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Abstract: Brassinosteroids (BR) play important roles in plant growth and development. Although BR
receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely
unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified
five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a,
and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they
are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used
rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04¢39160), and found that the
predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea
PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR
receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to
the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation
experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant
(bril-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems,
leaves, and siliques in light; and rescued the developmental defects in leaves of the bril-6 mutant,
and complemented the responses of BR biosynthesis-related genes in the bril-5 bak1-D mutant
grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean
resulted from three gene duplication events during evolution. Phylogenetic analysis classified the
BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and
the nonsynonymous substitution rate (K,) and selection pressure (K,/Ks) revealed that the K, /Ks of
BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in
plants experienced purifying selection during evolution.
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1. Introduction

The brassinosteroid (BR) phytohormones play important roles in many aspects of plant growth
and development, including root growth and development [1,2], stomatal development [3], seed
germination [4], skotomorphogenesis [5,6], phototropism [7], nodulation [8], immunity responses [9],
and abiotic stress responses [10,11]. As early as 1990, scientists reported that BR promoted adventitious
rooting in soybean hypocotyl cuttings [12]. Later work showed that BR can promote stem growth
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in soybean [13] and the application of BR increased soybean tolerance to drought by increasing
the concentrations of soluble sugars and proline [14]. Additionally, BR increases the expression of
soybean SAUR 6B, which promotes epicotyl elongation in a time-dependent manner [13]. These studies
indicate that BRs regulate soybean growth, development, and stress responses at a physiological and
molecular level.

Work in Arabidopsis and rice has revealed the BR signaling pathway. BR signals are detected by
BR receptors such as BRASSINOSTEROID INSENSITIVE 1 (BRI1) in the cell membrane [15,16]. In the
absence of BRs, BRI1 is bound by the membrane-localized BRI1 KINASE INHIBITOR 1 (BKI1) [17].
Upon perception of BR, BRI1 disassociates from BKI1 [17] and interacts with BRI1-ASSOCIATED
RECEPTOR KINASE 1 (BAK1), a membrane kinase and co-receptor of BRI1 [18]. BRI1 and BAK1
trans-phosphorylate each other [17]. BRASSINOSTEROID INSENSITIVE 2 (BIN2), the downstream
regulator of BRI1, is a highly conserved GSK kinase and a negative regulator of BR signaling;
BIN2 phosphorylates the transcription factors BRASSINAZOLE-RESISTANT 1 (BZR1) and BZR2
thus inactivating them [19-22]. In contrast, PROTEIN PHOSPHATASE 2A (PP2A) mediates the
dephosphorylation, and thus activation of BZR1 [23]. High levels of BR in plants leads to the
inactivation of BIN2. The dephosphorylated BZR1 and BZR2 shuttle from the cytoplasm to the nucleus
and bind to the promoters of numerous downstream genes, thus strengthening BR signaling [24]. BIN2
and BZR1 are regulated by proteasome-dependent pathways in Arabidopsis [21,25].

AtBRI1, the most important BR receptor in Arabidopsis, has a membrane-localization signal peptide
in the N-terminus, 25 leucine-rich repeat (LRR) domains, and a 70-amino acid island between LRR XXI
and LRR XXII [26], which is indispensable for the perception of BR [27,28]. Although BAK1 does not
directly bind to BR and only has five LRR motifs, BAK1 promotes BR signaling by interacting with
and phosphorylating BRI1. Two recent structural biology studies have shown that AtBRI1 is a BR
receptor [27,28]. These studies revealed that brassinolide (BL) binds to a highly hydrophobic surface
groove on BRI1 (LRR) and the ectodomain is crucial for the binding of BR [27,28]. This insight could
be extrapolated to investigate BR receptors in agricultural plants.

Identifying BR receptors in other plants and deciphering their functions provides an important
initial step toward deciphering BR signaling networks and understanding their evolution. Arabidopsis
has three functional BR receptors, BRI1, BRL1, and BRL3. AtBRL2 appears to be non-functional in BR
signaling [29,30]. The rice genome contains four BR receptor genes, OsBRI1, OsBRL1, OsBRL2, and
OsBRL3 [31,32]. BR receptors have also been identified in tomato [33], pea [34], barley [35], cotton [36],
maize [37], and wheat [38]. Although the BR signaling pathway has been well studied in Arabidopsis
and rice, it is not well understood in soybean. Recent work reported that soybean Glyma06¢12570
encodes a functional BR receptor [39]. Considering the high levels of duplication in the soybean
genome [40], we postulated that soybean may have other functional BR receptors.

In this study, we conducted an evolutionary and functional examination of soybean BR receptors.
Including the known gene Glyma06g15270 [39], we identified six BR receptor genes in the soybean
genome and analyzed their expression patterns. We also further examined one gene, Glycine max
Glyma04¢39610 (GmBRI1b), which encodes a homolog of AtBRI1. GmBRI1b localizes to the membrane
and can function as a BR receptor in Arabidopsis. Analysis of the evolution of BR receptors in plants
showed that BR receptors were subjected to purifying or negative selection.

2. Results

2.1. Isolation of Glyma04¢39610 (GmBRI1b)

To clone soybean brassinosteroid receptors, we used the AtBRI1 protein sequence to search the
soybean EST database [41], using the BLASTP algorithm. We found that the amino acid sequence
encoded by a tentative contig (TA51665) showed a high similarity to a region of AtBRI1. Therefore,
we used the contig to design 5-RACE and 3’-RACE primers to amplify the flanking regions of
TA51665. After cloning and sequencing the flanking region, a cDNA fragment approximately 4 kb
long containing a poly (A) tail was obtained (data not shown). Using ORF finder [42], the full cDNA
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was predicted to contain a long open reading frame (Genbank Accession No. KU360113) that encodes
a protein of 1187 amino acids. Alignment with the soybean genome sequence indicated that this
protein is encoded by Glyma04g39610 [43]. As Glyma06915270 (GmBRI1) was reported to encode a
BR receptor [39], we named Glyma04¢39610 as GmBRI1b and renamed Glyma06¢15270 as GmBRI1a.
Further bioinformatics analysis showed that GmBRI1b contains a membrane-localized signal peptide
in the N-terminus followed by 25 LRRs, a transmembrane domain, and a Ser/Thr kinase domain in
the C-terminus (Table 1 and Table S1). Alignment analysis indicated that GmBRI1b has 69% and 81%
identity to AtBRI1 and pea BRI1 (PsBRI1), respectively (Figure S1).

Table 1. General information about the brassinosteroid (BR) receptor genes in soybean based on

bioinformatics analysis.

Gene Locus EST ™ SP KD Length (AA) Localization Int/Ext
GmBRIla  Glyma06g15270 Yes 784..806 1.20 871.1143 1184 Plas 0/1
GmBRI1b  Glyma04g39610 Yes 787..809 1.22  874.1146 1187 Plas 0/1
GmBRL1a  Glyma04g12860 Yes 827..849 1.43  928..1202 1207 Cyto 0/1
GmBRL1b  Glyma06g47870 Yes 843..865 No 912..1186 1211 Plas 0/1
GmBRL2a  Glyma05g26771 Yes 752..774 1.32  756..1038 1053 Nucl 1/2
GmBRL2b  Glyma08g09750 Yes no 1.29  837.1121 1136 Plas 0/1

The transmembrane domains (TM) signal peptides (SP), and kinase domains (KD) were predicted by the SMART
[44] program and the positions (from the amino terminus to the carboxyl terminus) of the TM, SP, and KD are
indicated in the table. Putative cell localization of the soybean BR receptors was predicted by PSORT [45]. Based
on the released genome sequences and cDNA sequences of soybean, the numbers of introns and exons were
determined through SIM4 as described in Methods. AA, amino acid; Cyto, cytoplasm; EST, expressed sequence
tag; Ext, Extron; Int, intron; Nucl, nucleus; Plas, plasmamembrane.

As reported, AtBRII and rice OsBRI1 lack introns [15,31]. To determine whether GmBRI1b contains
introns, we designed primers covering the initiation codon and stop codon and amplified the genomic
DNA. After sequencing, we found that GmBRI1b also lacks introns. This indicated that the structure of
the BR receptor genes has been highly conserved between these two species.

2.2. Identification of Other BR Receptor Genes in Soybean

Given that a whole-genome duplication occurred during soybean evolution [40], we proposed that
Glycine max has additional BR receptor genes. Thus, using the released soybean genome from 2010 [40],
we performed a BLAST search against the soybean genome [43] using the BLASTP algorithm using
the sequences of the four Arabidopsis BR receptors as queries. Apart from GmBRI1a [39] and GmBRI1b,
four additional putative BR receptor genes were found, Glyma04g12860 (GmBRL1a), Glyma06g47870
(GmBRL1b), Glyma05g26771 (GmBRL2a), and Glyma0809750 (GmBRL2b) on chromosomes 4, 5, 6, and §,
respectively (Table 1). All six soybean BR receptors contain a kinase domain (KD) and five out of
the six have a signal peptide (SP) and a transmembrane domain (TM) as predicted by the SMART
program [44] (Table 1).

GmBRIla, GmBRI1b, GmBRL1b, and GmBRL2b were predicted to be membrane proteins via the
PSORT program [45], and GmBRL1a and GmBRL2a appeared to be localized in the cytoplasm and
nucleus, respectively. In addition, five of the BR genes had no introns, but GmBRL2a had one intron
(Table 1).

Next, we aligned the full amino acid sequences of the BR receptor proteins from Arabidopsis, rice,
soybean, tobacco, potato, Medicago, and barley. As shown in Figure S1, the similarities between the BR
receptors were as high as 80%, indicating that the BR receptors evolved slowly in higher plants. Recent
structural studies indicated that the ectodomain in BR receptors is the BR-binding domain [27,28].
Thus, we compared the amino acid sequences of the ectodomains of the BR receptors from soybean,
Arabidopsis, rice, barley, pea, and tomato. As expected, the similarities were high over 77% (Figure S2).
Additionally, the KDs among the BR receptors from the different species were also highly conserved
(data not shown), indicating the importance of KDs for BR function.
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In Arabidopsis, the island domain (ID) between LLRS XXI and XXII has been reported to be
involved in BR binding [27,28]. To determine whether the soybean BR receptors have the ID, we aligned
the sequences with their counterparts in Arabidopsis and other species. As shown in Figure S3,
the sequences of the IDs are highly conserved in BR receptors among the different species, though we
did observe that the ID sequences of GmBRI2a and GmBRI2b showed more variation than those of
GmBRIla, GmBRI1b, GmBRL1a, and GmBRL1b.

To evaluate the duplication of the BR receptor genes in soybean, we used the PGDD software [46].
Three BR receptor gene duplication events were detected in soybean, GmBRI1a VS GmBRI1b, GmBRL1a
VS GmBRL1b, and GmBRL2a VS GmBRL2b (Figure S4).

2.3. Transcript Levels of GmBRI1b and Other BR Receptor Genes in Soybean

We used quantitative real-time PCR (qRT-PCR) to determine the expression patterns and transcript
abundance of GmBRI1b in soybean. GmBRI1b was universally expressed in the primary roots, lateral
roots, hypocotyls, epicotyls, cotyledons, apical buds, and leaves of soybean (Figure 1A).

The transcript levels of other Glycine max BR receptors from different organs were also determined
through qRT-PCR. As shown in Figure 1B, the expression pattern of GmBRI1a was similar to that of
GmBRI1b (Figure 1A) and the abundances of both were higher in lateral roots, as was GmBRL2b (Figure 1F).
This indicates their important roles in lateral root development. Similarly, the transcript levels of GmBRL1a
(Figure 1C), GmBRL1bD (Figure 1D), and GmBRL2a (Figure 1E) were relatively higher in leaves.

Additionally, we investigated the expression levels of the BR receptors in soybean based on previous
RNA-Seq studies [47]. As shown in Figure 1G, the transcript levels of GmBRI1a and GmBRI1b were
relatively high in young leaf, flower, pod, seed, root, and nodule tissues, indicating their important roles
in soybean growth and development. GmBRL1a and GmBRL1b were also expressed in all tested organs
although their transcript levels were lower than those of GmBRI1a and GmBRI1b. By contrast, GmBRI2a
and GmBRI2b had relatively low transcript levels in seeds and nodules (Figure 1G). The relatively high
expression levels of GmBRI1a and GmBRI1b in nodules suggest their important roles in nodulation. Based
on similarities of their expression patterns, the six soybean BR receptor genes can be classified into three
groups, GmBRI1a and GmBRI1b; GmBRL1a and GmBRL1b; and GmBRI2a and GmBRI2b.
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Figure 1. Expression of soybean BR receptors:GmBRI1b (A); GmBRI1a (B); GmBRL1a (C); GmBRIL1b
(D); GmBRL2a (E); and GmBRL2b (F) in apical buds (b), cotyledons (c), epicotyls (e), hypocotyls (h),
leaves (1), lateral roots (Ir), and primary roots (pr). GmEF1a was used to normalize the qRT-PCR data.
Results in (A-F) were means + SD from three independent experiments, each of which were technically

repeated three times. The normalized RNA-Seq expression data of soybean BR receptor genes were
downloaded from SoyBase [47] (G).

2.4. Subcellular Localization of GmBRI1b

As mentioned above, a signal peptide in the N-terminus and a transmembrane (TM) domain
were predicted in GmBRI1b [44] (Table 1). This indicated that GmBRI1b might be a cell membrane
protein. To determine the subcellular localization of GmBRI1b, we constructed a fusion protein
of GmBRI1b::GFP using the gateway vector pMDC43. We then co-transformed tobacco leaf
epidermal cells with constructs encoding GmBRI1b::GFP and the plasma membrane marker protein
AtPIP2A::mCherry [48]. Using laser confocal microscopy, we detected fluorescence signals only in
the plasma membrane and the GFP fluorescence co-localized with mCherry fluorescence (Figure 2).
This suggested that GmBRI1b is a cell membrane protein.

GFP::GmBRI1b AtPIP2A: :mCHerry Merge

(A) (B) ©)

Figure 2. Subcellular localization of GmBRI1b. The subcellular localization was determined with the
constructs GFP:GmBRI1b: (A) GFP::BRI1b; (B) AtPIP1A::mCherry; and (C) merged image. The GFP
and mCherry signals were detected at 484 and 544 nm, respectively. Scale bar = 50 um.
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2.5. Functional Analysis of GmBRI1b in Arabidopsis

BRs increase cell elongation in higher plants and a deficiency of BR results in smaller, curled
leaves and shorter petioles [15]. The BR receptor AtBRI1 plays crucial roles in Arabidopsis growth and
development, especially in stem and leaf growth. We hypothesized that GmBRI1b can function as a
BR receptor to promote stem and leaf growth. To test this hypothesis and investigate the function of
GmBRI1b, we tested whether GmBRI1b could complement the Arabidopsis BRI1 loss-of-function mutant
bril-5 bak1-1D [49]. The bril-5 allele contains a Tyr-69 substitution at the first cysteine pair of AtBRI1
that appears to be important for its dimerization [49]. The bak1-1D line, in which expression of BAK1 is
activated by an insertion of four tandem copies of the cauliflower mosaic virus (CaMV) 355 promoter,
has stronger expression of BAK1, compared with wild type [18]. In contrast to the bri1-5 mutant, the
bril-5 bak1-1D mutant has a relatively higher stature and longer petioles, but still exhibits a deficiency
in BR signaling, represented by relatively shorter stems and petioles relative to the Ws-2 wild type [18].

To test whether GmBRI1b can complement the Arabidopsis mutants, we created transgenic GmBRI1b
over-expression lines (GmBRI1b-OX) driven by CaMV 35S promoter in the Ws-2 wild-type plants and in
the bri1-5 bak1-1D mutant (Figure S5A,B). After 50 days, we measured the height of the wild-type plants,
bril-5 bak1-1D mutant, and the over-expression lines grown under the same lighting and temperature
conditions. Over-expression of GmBRI1b had little effect on the height of the transgenic Ws-2 wild-type
plants (Figure 3A,C). As reported, the bril-5 bak1-1D mutant was shorter than the wild-type Ws-2
plants [18] (Figure 3B,D), but over-expression of GmBRI1b restored the normal plant height in the
transgenic bri1-5 bak1-1D mutant. For example, GmBRI1b over-expression lines of the bril-5 bak1-1D
mutant were 2.6 x and 2x taller compared with the non-transformed mutant (Figure 3B,D), further
supporting the hypothesis that GmBRI1b functions as a BR receptor.

. ¥
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C D

*k

50
50

*k

B
-

20

Height of plant (cm)
30

Height of plant (cm)
20 30

10

- o-j
=4
(= o -

Ws-2  GmBRI1hOX-1 GmBRI1bOX-5 bri1-6 bak1-1D  GmBRI1bOX-3 GmBRI1bOX-10

Figure 3. Over-expression of GmBRI1b increased plant height in the bri1-5 bak1-1D mutant. The height of
50-day-old Ws-2 wild type and two corresponding GmBRI1b over-expression lines (GmBRI1D-OX) (A,C);
and the bri1-5 bak1-1D mutant and corresponding GmBRI1b-OX lines (B,D). Results are means + SD from
five plants. Experiments were repeated two times with similar trend (Student’s t-test, ** p < 0.01).

We also observed leaf and petiole growth and development in the Ws-2 wild type, and the
bril-5 bak1-1D mutant, and their corresponding GmBRI1b over-expression lines. The bril-5 bak1-1D
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mutant had smaller leaves and shorter petioles compared to the Ws-2 wild type at 25 days after
germination (Figure 4A), but over-expression of GmBRI1b in the transgenic bril-5 bak1-1D mutant
resulted in narrower leaves and longer petioles than in the non-transformed mutant (Figure 4A-C).
Over-expression of GmBRI1b significantly increased the length of the 6th, 7th, and 8th leaf petiole in
the Ws-2 wild type plants (p < 0.01), but no differences were found in the 1st to 5th leaves (Figure 4D).
Over-expression of GmBRI1b in the transgenic bril-5 bak1-1D mutant significantly increased elongation
of the 3rd to the 8th leaves (p < 0.05 or p < 0.01), but not the 1st and the 2nd leaves (Figure 4E).

Control OX lines

2 D
- Ws-2
: - GMBRI1bOX-1
ws-2 BN N Ve ) « - GmBRI1bOX-5
z E
E
o=
,,,,, s
[
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>
g~
GmBRI1bOX-3 -
#
GmBRI1bOX-10 ~ #

L1 L2 L3 L4 LS Le L7 Ls

Figure 4. Ectopic over-expression of GmBRI1b increased the length of the petioles in the transgenic
bril-5 bak1-1D mutant and wild type Ws-2. The 25-day-old plants (A). The 1st to the 8th leaves of the
Ws-2 wild type and two corresponding GmBRI1b over-expression lines (GmBRI1b-OX) (B); and the
bril-5 bak1-1D mutant and corresponding GmBRI1b-OX lines (C). The length of the petioles from the
1st to the 8th leaves (L1-8) was measured in 25-day-old seedlings of the Ws-2 wild-type lines (D); and
the bril-5 bak1-1D mutant lines (E). Results are means + SD from five independent experiments (in
total, 25 seedlings were measured) (#, control; Student’s t-test, * p < 0.05; ** p < 0.01). Scale bar = 1 cm.

The bril-6 mutant has smaller, curled leaves with very short petioles. Ectopic over-expression of
GmBRI1b in the transgenic bri1-6 mutant (Figure S5C) significantly increased petiole length and restored
the normal wild-type leaf phenotypes in 20-day-old (Figure 5A—C) and 40-day-old (Figure 5D-F) plants.
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20-day

40-day

bri1-6 GmBRI1bOX-1 GmBRI1bOX-6

Figure 5. Ectopic over-expression of GmBRI1b restored the wild-type leaf phenotype in the transgenic
bril-6 mutant. Leaf phenotypes of the 20-day-old bril-6 mutant (A); and the two corresponding
GmBRI1b over-expression lines GmBRI1bOX-1 (B) and GmBRI1bOX-6 (C); Leaf phenotypes of the
40-day-old bril-6 mutant (D); and the two corresponding GmBRI1b over-expression lines GmBRI1b6OX-1
(E) and GmBRIIbOX-6 (F).

In Arabidopsis, limitations in BR levels or defects in BR signaling lead to shorter siliques [50].
The length of siliques in the same position and the same developmental stage were measured in
the shoots of the Ws-2 wild type, and bril-5 bak1-1D mutant, and their corresponding GmBRI1b
over-expression lines. For the Ws-2 wild-type lines, the siliques of GmBRI1bOX-5 were significantly
longer than those of the non-transformed Ws-2 wild type, but this was not true for GmBRI1bOX-1
(Figure 6A,B). For the bril-5 bak1-1D lines, over-expression of GmBRI1b significantly increased the
length of the siliques (Figure 6C,D).
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Figure 6. Over-expression of GmBRI1b increased the length of the siliques in the bri1-5bak1-1D mutant.
The length of siliques in the Ws-2 wild type and the two corresponding GmBRI1b over-expression
lines (GmBRI1b-OX) (A,B); and the bril-5 bak1-1D mutant and corresponding GmBRI1b-OX lines (C,D).
Results are means + SD from three independent experiments (a total of 15 seedlings were measured)
(Student’s t-test, ** p < 0.01, *** p < 0.001). Scale bar =1 cm.

Collectively, these results demonstrate that GmBRI1b functions as a BR receptor at the
physiological and genetic level.
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2.6. Ectopic Over-Expression of GmBRI1b Increased the Hypocotyl Length of the bril-5 bak1-1D Mutant and
Changed the Responses of the Wild Type and bril-5 bak1-1D Mutant to Brassinazole

Brassinazole (Brz) effectively inhibits BR biosynthesis [51] and Brz treatment decreases the growth
of etiolated Arabidopsis hypocotyls [51,52]. To evaluate the effects of ectopic over-expression of GmBRI1b
on the response to Brz, Arabidopsis seeds were germinated in half-strength MS media and then
transferred to different concentrations of Brz-containing MS media after three days. After six days, the
lengths of the hypocotyls were measured.

The differences in hypocotyl lengths between the dark-grown Ws-2 wild-type plants and the
two corresponding over-expression lines were not significant under the control conditions (no Brz
treatment). In plants treated with 1 uM Brz, the hypocotyl lengths of the two over-expression lines were
1.58x and 1.50x longer than those of the non-transgenic Ws-2 wild-type seedlings (p < 0.05). In plants
treated with 2 uM Brz, the lengths of the hypocotyls in the two over-expression lines were 1.23x and
1.19x longer than those of the non-transgenic Ws-2 wild-type seedlings (p < 0.01) (Figure 7A,B).
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Figure 7. Over-expression of GmBRI1b increased the tolerance to Brz in the Arabidopsis plants.
Hypocotyl measurements were taken after exposure to different concentrations of Brz in seedlings of
the Ws-2 wild type and the two corresponding GmBRI1b over-expression lines (GmBRI1b-OX) (A,B);
and the bril-5 bak1-1D mutant and corresponding GmBRI1b-OX lines (A,C). All seedlings were grown
under full darkness for seven days. Results are means + SD from three independent experiments
(a total of 30 seedlings were measured) (#, control; Student’s ¢-test, * p < 0.05; ** p < 0.01; *** p < 0.001).
Scale bar =1 cm.

Ectopic over-expression of GmBRI1b in the transgenic bril-5 bak1-1D mutant promoted hypocotyl
growth in dark-grown seedlings in the untreated and Brz-treated conditions (Figure 7A,C). In the
untreated plants, the hypocotyl lengths of the two over-expression lines were increased by 1.53x and
1.40x over those of the non-transformed bri1-5 bak1-1D mutant. In the plants treated with 1 uM Brz,
over-expression of GmBRI1b increased the length of the hypocotyls by 1.68x and 1.54x (p < 0.01).
In the plants treated with 2 uM Brz, the length of the hypocotyls in the over-expression lines increased
by 1.61x and 1.53x (p < 0.01) compared with those of the bri1-5 bak1-1D mutant lacking the transgene
(Figure 7C).

Taken together, these data demonstrated that ectopic over-expression of GmBRI1b decreased the
sensitivity of the Ws-2 wild type and the bri1-5 bak1-1D mutant to exogenous Brz by restoring hypocotyl
growth. These results further suggest that GmBRI1b functions as a BR receptor in Arabidopsis.

2.7. Over-Expression of GmBRI1b Altered the Expression Level of BR Biosynthesis-Related Genes in the bril-5
bak1-1D Mutant

Previous studies have revealed that the expression levels of BR biosynthesis-related genes,
such as DWF4, CPD, BR6ox-1, and BR6ox-2, are regulated by negative feedback by BR itself and
by BR signaling [53-55]. Therefore, we selected these four marker genes to explore the effects of
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ectopic over-expression of GmBRI1b on the crosstalk between BR signaling and BR biosynthesis at
the molecular level. Over-expression of GmBRI1b had little effect on DWF4 transcription in wild type
Ws-2, but significantly down-regulated transcription of DWF4 in the transgenic bril-5 bak1-1D mutant
(Figure 8A). Dislike Ws-2, ectopic over-expression of GmBRI1b significantly repressed the expression
of CPD in the bril-5 bak1-1D over-expression line (p < 0.001, Figure 8B). Over-expression of GmBRI1b
repressed the expression of BR60x-1 in the bri1-5 bak1-1D over-expression line by 0.51 x compared with
the non-transformed bril-5 bak1-1D mutant (Figure 8C). In addition, over-expression of GmBBRI1b
repressed the expression of BR6ox-2 by 0.29x in the bril-5 bak1-1D over-expression line compared
with their corresponding non-transformed mutant, but this is not true in wild type (Figure 8D).
Thus, these results indicate that ectopic over-expression of GmBRI1b enhanced BR signaling in the
bril-5 bak1-1D mutant, and that GmBRI1b is functional in Arabidopsis.
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Figure 8. Effect of ectopic over-expression of GmBRI1b on the expression of BR biosynthesis-related
genes in the transgenic bril-5 bak1-1D mutant. Seedlings were grown as described in Materials and
Methods. qRT-PCR was used to detect the relative expression levels of: DWF4 (A); CPD (B); BR6ox-1
(C); and BR60x-2 (D) in Ws-2 and bril-5 bak1-1D mutant and their corresponding over-expression
lines. Results are means + SD from three independent experiments with three technical replicates
(Student’s t-test, ** p< 0.01, *** p< 0.001).

2.8. Structural Modeling of Soybean BR Receptors

Two studies reported the X-ray diffraction structure of the AtBRI1 ligand-binding domain
(ectodomain) in 2011 [27,28]. In AtBRI1, a 70-amino-acid ID between LRR XXI and XXII, which
folds back into the interior of the super helix, generates a pocket for binding brassinolide [27,28].
A 69 amino acid long ID was found between the LRR XXI and XXII in GmBRI1b (Table S1 and
Figure S3). Computational homology modeling is a powerful tool to investigate conservation between
homologous proteins across plant species [56]. After searching the PDB database [57], 3RGZ and
3RGX were selected as the best templates with which to rebuild the structure of soybean BR receptors.
In addition, we also reconstructed AtBRL1, AtBRL2, and AtBRL3. As shown in Table S2, 3RGZ and
3RGX were chosen as the best templates for GmBRL1a, GmBRL1b, GmBRL2a, GmBRL2b, AtBRL1,
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and AtBRL3, or GmBRI1la and GmBRI1b, respectively. The related parameters in Table S2 indicated
the reliability of the homology modeling.

The o-helix and (-sheet were found in the ectodomain of soybean BR receptors (Figure 9).
The structural models of the Glycine max BR receptors and Arabidopsis BRL1 and BRL3 show high
similarities in the 3-D structures of the ectodomains of the BR receptors. The tertiary structures of
the BR receptors in each class also show high similarities (Figure 9). This suggested that the protein
structures of BR receptors are conserved across plants.
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Figure 9. Structural modeling of six soybean BR receptors. The program PhyML3.0 [58] was used
to reconstruct the phylogenetic tree of BR receptors from Arabidopsis and soybean. The evolutionary
lineages of four BR receptors in Arabidopsis and six BR receptors in soybean were compared. The LG
model for amino acid substitutions with estimated Gamma distribution was used to reconstruct the
tree and the bootstrap value was set as 1000. A total of ten BR receptors were classified into Clades
I, II, and III. The numbers above each branch of the tree are the bootstrap values. Scale bar indicates
0.1 amino acid substitution over evolution. In addition, the ectodomains of ten BR receptors were
modeled with MODELLER9.11 software [59] based on the template of AtBRI1, which was determined
with X-ray crystallization on a 3-D level in 2011 [28]. The PDB files were processed with PyMOL v1.5
software [60].

2.9. Evolutionary Analysis of BR Receptors in Plants

To analyze the evolutionary relationship among BR receptors across plant species, including
receptors from moss, ferns, gymnosperms, and angiosperms, we collected BR receptor sequences
using BLASTP searches. First, we performed BLAST searches against different plant genomes with
the amino acid sequences of AtBRI1, AtBRL1, AtBRL2, and AtBRL3. We then selected the proteins
with high scores as candidate BR receptors in the different plant species. Last, we performed domain
analysis with the SMART program and predicted the kinase domain and LRR domains. Based on these
criteria, the sequences of 76 putative BR proteins from Physcomitrella patens, Selaginella moelledorffii,
four monocots, three legumes (Glycine max, Medicago truncatula, and Phaseolus vulgaris), and 11 dicots
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were aligned with ClustalW 2.1. Next, we reconstructed the phylogenetic tree of the BR receptors
with MrBayes 3.2 software [61]. Three proteins from Physcomitrella patens and six from Selaginella
moelledorffii were classified into the same subgroup with 100% bootstrap support (Figure 10) and were
considered to be an outgroup in the reconstructed phylogenetic tree. The remaining 67 BR receptor
proteins from monocots and dicots were grouped into Clades I, II, and III (100% bootstrap support).
In each clade, the proteins from the monocots (rice, maize, sorghum, and Brachypodium distachyon) or
from the dicots formed well-separated subclades with 100% bootstrap support (Figure 10). The branch
length indicates the history of evolution.
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Figure 10. Evolutionary analysis of BR receptors in plants. BLASTP was used to search for BR
receptor homologs in different plant species. A total of 76 BR receptors as shown in Spreadsheet S1
were analyzed from monocots (Oryza sativa (Os), Zea mays (Zm), Sorghum bicolor (Sb), Brachypodium
distachyon (Bradi)), dicots (Arabidopsis thaliana (At), Glycine max (Gm), Solanum lycopersicum (Soly),
Medicago truncatula (Mt), Phaseolus vulgaris (Pv), Populus trichocarpa (Pt), Eucalyptus grandis (Eucgr),
Citrus sinensis (Cis), Gossypium raimondii (Gora), Cucumis sativa (Cusa), Prunus persica(Pp), Manihot
esculenta (Me), Ricinus communis (Rc), and Nicotiana tabacum (Nt)), moss (Physcomitrella patens (Phpat)),
and fern (Selaginella moelledorffii (Smo)) and grouped into three clades, Clades], II, and III. Additionally,
nine BR receptor homologs from moss and fern were determined to be members of an outgroup.
The values above the branches are the probability of the bootstrap value with 1000 repeats. MrBayes
3.2 software was used to reconstruct the phylogenetic tree as described in the Methods Section. Scale
bar indicates 0.1 amino acid substitution over evolution.
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The three clades were represented by BRI1, BRL1/BRL3, and BRL2. As mentioned above, BRL2
in rice and Arabidopsis appeared to be non-functional. Two Glycine max BR receptors (GmBRL2a and
GmBRL2b) also seemed to have no function in BR signaling. When compared with the evolutionary
distance of the BR receptors from legumes and other dicots, the BR receptors from legumes showed
more conservation than other BR receptors.

In addition, we also reconstructed the phylogenetic tree with the Maximum Likelihood
(ML) method to reconstruct the evolutionary relationship among BR receptors with PhyML [58].
The phylogenetic tree generated with this method was the same as that generated from the Bayesian
method (data not shown).

We investigated the synonymous (Ks) and nonsynonymous substitution rate (K,) and selection
pressure (K, /Ks) of the BR receptor genes in higher plants during evolution. The aligned BR receptor
amino acid sequences and their corresponding cDNA sequences that were conserved across soybean,
rice, maize, Arabidopsis, and common bean were analyzed using the K, /Ks calculator [62]. As shown in
Figure 11, the K, /K values in all nodes and branches were less than 1.0, indicating that BR receptors
were subjected to strong selection pressure.
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Figure 11. Estimation of K, /K in the BR receptor genes from soybean, common bean, Arabidopsis,
rice, and maize. The cDNA sequences and amino acid sequences of the BR receptors from dicots
(soybean, common bean, and Arabidopsis) and monocots (rice and maize) were used to estimate the
Ka/Ks. Twenty nodes are shown. The K, and K values in each node and branch are marked in blue
and red, respectively. The K, /Ks in each branch is indicated in parentheses and all K, /Ks values were
less than 1.0.
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3. Discussion

Although BR signaling has been extensively studied in rice and Arabidopsis, BR signaling in
soybean is still largely unknown. In this study, we cloned the soybean BR receptor gene Glyma04¢39610
(GmBRI1b) and demonstrated that it functions as a BR receptor in Arabidopsis at the physiological,
genetic, and molecular levels. In addition to this BR receptor gene and another known soybean BR
receptor gene Glymg06915270 [39], we identified four other soybean BR receptor genes.

BRs play important roles in plant growth, development, and stress adaptations such as
cell elongation and division, seed germination, photomorphogenesis and skotomorphorgenesis,
responses to salts and heavy metals, and pathogen resistance. BRs have been found in 61 species of
embryophytes, including 53 angiosperms, six gymnosperms, one pteridophyte (Equisetum arvense),
and one bryophyte (Marchantia polymorpha) [63]. Additionally, two single-celled green freshwater
algae (Chlorophyta; Chlorella vulgaris and Hydrodictyon reticulatum) and the marine brown alga Cystoseira
myrica biosynthesize BRs [64]. This indicates that BRs appear to be conserved phytohormones in
plants. Considering that BRs even exist in single-celled plants, the identification of BR receptor-like
proteins in moss and fern may deepen our understanding of the evolution of BR signaling in plants.
Our phylogenetic analysis implies that BR receptors exist universally throughout the plant kingdom
(Figure 10).

Similar to previously reported BR receptor genes in Arabidopsis and rice [15,31], GmBRI1b does
not contain introns. We determined that at least six BR receptor genes exist in the soybean genome,
in contrast to only four BR receptor genes in both Arabidopsis and rice, indicating that BR signaling may
be more complex in soybean. In addition, two soybean BR receptor genes, GmBRL2a and GmBRL2b,
showed a close evolutionary relationship with AtBRL2 and OsBRL2, which have been reported to have
no function in BR signaling [29,32]. The role of soybean GmBRI2a and GmBRI2b in BR signaling needs
further study.

As previously reported, functional BR receptors in Arabidopsis and rice are localized in cell
membranes [31,65]. A signal peptide was found in the N-terminus of GmBRI1b (Table 1). GFP fusion
experiments showed that GmBRI1b localizes in the plasma membrane (Figure 2). This supports the
idea that GmBRI1b perceives BR at the cell membrane.

AtBRI1 and OsBRI1 are ubiquitously expressed in all tissues [31,65]. We found that GmBRI1b is
expressed in apical buds, cotyledons, epicotyls, hypocotyls, leaves, lateral roots, and primary roots
(Figure 1A), implying a crucial and universal role in soybean growth and development. The soybean
RNA-Seq data [47] supported our results (Figure 1G). Moreover, the transcript abundance of two
soybean BR receptor genes, GmBRI1a and GmBRI1b, in nodules was relatively high, suggesting
that these two genes play important roles in nodulation (Figure 1G). Application of Brz on mature
leaves or into the culture media increased the nodule number and inhibited internode growth in
the soybean cultivar Enrei and foliar applications of BR inhibited nodulation and root growth in the
super-nodulating mutant En6500, indicating the existence of BR signaling modules in soybean [66].
Moreover, these results indicate that endogenous BR homeostasis or BR signaling might control
nodulation. Recent studies demonstrated that pea BR biosynthesis mutant (/k), and BR receptor
mutant (/kb) had fewer lateral roots and nodules and the decreased nodule number did not seem to be
attributed to changes in endogenous GA or auxin levels [8]. Therefore, the roles of BR receptors in
legume nodulation need further study.

In our study, we noticed differences in expression among the soybean BR receptors. For instance,
the expression levels of GmBRL2a and GmBRL2b were very low in seeds, but the levels of GmBRI1a and
GmBRI1b were higher in seeds (Figure 1G). We also found higher expression of GmBRI1a and GmBRI1b
in flowers (Figure 1G), indicating that these genes might regulate flower and seed development.
The highest expression of GhBRI1 was found in hypocotyls, while its transcripts were much lower
in mature roots [36]. GmBRI1a was found to be highly expressed in soybean hypocotyls and is
up-regulated by exogenous BR [39]. We detected higher expression of GmBRI1b in hypocotyls and
lateral roots in fourteen-day-old soybean seedlings, in which active cell proliferation and elongation are
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occurring. A previous study showed that some gene pairs resulting from gene duplication in soybean
showed similar expression patterns during nodulation, while others showed different expression
patterns [67]. Interestingly, we found that three BR receptor gene pairs generally showed similar
transcription patterns (Figure 1A-F). As three gene duplication events occurred during soybean
evolution (Figure 54), it is possible that the promoter sequences in the three gene pairs are similar and
some common cis-elements might be found among them.

The loss of function mutation in BR signaling or biosynthesis genes in Arabidopsis results in a
dwarf phenotype and late flowering [6,68-70]. We found that ectopic over-expression of GmBRI1b
in transgenic bril-6, and bril-5 bak1-1D mutant restored the normal wild-type phenotype, including
the height of the seedlings and the length of petioles and siliques, leaf growth. Thus, we concluded
that GmBRI1b functions as a BR receptor in Arabidopsis at the physiological and genetic level. We also
demonstrated that GmBRI1b acts as a functional BR receptor in Arabidopsis at the molecular level.
Ectopic over-expression of GmBRI1b repressed the relatively high expression of DWF4, CPD, BR60OX-1,
and BR60X-2 in the transgenic bril-5 bak1-1D mutant. GmBRIla was classified into the same subclade
with GmBRI1b in this study. In a previous study, when GmBRI1a was expressed in the Arabidopsis
bril-5 mutant, reversed the developmental defects of the bril-5 mutant [39], although the subcellular
localization of GmBRIla was not determined [39]. The BR-binding activity of GmBRI1b remains
unknown. Results from this study combined with previous studies suggest that GmBRIa and GmBRI1b
are BR receptors.

Domain analysis showed that GmBRI1b contains an N-terminal signal peptide, a transmembrane
domain, a kinase domain, and 25 LRR motifs (Table 1 and Table S1). This is in accordance with
the structures of AtBRI1 and GmBRIla [39]. We noticed that in higher plants, the complete BR
receptor domains evolved through two domain-gain events in the ancestral receptor-like kinase,
the juxtamembrane domain (JM) and the island domain (ID) [71]; the J]M domain was acquired during
the early diversification of plants and the ID domain formed in the ancestors of angiosperms and
gymnosperms after their divergence from moss [71].

Based on structural biology studies conducted in 2012 [27,28], the ectodomain is responsible for the
binding of the BR receptor to brassinolide. As expected, the highly conserved ectodomain sequences of
the soybean BR receptors with BR receptors of other plant species were observed (Figure S2). Moreover,
our structural modeling indicates that the ectodomain of all six soybean BR receptors form similar
tertiary structures to that of AtBRI1 (Figure 9). This indicates that the ectodomain of BR receptors in
Glycine max might have an identical function to that of AtBRI1 in vivo.

The amino acid sequences in the IDs between different plant species are highly conserved and
IDs participate directly in BR binding [27,38]. The results in Figure S3 show that the ID in soybean
BR receptors is highly conserved, but the ID in GmBRL2a andGmBRL2b show more variation than
the other four soybean BR receptors. GmBRL2a and GmBRL2b were classified into the same subclade
with AtBRL2, which have been documented to have no function in BR signaling [29]. This raises the
question of whetherGmBRL2a and GmBRL2b play a role in BR signaling, and if no, can this be ascribed
to the differences in the IDs? Of note, IDs only exist in gymnosperms (conifers and gnetophytes) and
angiosperms. In contrast, the more ancient plant LRR-KD domain configuration generated from green
algae after the split between the green algae and red algae [71].

We investigated the evolution of BR receptors in plants. BLAST searches indicated that a
similar kinase existed in lower plants such as Physcomitrella patens and Selaginella moelledorffii. This is
consistent with a previous study that suggested that the kinase domain (KD) is more ancient [71].
When we reconstructed the phylogenic tree, we found that the proteins from Physcomitrella patens and
Selaginella moelledorffii had a close relationship, although we did not identify conserved BR receptors in
Chlamydomonas reinhardtii. Considering the existence of BRs in single-celled plants [64], we can not rule
out the existence of BR receptor-like proteins in single-celled plants as some receptor kinase proteins
might act as BR receptors. Interestingly, Cheon et al. [72] reported that Selaginella lacks a homolog of
AtBRI1, but does have downstream proteins such as BIN2, BSU1, and BZR1. This implies that the
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BR receptor complex evolved in a common ancestor of lycophytes, gymnosperms, and angiosperms.
We found that a total of 67 BR receptors from dicots and monocots can be evolutionarily grouped into
three clades represented by AtBRI1/OsBRI1, AtBRL1/OsBRL1, and AtBRL2/OsBRL2 with significant
bootstrap support, which is in accordance with a previous study [72]. Each clade can be divided into
two subclades, Ia, Ib, IIa, IIb, Illa, and IIIb (100% bootstrap support), one subclade from monocots,
and the other from dicots (Figure 10). These results indicate that three ancestral BR receptor genes might
generate a plethora of BR genes in plants. One subgroup, which was represented by AtRBL2, might
have lost its BR receptor function during evolution [29], but the reason for this is currently unknown.

We analyzed the selection pressure of BR receptors in plants during evolution. Notably, in each
clade, the K;/Ks was less than 1.0 (Figure 11). This suggests that the BR receptor genes in higher
plants were subjected to negative or purifying selection during evolution and indicates that the amino
acid residues in BR receptor proteins are important and that a nonsynonymous mutation would be
lethal or harmful for species survival. A previous study showed that the Dy, /D5 values were less than
1.0 in all gene pairs and detected no positive selection during BR receptors evolution [71]. Similarly,
the substitution ratio of non-synonymous to synonymous SNPs (K, /K;) of as high as 76% analyzed
JAZ genes across 13 monocot and dicot species was less than 1.0 [73]. Additionally, the K,/Ks of
the squamosa promoter binding protein (SBP)-box genes that encodes crucial transcription factors in
plants were less than 0.5 [74]. Our results are in accordance with previous reports that the K, /Ks of
some important genes in multiple plant species are less than 1.0 [75].

In the case of soybean, BR receptors have undergone duplication due to whole-genome
duplication events [40]. The soybean genome duplication also makes it much more difficult to
identify BR-insensitive mutants. The CRISPR-Cas9 tool, together with artificial microRNA to knock
out or knock down genes, would be valuable to further study other soybean BR receptor genes and for
investigations of BR receptor functions in soybean.

4. Materials and Methods

4.1. Plant Materials and Growth

Glycine max cultivar BD2 was used as the soybean material. One week after germination, soybean
plants were cultured with half-strength Hoagland’s solution in the greenhouse. The wild type
Arabidopsis Ws-2, and the bri1-5 bak1-D and bril-6 mutants were used. Seeds were stratified in the dark
at 4 °C for 2 days, then surface-sterilized for 30 s in 75% ethanol followed by 8-10 min in 10% NaClO
solution and washed five times with sterilized distilled water, then plated on half-strength MS media
containing 1% sucrose and 0.8% agar with a pH of 5.8. Plates were kept in a growth chamber with a
16-h light/8-h dark cycle and a temperature cycle of 23 °C light/21 °C dark. After one week, seedlings
were transplanted into soil and cultured as indicated above.

4.2. Extraction of Genomic DNA and RNA and Reverse Transcription of mRNA

Soybean and Arabidopsis genomic DNA and RNA were extracted with the CTAB and TRIzol
methods, respectively. The cDNAs were reverse transcribed through MLV-transcriptase according to
the vendor’s instructions. Other molecular experimental procedures were based on standard methods.

4.3. RACE Cloning of GmBRI1b

Two-week-old soybean BD2 seedlings were used to extract total RNA with the TRIzol method.
Reverse transcription was carried out following standard methods to obtain cDNA. We used the
SMART RACE kit (Takara Biomedical Technology, Beijing, China) to clone the GmBRI1b cDNA 5
fragments and 3/fragments. Specific primer pairs were designed with PerlPrimer [76] and are listed
in Table S3.
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4.4. Analysis of Expression Patterns of Soybean BR Receptor Genes

We designed specific primer pairs with PerlPrimer [76] based on the cDNA sequences and
genomic sequences [43] of the six soybean BR receptors to detect the expression levels of the six genes
in different organs. Seven-day-old seedlings of the soybean cultivar BD2 germinated on sands were
transferred to half-strength Hoagland’s nutrient solution. Seven days later, the roots, stems, and leaves
were sampled for extraction of total RNA. Quantitative real-time PCR (qRT-PCR) was used to test
the expression levels of the six BR receptor genes. The PCR thermal cycler parameters used were
40 cycles of 95 °C for 15 s, 60 °C forl5 s, and 72 °C for 30 s. GmEF1a (Glyma19g07240) was used to
normalize the expression levels. We used Rotorgen software and absolute quantification method [77]
to calculate the PCR results with the amplicon of GmEF1a as standard. The data presented were from
three independent biological experiments.

4.5. Over-Expression of GmBRI1b in Arabidopsis

The plasmid pCHF3 (a gift from Christian Fankhauser) was digested with EcoRI and Sall
to release the CaMV 355 constitutive promoter and then the 35S promoter was ligated with the
EcoRI and Sall-digested plasmid pPZP221 (a gift from Jianming Li). We named this plasmid
p35SPZP221. We amplified GmBRI1bcDNA, which contains Sall and Smal restriction sites, with
primer pairs. Next, we ligated GmBRI1b with plasmid p35SPZP221 digested with Sall and Smal. After
sequencing, Arabidopsis wild-type Ws-2, the bril-5 bak1-1D and bril-6 mutants were transformed with
Agrobacterium GV3101 via the floral dipping method [78]. Then, the transgenic seedlings were screened
in half-strength MS media that was solidified with 0.8% agar and contained 100 mg/L gentamycin.
The homozygous, one-copy insertion transgenic lines were confirmed with PCR and the x?-test and
the qualifying over-expression lines were used for further experiments.

4.6. Subcellular Localization of GmBRI1b

To determine the subcellular localization of GmBRI1b, we constructed the fusion protein of
GmBRI1b with GFP. The ORF of GmBRI1b, in which no stop codon exists, was amplified by PCR
using the primers 5-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAAGCTCTGTACA
GAAGCT-3' and 5-GGGGACCACTTTGTACAAGAAAGCTGGGTCCTAATGCTTGCTCAATTCAG
GG-3'. The amplified cDNA fragment was then recombined into the pMDC43 vector, thus producing
the GFP::BRI1b construct under the control of the 35S promoter. AtPIP2A, which was shown to be a
plasma membrane aquaporin [48], fused with mCherry was used as the plasma membrane marker
protein. Agrobacterium tumefaciens mediated transient expression in Nicotiana benthamiana tobacco
leaves was conducted as described [79] with minor modifications. The Agrobacterium GV3101 strain
harboring the constructs of GFP:GmBRI1b and AtPIP2A-mCherry [56] was inoculated in YEP medium
with the appropriate antibiotics and incubated for 16 h with shaking at 28 °C. After centrifugation
at 5000 rpm for 10 min, the cell pellet was re-suspended to ODgg = 1.0 in the infiltration medium
(10 mM MgCl,, 10 mM MES, and 150 pM acetosyringone). The cell suspension was then allowed to
standing at 22 to —24 °C for 2 to 3 h before infection into the tobacco leaves. A mix of cells containing
the same quantities of GFP::GmBRI1b and AtPIP2A-mCherry, were then infiltrated into the leaves of
three- to four-week-old tobacco plants. After three days, we observed the fluorescence distribution in
the tobacco epidermal cells at 488 nm (GFP) and 587 nm (mCherry) wave lengths by confocal laser
scanning microscopy (LSM780, Zeiss, Jena, Germany).

4.7. Phenotypic Analysis of Transgenic Arabidopsis

For sterilized solid media culture, seeds were sterilized as described above and sown in solid
half-strength MS medium containing 0, 1, or 2 uM Brz. Then, the square petri dishes were wrapped
with double layers of foil and were placed vertically in full darkness. After 7 days, the seedlings were
scanned and analyzed with Image] software to quantify the length of the hypocotyls.
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For determination of height, silique length, and petiole length, the seeds of the wild-type Ws-2,
the bril-6 and bril-5 bak1-1D mutants, and their corresponding over-expression lines were stratified at
4 °C for 2 days to break dormancy and then sown in soil. After the culture period, the height of the
plants and the length of the petioles and siliques were measured.

4.8. Determination of the Expression Levels of BR Biosynthesis-Related Genes in the Wild Type, the Mutant,
and Their Corresponding over-Expression Lines

To determine the expression levels of the BR biosynthesis-related genes CPD, DWF4, BR6ox-1,
and BR6ox-2, seedlings of one-week-old Ws-2 wild type, and bri1-5 bakl-1D mutant, and the
over-expression lines were transplanted into soil for one month under standard growth conditions.
Then, whole plants were used to extract total RNA with the TRIzol method. cDNAs were obtained by
reverse transcriptase reactions. qRT-PCR was used to determine the transcript abundances of CPD,
DWF4, BR6ox-1, and BR6ox-2. AtEF-1a was used as a reference gene to normalize the qRT-PCR results.
The qRT-PCR data were determined by absolute quantification method [77] with the amplicon of
AtEF-1a as standard. Specific primer pairs are listed in Table S3.

4.9. Determination of the GmBRI1b Structure

Based on the full sequence of the GmBRI1b cDNA, we designed primers at the regions of
the initiation codon and the stop codon to amply the genomic DNA fragment. After sequencing,
we compared the genomic and cDNA sequences of GmBRI1b using SIM4 software [80] to determine
the protein structure of GmBRI1b.

4.10. Alignment of BR Receptors

T-coffee software [81] was used to align the sequences of the full BR receptor, ectodomain,
and island domain of the BRs from the different plant species Glycine max, Arabidopsis thaliana,
Solanum lycopersicum, Oryza sativa, Pisum sativum, Hordeum vulgare, and Medicago truncatula.

4.11. Structural Modeling of Soybean BR Receptors

The sequences of the ectodomain of AtBRI1, AtBRL1, AtBRL3, and the six soybean BR receptors
were aligned with T-coffee v11.0 [81]. We then searched for the best-scoring templates in the Protein
Data Bank [57] and selected 3RGXZ and 3RGXA. Next, we rebuilt nine structural models (six soybean
BR receptors, AtBRL1, AtBRL3, and AtBRL2) of each ectodomain using Modeller v9.10 [56,82] and
reported the results using the best model based on the DOPE score [83]. The PDB files and images
were processed with PyMOL v1.5 [60].

4.12. Estimation of Selection and Substitution Rates

The cDNA and amino acid sequences of the BR receptors from the monocots rice and maize and
the dicots soybean, common bean, and Arabidopsis were used to calculate nonsynonymous (K,) and
synonymous (K;) substitution rates and their ratio (K, /K;) for each node/branch via a K, /Ks online
calculator tool [84].

4.13. Data Analysis

Data were analyzed with Excel 2003. The Student’s ¢-test was used to compare the differences.
R 3.0.1 package [85], gplots [86], and ggplot2 [87] were used to draw the heatmap and other figures.
5. Conclusions

Glyma04g39610 encodes GmBRI1b, which functions as a BR receptor. GmBRIlb is cell
membrane protein. Ectopic over-expression of GmBRI1b in bril-6 and bril-5 bak1-1D rescues the
BR signaling-related growth and development defects of the two mutants. The Glycine max genome
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contains six BR receptor-encoding genes, which are grouped into three clades and are generated from
three gene duplication events during evolution. BR receptors in plants were subjected to purifying
selection during evolution.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067 /
17/6/897/s1.
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AA Amino acid

BAK1 BRI1 ASSOCIATED RECEPTOR KINASE 1
BIN2 BRASSINOSTEROID INSENSITIVE2
BKI1 BRI1 KINASE INHIBITOR 1

BR Brassinosteroid

BRI1 BRASSINOSTEROID INSENSITIVE 1
Brz Brassinazole

BZR1 BRASSINAZOLE-RESISTANT1

ID Island domain
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