise role of these signals.

Zinc finger proteins are the largest transcription factor family in mammals [21] and contain one
or more zinc finger motif(s) that regulate diverse growth and developmental processes, including
adipogenesis, through DNA/RNA binding, protein–protein interactions, transcription activation,
and regulation of apoptosis [22]. Zinc finger proteins, notably Zfp423, Zfp467, and Zfp521 control
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adipogenesis by activating/inhibiting/recruiting key modulators of adipogenesis (PPARγ, C/EBPs,
Pref-1) or other transcriptional factors [20]. Zfp521 inhibits PPARγ and adipocyte commitment and
promotes bone development. Repression of Zfp521 is one of the earliest known events in commitment
of stem cells into white adipocytes [23]. Zfp423 promotes commitment of MSC to the adipocyte lineage
by activating transcription of PPARG [23]. Zfp467 promotes adipocyte commitment and suppresses
osteoblast differentiation [20].

Wingless/int (Wnt) is a 19-member family of secreted signaling proteins playing a major
role in cell fate commitment, embryonic development, and differentiation [24,25]. Wnt proteins
suppress adipogenic differentiation and favors myogenic and osteogenic differentiation ([26] Figure 1).
In addition, activation of the hedgehog (Hh) pathway blocks formation of fat tissue through
suppression of PPARγ promoter activity [27].
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primary function of many proadipogenic factors (i.e., b-catenin and preadipocyte factor-1) is 
repression of genes inhibiting adipogenesis. BMP4 dissociates a complex of Wnt proteins that 
suppress PPARG expression and adipogenesis [29] (Figure 1). 
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Figure 1. Mesenchymal stem cell fate is regulated by WNT signaling. The activation of WNT/β-catenin
signaling order the differentiation of mesenchymal cells into myoblasts and osteoblasts while the
commitment of mesenchymal cells to the adopocytic lineage is suppressed.

BMPs are the members of transforming growth factor β (TGFβ) super family and play critical
role in the commitment of MSCs into cell lineages. There are 14 members in the BMP family (BMP-2
to BMP-15). BMP4 stimulates the differentiation of MSC to adipocyte lineage, BMP2 promotes the
osteogenic lineage, and BMP7 plays a crucial role in brown adipocyte differentiation [28]. The primary
function of many proadipogenic factors (i.e., b-catenin and preadipocyte factor-1) is repression of genes
inhibiting adipogenesis. BMP4 dissociates a complex of Wnt proteins that suppress PPARG expression
and adipogenesis [29] (Figure 1).

Fibroblast growth factors (FGFs) are a family of key extracellular signaling peptides which regulate
many biological processes, including cell proliferation and control of embryonic development [30].
FGF10 mRNA is expressed primarily in white adipocytes and may act as a growth factor for white
pre-adipocytes [31,32]. Brown adipocyte lineage commitment and differentiation is controlled by PR
domain containing protein 16 (PRDM16) and PPARγ. PRDM16 acts as a switch between myogenic
lineage and brown adipocytes [33,34]. PRDM16 expressing cells do not undergo myogenic lineage
differentiation. PRDM16 expression also induces PPARγ co-activator 1α (PPARGC1A) gene expression,
which is specific to brown adipocytes. It co-activates the transcriptional activity of Peroxisome
Proliferator-Activated Receptor Gamma Co-activator 1 Alpha (PGC1α) and PGC1β as well as PPARα
and PPARγ through direct interaction [35].

More recently, preadipocyte factor 1 (Pref-1), also known as Delta-like 1 homolog (Dlk1), has been
shown to play a potential role in early commitment of stem-like cells to the adipocyte lineage [36].
Established as a transmembrane protein that is a member of epidermal growth factor-like protein
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family, Pref-1 also acts to regulate the cell’s entry into G1/S-phase of the cell cycle and subsequently
inhibits proliferation and differentiation [37,38].

2.2. Proliferation and Differentiation

The next stage of the process of adipogenesis is the re-entry of growth-arrested preadipocytes into
the cell cycle and subsequent proliferation [39]. The committed preadipocytes maintain the capacity to
proliferate, but have to withdraw from the cell cycle to undergo differentiation. Cell cycle arrest is a
key stage necessary for adipocyte differentiation [40]. At this stage, a transient expression of CEBPB
(the gene responsible to encode CCAAT/enhancer binding protein β), is rapidly induced, consequently
initiating adipocyte differentiation [41]. The subsequent expression of PPARG and CEBPA transactivates
adipocyte specific cell cycle arrest genes and ends proliferation. Sterol regulatory element binding
protein-1c (SREBP-1c)/adipocyte determination and differentiation factor-1 (ADD1) is a transcription
factor that is involved in cholesterol metabolism and adipocyte specific gene expression [42–45] that is
also induced early during adipocyte differentiation.

The late stage of differentiation is characterized by the increase in expression of proteins involved
in de novo lipogenesis such as FABP4, adiponectin, leptin, etc. [40,41,46]. In addition, the activity
of enzymes involved in triacylglycerol metabolism such as glycerol-3-phosphate acyltransferase,
glycerol-3-phosphate dehydrogenase, etc. increases 10–100-fold [47]. The adipocytes acquire sensitivity
to insulin during late stage of differentiation as a result of an increase in insulin receptor numbers and
glucose transporters (GLUT4). Also during differentiation, cells convert from fibroblast to spherical
morphology. This is accompanied by dramatic changes in the cytoskeleton and extracellular matrix
component (ECM). Decreases in actin and tubulin expression as well as fibroblast expressed type-I
and III procollagen are also seen in the early stage of differentiation [48,49]. There is also a dramatic
decrease in preadipocyte factor-1 (pref1) expression as cells differentiate from preadipocytes to mature
adipocytes [37,50].

In adults, it is thought that adipose tissue mesenchymal stem cells serve as a reservoir and allow
the continued renewal of precursor cells that can differentiate into adipocytes [51]. Differentiated
white (pre)adipocytes secrete BMP4, which starts a cascade of events that leads to PPARγ activation
and subsequent adipogenesis [52].

2.3. Intramuscular Fat

Despite similar morphological appearance of white fat tissue in every part of the body, there
are major regional differences spanning from distinct gene expression profiles to distinct adipokine
production [53]. Microarray molecular analyses have confirmed that both human and mouse white
fat tissues from different anatomical locations differ in a large number of expressed genes, including
developmental patterning genes [54–56]. Intramuscular fat is considered to be connective tissue, and its
development is inseparable from fibrogenesis [57]. Fibrogenesis occurs throughout an animals lifetime,
but is most active in the fetus during late gestation when primordial perimysium and epimysium of
muscle bundles are synthesized [8].

Myogenic progenitors develop into satellite cells and muscle fibers, whereas non-myogenic
progenitor cells develop into the stromal-vascular fraction within skeletal muscle where adipocytes,
fibroblasts and mesenchymal progenitor cells are located [58]. These non-myogenic progenitors,
so-called “fibro-adipogenic precursor” (FAP), have adipogenic and fibrogenic capacity, as well as
osteogenic and chondrogenic potential [59,60]. These cells are mainly located in the stromal-vascular
fraction of skeletal muscle and can be distinguished from myogenic satellite cells by the expression of
platelet-derived growth factor receptor α (PDGFRα) [59,61–63]. When muscle is damaged, FAPs
respond to local cytokine production by proliferating, clearing necrotic debris, and supporting
myogenesis [59,64]. Thus, FAPs play an important role in normal physiology and may contribute to
marbling potential of beef cattle.
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3. Lipogenesis

Lipogenesis is a physiological process of endogenous fatty acid synthesis that increases inversely
to muscle tissue development. Therefore, after puberty and sexual maturity, as muscle growth
decreases, adipose tissue increases [65]. According to Pethick et al. [66], fat deposition is not
homogeneous throughout the animal body; the first observed depot to form is internal fat (abdominal,
renal-inguinal and pelvic), followed by intermuscular, subcutaneous and intramuscular fat or marbling.

For fat synthesis to occur, triglycerides must be incorporated into the animal adipose tissue, after
the absorption of dietary fatty acids or de novo synthesis of other fatty acids [67]. The main factor in the
control of fat deposition rate is the animal’s nutritional status, as acetate, a volatile fatty acid produced
in ruminal fermentation, is the main precursor for the synthesis of fatty acids among ruminants [68].
Following its absorption across the ruminal epithelium and distribution to the peripheral tissues,
acetate is converted in adipose cells into acetyl-CoA through the action of the enzyme acetyl-CoA
synthetase [69]. The gene that encodes this enzyme is known as acyl-CoA synthetase short-chain
family member 2 (ACSS2). This step also occurs with dietary long-chain fatty acids.
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Figure 2. Synthesis of fatty acid from glucose in adipocytes. NAD+: nicotinamide adenine dinucleotide
oxidized; NADH: nicotinamide adenine dinucleotide reduced; NADP+: nicotinamide adenine
dinucleotide phosphate oxidized; NADPH: nicotinamide adenine dinucleotide phosphate reduced;
CO2: carbon dioxide; CoA-SH: coenzyme A; ATP: adenosine triphosphate; ADP: adenosine diphosphate;
DNA: deoxyribonucleic acid; RNA: ribonucleic acid; GTP: guanosine triphosphate; GDP: guanosine
diphosphate; FAD: flavin adenine dinucleotide oxidized; FADH2: flavin adenine dinucleotide reduzed.

The presence of acetyl-CoA and reduced nicotinamide adenine dinucleotide phosphate (NADPH)
is essential for de novo fatty acid synthesis. In addition to acetate, another source of acetyl-CoA is the
pyruvate produced through glycolysis, following decarboxylation in the mitochondria. However, as
lipogenesis takes place in the cytosol, acetyl-CoA, which is not permeable through the mitochondrial
membrane, is transported as citrate to the extracellular compartment, where it is cleaved by the enzyme
citrate lyase into oxaloacetate and acetyl-CoA (Figure 2). NADPH, in turn, is synthesized in the pentose
phosphate pathway, and, in the case of ruminants, also through the transformation of citrate into
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α-ketoglutarate in the cytosol, which then re-enters the mitochondria [70]. In non-ruminant animals,
citrate lyase, malate dehydrogenase and malic enzyme are responsible for the production of more
NADPH molecules from cytosolic citrate [68].

The next step in the de novo synthesis of fatty acids consists of the carboxylation of acetyl-CoA to
form malonyl-CoA through the action of the enzyme acetyl-CoA carboxylase, which is encoded by
the acetyl-CoA carboxylase alpha (ACACA) gene. Next, through the action of the fatty acid synthase
multienzyme complex encoded by the fatty acid synthase (FASN) gene, another acetyl-CoA molecule
is united to malonyl-CoA molecules through multiple serial enzymatic reactions, resulting in the
synthesis of long-chain fatty acids. For example, following seven redox reactions, palmitic acid (C16:O)
is formed, which is the main fatty acid produced in the animal body [71,72]. According to Ward et
al. [73] and Underwood et al. [74], cattle with higher amounts of marbling have higher activation rates
of acetyl-CoA synthetase and the fatty acid synthetase multienzyme complex.

Regarding lipogenesis regulation, the synthesis of the mRNA that encodes these enzymes and
their activity are considered essential for de novo synthesis of fatty acids [75]. In addition, insulin is one
of the main regulatory hormones, as it activates acetyl-CoA carboxylase, citrate lyase and the pyruvate
dehydrogenase complex [76–78]. Baldwin et al. [79], working with abomasal and ruminal infusions
of carbohydrates, found that abomasal infusion of glucose increased the transcription of the FASN
and ACACA genes. According to the literature, glucose stimulates the expression of genes that encode
lipogenic enzymes, such as FASN and ACACA, in the adipose tissue of rats when the intracellular
glucose-6-phosphate levels are elevated [80].

Palmitic acid is the final product of fatty acid synthesis. However, its chain might undergo
elongation, or it can be converted into unsaturated fatty acids through the action of the enzyme
stearoyl-CoA desaturase, which might influence the taste, color and nutraceutical properties of the
meat [2,81,82]. The gene that encodes stearoyl-CoA desaturase is known as stearoyl-CoA desaturase
(SCD1), with several studies published in the literature reporting that its expression is significantly
influenced by diet [83–86].

Finally, butyrate is considered a substitute for acetyl-CoA in fatty acid synthesis by the adipose
tissue, especially long-chain fatty acids [87]. In addition, propionate and lactate, which are considered
gluconeogenic organic acids, might be indirectly used for the synthesis of fatty acids [88], as is
discussed next.

4. Lipogenesis and Marbling

As mentioned earlier, adipogenesis is initiated around mid-gestation in ruminants and, therefore,
nutrition status of the dam may impact fat deposition during finishing phase. According to
Schoonmaker [89], marbling results from not only the size but also the number of intramuscular
adipocytes, while Du et al. [90] observed that nutrition in the fetal and early stages of life exerts a
considerable impact on adipocyte hyperplasia.

In general, the size of intramuscular fat depot in adult cattle results from the balance between the
synthesis and degradation of triglycerides [91]. In addition, the rate of deposition of intramuscular fat
depends not only on the number and intrinsic activity of the intramuscular adipocytes but also on the
muscle growth rate and the metabolic activities of other organs [92].

For the deposition of intramuscular fat to occur in finishing cattle, the net energy consumed must
surpass requirements; thus, the degree of marbling varies as a function of the energy content in the
diet [93]. While high plasma levels of acetate promote greater fatty acid formation in extramuscular
adipocytes, propionate and lactate might be precursors for the synthesis of intramuscular fatty acids in
ruminants, as they are converted into acetyl-CoA and enter the TCA cycle (Figure 2). Propionate is
converted into glucose in the liver, which might subsequently enter the glycolytic pathway, enter the
TCA cycle, and become a carbon donor in de novo fatty acid synthesis. According to Gilbert et al. [94],
intramuscular adipose tissue uses a high proportion of glucose for fatty acid synthesis, while the
subcutaneous adipose tissue primarily utilizes acetate for lipid synthesis. These authors further
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reported that intramuscular adipose tissue, compared to subcutaneous fat, is more sensitive to insulin.
Thus, foodstuffs that increase propionate production, such as maize and other grains, have higher
glycogenic and insulinogenic capacity, which might increase the deposition of intramuscular fat.
Chung et al. [95] also observed that glucose plays a relevant role as carbon donor in the de novo
synthesis of fatty acids in the intramuscular fat of cattle.

Therefore, the manipulation of diets to increase the glucose and insulin supply in ruminants
represents an interesting strategy to increase the deposition of intramuscular fat. However, according to
Rhoades et al. [96], the source of dietary energy used might alter insulin sensitivity, causing the tissues
to become resistant to the action of this hormone and thus inhibit lipogenesis. This mechanism of
resistance was described by Tardif et al. [97], who demonstrated that ketone accumulation interrupted
insulin signal transduction and reduced the migration of glucose transporters to the cell surface. Such
a decrease in glucose transporters would reduce insulin-stimulated glucose uptake, thus limiting the
rate of glucose utilization.

Therefore, the use of diets with high concentrate content, resulting in the generation of higher
amounts of propionate in addition to higher insulin and circulating glucose concentrations, might
increase the deposition of intramuscular fat in beef [98–100].

Nutrigenomics and Circulating Glucose

Several studies sought to establish whether nutrition might alter the expression of genes that
encode enzymes involved in the digestion of starch and glucose transporters, thereby increasing
circulating glucose. Swanson et al. [101] found higher levels and activity of pancreatic α-amylase in
lambs fed high-starch diets; however, expression of the alpha 2B amylase (AMY2B) gene tended to be
lower in lambs fed high-starch compared to animals fed a low-starch diet. These authors observed
that the mechanisms of regulation of pancreatic α-amylase in ruminants are very complex and likely
regulated by both transcriptional and post-transcriptional events.

In a study conducted with steers, Swanson et al. [102] assessed the effects of abomasal infusion
of partially hydrolyzed starch and/or casein. The results indicated a tendency for a reduction in
AMY2B expression in conjunction with decreased synthesis and activity of α-amylase in the animals
given partially hydrolyzed starch. Therefore suggesting that there is an inverse relationship between
intestinal starch flow and AMY2B expression.

Following post-ruminal starch digestion and glucose release into the intestinal lumen, glucose
must be absorbed by the enterocytes. According to Kellett et al. [103], there are at least three membrane
monosaccharide transport proteins in mammals. Ferraris and Diamond [104] showed that nutrients
regulate intestinal monosaccharide absorption in many species and that the activity and expression of
the genes that encode the glucose transporters might be modulated based on the diets that are used.

The main monosaccharide transporter is the sodium-glucose linked transporter 1 (SGLT1) and is
encoded by the solute carrier family 5 (sodium/glucose cotransporter), member 1 (SLC5A1) gene. This
sodium-dependent glucose transporter is able to transport glucose and most monosaccharides, except
for fructose, across the enterocyte brush border. The solute carrier family 2 (facilitated glucose/fructose
transporter), member 5 (GLUT5) transports fructose only across the brush border, while the solute
carrier family 2 (facilitated glucose transporter), member 2 (GLUT2) transports glucose, fructose and
all other monosaccharides across the enterocyte brush border and basolateral membrane [105].

In a study conducted to assess abomasal and ruminal infusions of hydrolyzed starch on
monosaccharide transporter mRNA synthesis in the intestine, Liao et al. [105] found that ruminal
infusion of hydrolyzed starch increased duodenal expression of SLC5A1 by approximately 64%.
In turn, Guimarães et al. [106] did not find any effect of post-ruminal starch and casein infusions on
SLC5A1 abundance in the small intestines of Holstein steers. However, the results showed greater gene
expression in the middle and end of the jejunum, independent of the treatment. A similar finding was
reported by Rodriguez et al. [107], who worked with crossbred steers given an abomasal starch and
glucose infusion and a ruminal starch infusion.
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5. Transcription Factors and Lipid Metabolism in Beef Cattle

Several key events involved in the synthesis of fat in the animal tissues take place at the molecular
level. The association of nutritional factors with the modulation of fat metabolism is one of the recent
targets of nutrigenomic studies conducted with beef cattle. Within this context, special attention has
been given to the study of nuclear receptors related to fatty acid metabolism [108–113]. Those receptors
form an intracellular protein receptor superfamily included within the transcription factors class. Upon
binding to the DNA, those factors allow RNA polymerase binding and transcription initiation. Such
factors participate in several physiological functions, including homeostasis, reproduction, growth,
differentiation, morphogenesis, apoptosis and metabolism [114].

Among the transcription factors involved in lipid metabolism PPARs and SREBPs stand out.
PPARs are a family of nuclear receptors that bind to fatty acids and perform significant functions in the
regulation of nutrient metabolism and energy homeostasis [115]. PPAR isoforms work as heterodimers
with retinoid X receptor (RXR), and together, both bind to a specific DNA sequence in the promoter
region of the target gene, thus inducing or repressing its expression (Figure 3; [116]).
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Figure 3. Diagram representing the binding of a nuclear receptor to the DNA. PPAR: peroxisome
proliferator-activated receptor, RXR: retinoid X receptor, LBD: ligand-binding domain, PTMs:
post-translational modifications, 9cRA: 9-cis retinoic acid, FAs: fatty acids, AF: activation function,
DBD: DNA-binding domain, PPRE: peroxisome proliferator response elements.

There are three PPAR isoforms, α, γ and β, which differ in terms of target tissue, physiological
properties and developmental stage of tissues [117,118]. PPARγ is highly expressed in adipocytes and
less in the muscle [119] and plays a crucial role in the control of adipogenesis, lipogenesis and insulin
sensitivity [120]. PPARα is highly expressed in the liver, followed by the small intestine, adipose tissue
and heart [121], while PPARβ is distributed throughout the body. In the liver, PPARα plays a key role
in fatty acid oxidation [122] by inducing the expression of long-chain fatty acid transporter proteins
and other enzymes involved in peroxisomal β-oxidation.

PPARγ is the main regulator of fatty acid storage and adipogenesis, as it binds to the genes
associated with lipid metabolism, including those that encode fatty acid-binding protein (FABP),
acyl-CoA synthetase long-chain family member 1 (ACSL1) and lipoprotein lipase (LPL) [123]. Based
on this behavior, PPARγ plays a key role in ruminant research, especially because it is associated with
candidate genes for marbling regulation [124]. Like the other nuclear receptors, PPARγ also binds
to and becomes activated by lipophilic molecules (fatty acids) causing regulation of transcription.
PPARγ is able to bind to two different fatty acids at once and is not specific for a single fatty acid,
denoting its ability to bind a mixture of fatty acid molecules [125]. In addition to lipogenesis, PPARγ
might play an essential role in long-chain fatty acid oxidation by controlling the expression of carnitine
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palmitoyltransferase 2 (CPT2) and carnitine acetyltransferase (CRAT), genes that are involved in the
entry of long-chain fatty acids into the mitochondria [126].

SREBP has a crucial role in energy homeostasis, promoting glycolysis, lipogenesis and
adipogenesis [127]. The SREBP family has three members: 1a, 1c and 2. SREBP-1c is encoded by
the sterol regulatory element-binding transcription factor 1 (SREBF1) gene and seems to act more
specifically on the genes involved in fatty acid synthesis [128], while SREBP-2 has greater influence on
the regulation of the expression of cholesterogenic genes. SREBP-1c was identified in white adipose
tissue and was initially named adipocyte determination and differentiation factor (ADD-1) [129]; it is
also expressed in the liver.

Insulin is the main metabolic signal that stimulates and regulates SREBF1 expression, while
glucagon represses it [130]. Most of the lipogenic effects of insulin depend on SREBF1 expression
and the subsequent stimulation of the fatty acid synthesis pathway [130]. SREBF1 expression is also
stimulated by the liver X receptor (LXR), which controls and protects cells against cholesterol overload.

The mechanisms of action of SREBPs in the activation and suppression of lipogenesis pathways
are depicted in Figure 4. According to previous reports, high levels of polyunsaturated fatty acids
(PUFAs), such as trans-10 fatty acids, are involved in the reduction of SREBP-1c concentration [131].
In addition, according to Botolin et al. [132], n-3 PUFA suppresses SREBP-1 nuclear content in the
rat liver through 26S proteasome- and Erk-dependent pathways. In mice, CLA also reduced adipose
tissue by apoptosis and results in lipodystrophy [133].
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Effects of Nutrients on Transcription Factors Gene Expression

The expression, and consequently the action, of transcription factors depend on the animals’
physiological conditions and developmental stage, whereby the corresponding genes are expressed
only at the appropriate times. In addition, definite nutrients, such as long-chain fatty acids, are able
to regulate the expression of transcription factors. According to Bionaz et al. [111], several fatty acids
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might, to varying degrees, activate various PPAR isotypes, with PUFAs showing more affinity for
PPARα, which is encoded by the peroxisome proliferator-activated receptor alpha (PPARA) gene [134].

Thus, Oliveira et al. [85] reported greater PPARA expression in animals fed ground soybean and
monensin, which was associated with an increase in ruminal unsaturated fatty acid biohydrogenation,
as the use of ground oilseeds increases fatty acid availability. Teixeira [135] found that PPARA
expression was higher in animals fed whole shelled corn diet without forage compared to ground
corn with forage, which was due to the higher PUFA concentration in that type of feed. In addition,
the whole shelled corn diet without forage was associated with an increased concentration of the
conjugated linoleic acid (CLA) C18:2 trans-10, cis-12 compared to ground corn with forage. In this study,
28 bulls were used in a completely randomized design and arranged as a 2 ˆ 2 factorial (two breeds:
Angus and Nellore; and two diets: whole shelled corn diet and ground corn diet). The ground diet had
30% of corn silage and 70% of a concentrate based on corn and soybean meal. The whole shelled corn
diet had 85% whole shelled corn and 15% of a pellet based on soybean meal and minerals. The feedlot
lasted 81 days and bulls were slaughtered with 500 kg. Bionaz et al. [111], reported that C18:2 trans-10,
cis-12 had an agonistic effect on PPARα. In addition, Brown et al. [136] found that, in humans, C18:2
trans-10, cis-12 decreases the expression of peroxisome proliferator-activated receptor γ (PPARG) and
consequently reduces glucose and lipid absorption and oxidation and pre-adipocyte differentiation.
Therefore, this CLA might have an antagonistic effect on the expression of PPAR isoforms.

Sanosaka et al. [137] showed that increased oleic acid concentration in the culture medium was
associated with increased PPARG expression in porcine pre-adipocytes. According to Smith et al. [138],
the differentiation of bovine pre-adipocytes might be strongly stimulated through the addition of
PPAR agonists such as insulin and dexamethasone.

With regard to the transcription factor SREBP-1c, reports in the literature indicate that grain-rich
diets decrease the expression of SREBF1 in the mammary gland due to a decrease in ruminal pH,
which might alter the biohydrogenation pathways and increase C18:2 trans-10, cis-12 synthesis [139].
The increase in this intermediary decreases SREBF1 mRNA levels, consequently decreasing the activity
of the enzymes involved in de novo synthesis [131].

Additionally, Teixeira [135] (Figure 5) detected decreased SREBF1 expression in the muscles of
cattle fed a whole shelled corn diet without forage. Such a diet induced a more pronounced fall
in ruminal pH, which favored the deposition of C18:2 trans-10, cis-12. In a study conducted with
pigs, Brandebourg and Hu [140] also found that C18:2 trans-10, cis-12 reduced SREBF1 expression in
pre-adipocytes.
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supplement). Source: Teixeira [135].
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6. Nutrigenomics and Lipid Metabolism

6.1. Tissue Uptake of Fatty Acids

Triglycerides stored in adipocytes might originate either from the uptake of fatty acids from
the blood or from de novo synthesis. For uptake to occur, the circulating triglycerides present in
lipoproteins, such as chylomicrons, must first undergo the action of the enzyme LPL and then be
carried by fatty acid-binding protein 4 (FABP4), which is responsible for the transport of fatty acids
into cells [141].

Confirming the interaction between LPL and FABP4 genes, Teixeira [135] found positive
correlations between them and greater expression of both in the muscle of Nellore cattle fed maize
silage plus concentrate. Costa et al. [112] found that animals fed a diet with a high forage percentage
tended to exhibit higher LPL expression in the muscle. In contrast, Zhang et al. [86] found greater LPL
and FABP expression in high-energy diets compared to low-energy diets. According to these authors,
increased dietary energy might improve nutrient digestion and absorption, which would stimulate
the expression of the genes responsible for fatty acid transport. Similarly, Graugnard et al. [83] found
higher FABP expression in animals fed a high-starch diet, and Peng et al. [142] found higher LPL
expression in animals fed a diet with higher energy density.

The findings reported by Joseph et al. [143] suggest that corn oil supplementation regulates
LPL expression by increasing the amount of fatty acids available for absorption. Waylan et al. [144]
found that flaxseed supplementation (5% of the dietary dry mass) was associated with increased LPL
expression in the muscle tissue of finishing cattle compared to the control diet.

Oliveira et al. [85] reported greater LPL and FABP4 gene expression in animals fed soybean
compared to animals fed rumen-protected fat and explained that this difference was due to the
difference in the fatty acid compositions of the investigated feeds and changes in the expression of the
transcription factor PPARA. This mode of action is supported by the results of a comparative analysis
of FABP4 promoter regions among mammals demonstrating the presence of two PPARα-binding sites
in human, rat, pig, dog and bovine cells [145,146].

Therefore, studies have shown that LPL and FABP4 expression depends on the energy level of
the diet and that changes in the composition of the dietary fatty acids that are absorbed in the small
intestine might alter the expression of PPARA as a function of the positive correlation between those
genes. Therefore, when the expression of one gene increases, the others exhibit a similar behavior.

6.2. Synthesis of Fatty Acids

As previously mentioned, acetyl-CoA carboxylase (ACC) and the fatty acid synthase complex
(FAS) are the enzymes involved in de novo synthesis [75]. Following their synthesis or uptake by
adipocytes, the fatty acids might be exposed to the action of the enzyme stearoyl-CoA desaturase (SCD).

In mammals, ACC activity is highly regulated by the diet, hormones and other physiological
factors [147]. Food intake, especially of low-fat foods, induces ACC synthesis, with a consequent
increase in its activity [148]. In fish, ACC was mainly studied due to its role in the biosynthesis of
fatty acids in the adipose tissue; such studies were conducted in the liver and in primary hepatocyte
cultures [149].

The possible involvement of ACC activity in the formation of marbling in cattle was investigated
by Underwood et al. [74]. The authors found that ACC inactivation rate was lower in animals with
higher marbling amounts. Therefore, post-transcriptional factors play essential roles in ACC regulation.
In addition, reports in the literature indicate that ACACA gene expression is also influenced by diet.
Ladeira [150] found that ACACA expression was higher in the muscle of animals fed soybean compared
to those fed cottonseed, which might be explained due to the changes in PPARA expression and the
strong correlation in the mRNA synthesis of both genes.

Zhang et al. [86] observed greater ACACA, FASN and SCD1 expression in animals fed a
high-energy diet. Enzymatic activity also increased in animals fed a high-energy diet. Similarly,
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Graugnard et al. [83] reported greater expression of ACACA, FASN and SCD1 genes in animals fed a
high-starch diet. According to Ward et al. [73], greater FASN expression was associated with higher
marbling levels in the muscle.

The fact that high-energy diets increase the expression of the genes involved in de novo synthesis
is reasonable. However, when the increase in the dietary energy is due to higher concentrations of
fat, one should be concerned with the fatty acid profile of the source. Waters et al. [84] showed that
PUFA supplementation inhibited the expression of the gene that encodes SCD in the beef cattle. The
authors also observed that the degree of transcription inhibition was associated with PUFA dietary
levels. SCD1 expression was also significantly reduced in the subcutaneous adipose tissue of cattle fed
diets with high ω-3 PUFA content, which reduced CLA (C18:2 cis-9, trans-11) and oleic acid (C18:1
cis-9) contents [109] (Figure 6). These findings are consistent with the data in the literature on the
inhibitory effects of PUFAs on SCD1 in other species [151]. Different expression levels of this gene in
response to dietary manipulation suggest the existence of a tissue-specific mechanisms and possibly
different actions of the transcription factors related to its regulation in ruminants.
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stearoyl-CoA desaturase (SCD1) and ∆6-dessaturase (∆6d) genes in the longissimus muscle. C = control
group (maize silage with soybean-based concentrate); E = experimental group (grass silage with linseed
oil and rapeseed cake supplemented concentrate). The a and b superscripts means significant difference
(p < 0.05) between control and experiment group. Source: Herdmann et al. [109].

Ladeira [150] found greater SCD1 expression in the muscle of animals fed a cottonseed-based diet
compared to the muscle of animals fed ground soybean. In contrast, Yang et al. [152] reported that
cottonseed oil reduces the activity of SCD due to the presence of sterculic acid in this oilseed. Therefore,
the authors suggest that the mechanism of action of sterculic acid present in cottonseed takes place in
some post-transcriptional mechanism. Corroborating this assertion, Kadgowda et al. [153] showed that
sterculic acid directly inhibits enzymatic activity without interfering with SCD1 gene expression.

Protein supplementation might also influence the expression of the genes involved in de novo
synthesis (of fat). According to Zhang et al. [154], protein supplementation increases SREBF1, ACACA,
FASN and SCD1 expression levels, with greater expression in animals supplemented with 19%
crude protein.

Some studies have suggested that SCD1 expression is regulated by factors associated with
SREBP-1c [155,156]. According to Sampath et al. [156], changes in SREBF1 expression might alter SCD
synthesis and cause differences in the fatty acid composition of animal adipose tissue. In agreement
with the aforementioned studies, Ladeira [150] observed a positive correlation in SREBF1 and SCD1
expression. In addition, those genes exhibited greater expression in the muscles of animals fed
cottonseed, which might be associated with a higher concentration of ω-6 fatty acids in the muscle, as
ω-6 PUFAs are weaker inhibitors of SREBF1 compared toω-3 PUFAs [157].
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7. Final Considerations

To date, the results in the literature indicate that the expression of genes involved in lipid
metabolism is influenced by animal nutrition and that diet manipulation might change muscle marbling
and molecular composition of fat in beef. Among the options for dietary manipulation, PUFA sources,
starch concentration, forage proportions and vitamins stand out. Therefore, special care must be
exercised in feedlot feed management, mainly when the goal is to produce high marbling beef.
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