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Abstract: A vast amount of literature has confirmed the role of gene-environment (G×E) interaction
in the etiology of complex human diseases. Traditional methods are predominantly focused on
the analysis of interaction between a single nucleotide polymorphism (SNP) and an environmental
variable. Given that genes are the functional units, it is crucial to understand how gene effects
(rather than single SNP effects) are influenced by an environmental variable to affect disease risk.
Motivated by the increasing awareness of the power of gene-based association analysis over single
variant based approach, in this work, we proposed a sparse principle component regression (sPCR)
model to understand the gene-based G×E interaction effect on complex disease. We first extracted
the sparse principal components for SNPs in a gene, then the effect of each principal component
was modeled by a varying-coefficient (VC) model. The model can jointly model variants in a gene
in which their effects are nonlinearly influenced by an environmental variable. In addition, the
varying-coefficient sPCR (VC-sPCR) model has nice interpretation property since the sparsity on
the principal component loadings can tell the relative importance of the corresponding SNPs in
each component. We applied our method to a human birth weight dataset in Thai population.
We analyzed 12,005 genes across 22 chromosomes and found one significant interaction effect using
the Bonferroni correction method and one suggestive interaction. The model performance was further
evaluated through simulation studies. Our model provides a system approach to evaluate gene-based
G×E interaction.

Keywords: nonlinear gene-environment interaction; sparse principal component analysis;
varying-coefficient model

1. Introduction

Complex human diseases are rooted in genetics, but the risk is heavily influenced by the degree
of exposure to certain environmental factors. The phenomenon in which the genetic influences on
disease risk are modified by environmental factors is coined as gene-environment (G×E) interaction.
In practice, weak environmental stimuli is less likely to cause DNA mutations. Instead, exposure
to environmental changes could cause structural changes such as DNA methylation or histone
modification, which plays a regulatory rule to moderate gene expressions and consequently leads
to disease signals. Such epigenetic changes have been increasing, recognized as the epigenetic basis
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of G×E interaction [1]. Thus, identification of G×E interaction could shed novel insights into the
phenotypic plasticity of complex disease phenotypes [2].

Methods for analyzing G×E interactions have been flourishing in literature. These methods are
predominantly focused on a single variant based analysis, to name a few, such as the parametric
methods in [3], semi-parametric methods in [4,5], and non-parametric methods in [6,7]. Given that
genes are the functional units, understanding G×E interactions from a gene level perspective could
shed novel insight into the disease etiology. Thus, it is crucial to develop novel statistical methods that
can assess gene-based G×E interaction effects.

Methods for gene-based genetic association analysis have been extensively studied in the literature
(e.g., [8,9]). The advantage of a gene-based analysis includes: (1) biologically meaningful and ease
of interpretation given that genes are the functional units; (2) a reduced number of tests given the
number of genes is much smaller than the number of Single Nucleotide Polymorphism (SNPs) in a
genomewide scale; (3) a released computational burden. By assessing the joint function of multiple
variants in a set, a novel insight into the disease etiology could be obtained. A method for gene-based
gene–gene interaction has also been proposed (e.g., [10]). However, these gene-based association
methods cannot be directly extended to a gene-based G×E interaction analysis.

Motivated by empirical studies, Ma et al. [7] pioneered a nonlinear G×E interaction model.
For continuously measured environmental variables, one can assess the varying (or dynamic) patterns
of genetic effects responsive to environmental changes. Thus, a better understanding of the genetic
heterogeneity under different environmental conditions can be obtained. We have extended the model
to a set-based framework to investigate how variants in a gene set mediated by one or multiple
environment factors to affect a disease response [11]. The method was developed under a feature
selection framework in which a penalized additive varying-coefficient model was developed to select
important SNPs in a gene set. This framework could shed novel insight into the elucidation of the
regulation mechanism of a genetic set (e.g., a pathway), triggered by environment factors. However, it
is well known that variables estimated with non-zero coefficients in a variable selection setup may not
be statistically significant. Thus, the method is limited since it does not give a p-value for each SNP.
In addition, the method is still a single variant based analysis by modeling SNPs separately in a gene set.

It is thus the purpose of this work to propose a gene-based G×E interaction model considering
potential nonlinear environmental modification effects on disease risk. We propose to first reduce the
SNP dimension in a gene by a classical principal component analysis (PCA). Since SNPs in a gene are
potentially correlated due to linkage disequilibrium (LD), a few PCs can capture the gene variability.
To ease the interpretation of PCs, we propose to further conduct a sparse PCA analysis. Sparse PCs
with nonzero loadings reflect the relative importance of the corresponding SNPs. These sparse PCs are
then fitted into an additive varying-coefficient model. The nonlinear varying G×E effects are estimated
via the nonparametric B-spline technique. By changing the B-spline basis functions, our method is able
to separate linear and nonlinear G×E effect, based on which a hypothesis testing can be done to assess
different components.

We propose rigorous testing procedures to assess the main effect of a gene as well as the interaction
effect between a gene and an environmental variable. The method is applied to a genome-wide
association study (GWAS) dataset on birth weight in a Thai population to identify important genes
triggered by nonlinear modification effects of a mother’s glucose to affect the baby’s birth weight.
Simulation studies are conducted to evaluate the performance of the method with perturbed data.
Our method provides a quantitative framework to evaluate and test gene-based G×E interaction,
triggered by the potential nonlinear environmental modification effect.



Int. J. Mol. Sci. 2016, 17, 882 3 of 13

2. Results

2.1. Simulation

To check the performance of the proposed model, we conducted a simulation study. We generated
SNP data by bootstrapping samples focusing on gene NCOA5 (see the real data analysis section for
details about this gene). There are 1126 individuals and 15 SNPs in gene NCOA5. By bootstrapping, we
assumed the original sample is the population, then randomly sampled individuals with replacement
with size nB each time. During bootstrap, all the SNP data and the mother’s glucose level (U) in each
individual were drawn together as a vector. By doing so, we can maintain the LD structures among
SNPs as well as the correlations between SNPs and U. The response Y was then generated from the
following model:

Y = β̂0(U) + τ
4

∑
k=1

β̂k(U)w̃k + ε,

where β̂0(u) and β̂k(u), k = 1, · · · , 4, are the estimators of β0(u) and βk(u) based on the real data for
gene NCOA5, w̃k is the kth sparse PC in the bootstrapped samples with size nB, and ε is the error term
following a normal distribution with mean 0 and variance cσ̂2, where c is a constant controlling the
size of the variance, and σ̂2 is the estimated variance in real data based on gene NCOA5. τ is a constant
to control the effect size of the model. When τ = 0, we can assess the empirical false positive rate.
When τ > 0, we can assess the testing power and we expect the power increases as τ increases. We set
the bootstrap sample size as nB = 200, 500, 1000, and the constant c = 1, 2, 3 to check the finite sample
performance of the proposed method. Specifically, we were interested in evaluating the false positive
control and the power of detecting association under different sample sizes and error variances.

As a comparison, we also analyzed the data with the VC-PCR model (4), and a simple linear
regression model with a linear G×E interaction form, i.e.,

Y = α0 + α1U +
15

∑
k=1

β1kGk +
15

∑
k=1

β2kUGk + ε, (1)

where G = (G1, · · · , G15) are the 15 SNPs in gene NCOA5, and ε is an error following a normal
distribution with mean 0 and finite variance. We conducted the overall SNP effect test by testing:
HG

L,0 : β11 = · · · = β115 = 0 and β21 = · · · = β215 = 0, and the SNP×E interaction effect test by testing
HI

L,0 : β21 = · · · = β215 = 0. Let α = (α0, α1)
T, β1 = (β11, · · · , β1K)

T, β2 = (β21, · · · , β2K)
T, K = 15,

and β = (βT
1 , βT

1 )
T. Denote LRT for testing HG

L,0 by LO
L = −2(`0(α̂)− `1(α̂, β̂)), and LRT for testing

HI
L,0 by LI

L = −2(`0(α̂, β̂1)− `1(α̂, β̂)), where `0(α̂) is the log-likelihood under HG
L,0, `0(α̂, β̂1) is the

log-likelihood under HI
L,0, and `1(α̂, β̂) is the log-likelihood under the full model. The LTRs LO

L and LI
L

asymptotically follow a χ2 distribution with 30 and 15 degrees of freedom, respectively.
Figure 1 displays the empirical size (τ = 0) and power functions (τ > 0) under different sample

sizes and error variances for the overall genetic effect test. The top three plots are for the overall genetic
effect test fitted with the VC-sPCR model (5), the middle three plots are for the overall genetic effect test
fitted with the VC-PCR model (4), and the bottom three plots are for the overall genetic effect test fitted
with the linear G×E interaction model (1). As we expected, the power and size improve as the sample
size increases and the error variance decreases for all the three models. For both VC-sPCR and VC-PCR
models, the size and power show very similar patterns. However, since sPCR analysis assumes sparsity
of the PC loadings, hence has better interpretation. As a comparison, the linear regression model has
the worst performance. First of all, the size is inflated and it gets worse when sample size increases,
indicating completely failing of the linear model. This is expected since the simulated interaction
function is nonlinear. Moreover, the power under the linear model is also worse than the other two
models. We also simulated data assuming a linear G×E interaction effect. The results show that the
performance of the VC-sPCR and VC-PCR models are very similar, but their performance is slightly
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worse than the results by fitting a linear G×E interaction model (data not shown due to space limit).
A similar phenomenon was also observed in the original nonlinear G×E interaction model [7]
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Figure 1. The empirical size and power functions of testing the overall genetic effect (HO
0 ) fitted with the VC-sPCR

model (3) in the top row, with the VC-PCR model (1) in the middle row, and with the linear model (8) in the bottom

row, under different sample sizes and error variances.
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Figure 1. The empirical size and power functions of testing the overall genetic effect (HO
0 ) fitted with

the varying-coefficient sparse principal components regression VC-sPCR model (5) in the top row,
with the VC-PCR model (3) in the middle row, and with the linear model (1) in the bottom row, under
different sample sizes and error variances.

For the interaction test, Figure 2 displays the empirical size and power functions under model
VC-sPCR (5) the first row, under model VC-PCR (4) in the middle row, and under the linear G×E
interaction model (1) in the bottom row. Again, we observed very similar patterns as for the overall
genetic effect test shown in Figure 1.

2.2. Real Data Analysis

We applied the proposed model to a data set from the Gene Environment Association Studies
initiative (GENEVA) funded by the trans-NIH (National Institute of Health) Genes, Environment, and
Health Initiative (GEI), to identify important genes associated with birth weight. Fetal growth is not
only determined by fetal genes but also controlled by complex interactions between fetal genes and the
maternal uterine environment. In this example, we focused on the Thai population with 1126 subjects
genotyped with the Omni1-Quad_v1-0_B platform (Illumina, San Diego, CA, USA) after removing
potential outliers. We chose mother’s one hour OGTT (oral glucose tolerance test) glucose level
(denoted as U) as the environmental variable in our analysis. Hypothetically, glucose from mothers
can have big influence on fetal growth and such an effect can be partially captured by modeling the
interaction mechanism between fetal genes and the glucose level coming from the mother.

There are total 590,913 SNPs after filtering out SNPs with minor allele frequency (MAF) <0.05,
missing rate <0.05 and those deviating from Hardy–Weinberg equilibrium (p-value < 0.001).
These SNPs were then mapped to genes based on human genome builder 37 (GRCh37). We only
focused on genes containing three or more SNPs in our analysis. This resulted in 12,005 genes. There are
three genes containing relatively large number of SNPs (1355, 924, and 804 SNPs). Figure 3 shows the
distribution of the number of SNPs in genes by excluding these three genes. The number of SNPs in
most genes is less than 20.
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Figure 2. The empirical size and power functions of testing the G×E genetic effect (H I
0) fitted with the VC-sPCR

model (3) in the 1st row, with the VC-PCR model (1) in the 2nd row, and with the linear model (8) in the 3rd row,

under different sample sizes and error variances.
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genes. If we applied a Bonferroni threshold (-log10(0.05/12005)=5.38) at a 0.05 genome-wide significance184

level, only one gene (ANGPT1) on chromosome 8 shows significance. If we lowered the threshold to 1e-04,185

then one gene (NCOA5) on chromosome 20 shows suggestive significance. The QQ-plots of the p-values186

for the two models are given in Figure 5. As we can see that no obvious departure from the diagonal line is187

observed, indicating no inflation of the p-values.188

Table 1 lists the two genes along with the gene name (Gene), chromosome (Chr), the number of PCs189

(NPCs) and the number of SNPs (NSNPs) within each gene, and the p-values of different tests. The p-values190

Figure 2. The empirical size and power functions of testing the G×E genetic effect (H I
0) fitted with

the VC-sPCR model (5) in the 1st row, with the VC-PCR model (3) in the 2nd row, and with the linear
model (1) in the 3rd row, under different sample sizes and error variances.
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0) fitted with the VC-sPCR
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Figure 3. Boxplot of the number of single nucleotide polymorphisms (SNPs) in each gene.

We centered the response first by subtracting the sample mean, then fitted the proposed
varying-coefficient sparse PCR (VC-sPCR) model described in an earlier section to each gene, and
conducted the aforementioned hypothesis testing. The number of PCs was chosen in such a way
that >80% of gene variance can be explained by these PCs. As a comparison, we also fitted a regular
varying-coefficient PCR (VC-PCR) model without assuming sparsity of the PC loadings. We first
tested HO

0 : β1(U) = · · · = βK(U) = 0 to assess the overall genetic effect. The corresponding
p-values are denoted by pO

pc for VC-PCR model and pO
spc for VC-sPCR model (see Table 1). Figure 4

shows the Manhattan plot of the p-values for the two models. The top panel is for the results
analyzed with the VC-PCR model, and the bottom panel is for the results analyzed with the VC-sPCR
model. The vertical axis is the −log10(p-value) and horizontal axis shows the genes in 22 autosome
chromosomes. The two models give quite consistent signals across all the genes. If we applied
a Bonferroni threshold (−log10(0.05/12005) = 5.38) at a 0.05 genome-wide significance level, only one
gene (ANGPT1) on chromosome 8 shows significance. If we lowered the threshold to 1 × 10−4, then
one gene (NCOA5) on chromosome 20 shows suggestive significance. The QQ-plots of the p-values for
the two models are given in Figure 5. As we can see that no obvious departure from the diagonal line
is observed, indicating no inflation of the p-values.
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Table 1 lists the two genes along with the gene name (Gene), chromosome (Chr), the number
of PCs (NPCs), the number of SNPs (NSNPs) within each gene, and the p-values of different tests.
The p-values for testing H I

0 are denoted by pI
pc for the VC-PCR model and pI

spc for the VC-sPCR model,
and the p-values for testing HM

o are denoted by pM
pc and pM

spc, respectively. The test results indicate that
both the main and G×E interaction effects are significant for the two genes. For gene NCOA5, the G×E
interaction effect is stronger (p-value = 1.5 × 10−4) than the main effect (p-value = 3.29 × 10−3).
Version May 6, 2016 submitted to IJMS 9 of 14
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for testing HM
o are denoted by pM

pc and pM
spc respectively. The test results indicate that both the main and192

G×E interaction effects are significant for the two genes. For gene NCOA5, the G×E interaction effect is193
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Table 1. List of genes with p-value <1 × 10−4 for testing the overall genetic effect.

Gene Symbol Chr nPC nSNP pO
pc pO

spc pI
pc pI

spc pM
pc pM

spc

ANGPT1 8 7 67 1.36 × 10−6 5.24 × 10−6 4.79 × 10−4 2.06 × 10−3 4.67 × 10−4 3.04 × 10−4

NCOA5 20 4 15 7.85 × 10−5 7.34 × 10−5 1.03 × 10−4 1.5 × 10−4 6.41 × 10−3 3.29 × 10−3

nPC refers to the number of PCs that explains >80% variance; nSNP refers to the number of SNPs in
the corresponding gene.

For those sparse PCs (sPCs) in each gene, we further tested the significance of each sPC. The results
show that three out of seven sPCs are significant for gene ANGPT1, and three out of four sPCs are
significant for gene NCOA5. The sparse PCs along with the p-values, and the loadings are given in the
Supplementary File. In the file, we also listed those 67 SNPs in gene ANGPT1 and 15 SNPs in gene
NCOA5 along with the sparse loadings for each SNP.
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As we illustrated earlier, the proposed sparse PCs can ease the interpretation given the sparse
loadings of the PCs. We conducted a single SNP test by fitting the following linear model,

Y = α1U + α2G + α3GU + ε, (2)

where G = {0, 1, 2} is the SNP variable assuming an additive coding. We tested the total SNP effect by
testing: HG

0 : α2 = α3 = 0 and the SNP×E interaction effect by testing H I
0 : α3 = 0. The corresponding

p-values using a likelihood ratio test are denoted as pG and pI and are plotted in Figure 6 for all SNPs
in both genes. We can obtain some insights about the significant sPCs from the results. Take gene
NCOA5 as an example: the testing of a single sPC shows that PC1, PC2 and PC4 are significant at
the 0.05 significance level. When checking the loadings for PC4, only the last three SNPs have large
loadings, and the other SNPs have zero loadings on this PC. Thus, these three SNPs can be represented
by PC4. A single SNP test shows that these three SNPs have the strongest effect among all the SNPs in
terms of both overall and interaction effects (see Figure 6). By the sparse representation of the PCs,
we have nice interpretation about the significance of these sPCs. Note that the single SNP analysis
conducted here is trying to illustrate the idea of the proposed sPCR analysis and to demonstrate
whether non-zero loadings make any practical sense in real analysis.

Figure 7 plots the original birth weight (grey dots), the fitted birth weight for gene ANGPT1
(blue dots) and NCOA5 (red dots) against the transformed glucose level (U). We can see a slightly
increasing trend of fitted birth weight for the two genes as the mother’s glucose level increases. We can
also see a varying pattern of the fitted values against U, indicating potential nonlinear interaction of
the two genes with the mother’s glucose level to affect baby’s birth weight.
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Gene ANGPT1 encodes a secreted glycoprotein that belongs to the angiopoietin family and plays
an important role in vascular development and angiogenesis. SNP rs2507800 in this gene has been
shown to be associated with low birth weight and small-for-gestational-age infants [12]. In our analysis,
this SNP did not show significant association with birth weight. This might be due to the genetic
heterogeneity of birth weight for the analyzed Thai population. However, our gene-based interaction
model did find evidence of association at the gene level with birth weight. Gene NCOA5 has been
shown to be associated with diabetes [13]. Many studies have shown that children born with low birth
weight are associated with increased risk of developing type 2 diabetes (T2D) in adulthood [14].
Several GWAS studies have identified genetic factors associated with T2D and birth weight
(e.g., [15]). As our analysis is focused on the Thai population, different from the previous GWAS
report, it is possible that this gene shows significance only in the Thai population. Further studies
are need to confirm this result. In addition, since we only analyzed genes containing more than two
SNPs, we did not have a comprehensive coverage of all the SNP variants in our analysis. Thus, we
could miss potential signals reported in other work simply because we did not analyze those variants.
Our gene-based interaction analysis indicates the potential importance of these two genes on birth
weight. Follow up studies will be conducted to verify the role of these two genes in other populations.

3. Discussion

Gene-based association analysis has been proposed to identify genes (containing multiple SNP
variants) associated with complex diseases (e.g., [8,9]). Given that genes are the functional units,
identifying a gene-based G×E interaction effect could shed novel insights into the genetic machinery
of complex diseases. Evidenced by empirical studies and motivated by previous nonlinear G×E
interaction models, in this paper, we proposed a varying coefficient model to identify gene-based
gene-environment interactions, in which we allow for nonlinear influences of environmental changes
on genes. We applied the sparse PCA technique to first estimate the sparse loadings of PCs and to
reduce the dimension of SNP variables in a gene. Tests of association and interaction effects were then
done focusing on the sparse PCs. Compared to ordinary PCR analysis, the benefit of sPCR analysis
is that it can trace back to SNP variants associated with the significant PCs by checking the loading
estimates. As shown in the real data analysis, we achieved nice interpretation of the sparse PCs with
relative importance on the corresponding SNPs carrying nonzero loadings. This nice interpretation
cannot be achieved by a regular PCR analysis without shrinking the loadings.

We applied nonparametric B-spline technique to estimate the varying coefficients of sparse PCs.
By changing the spline basis functions, the model allows one to separate the main and interaction
effects, thus allowing easy hypothesis testing of different genetic effects. In addition, the nonparametric
technique allows one to estimate the true effect according to the data while no specific structures (such
as linear) are assumed. This flexible feature is important in model fitting in real applications given that
the true functional form is generally unknown.

Note that the proposed method is to capture any potential nonlinear G×E effect. As shown in [7],
estimating a nonlinear function with nonparametric techniques could result in lower power compared
to fitting a linear function, if the true function is linear. However, when the true interaction function
is nonlinear, fitting a linear model could suffer tremendously from power loss as compared with
fitting a nonlinear function. In practice, one should do a model goodness-of-fit test first, then decide
which model to fit. This can be easily done by testing the linearity of the nonparametric function,
i.e., by testing H0 : β(U) = γ0 + γ1U using a likelihood ratio test (see [7] for details). Some genes may
show linear interaction effects and some may show nonlinear interaction effects. The final results of
significant genes should be a combined list from both analyses.

We applied the proposed VC-sPCR model to detect gene effects in a genome-wide scale.
The computation is quite fast given the number of genes is much smaller than the number of SNPs.
By focusing on genes as testing units, our model is biologically meaningful and statistically attractive.
The sparse loadings of the identified PCs also enjoy nice interpretation property. Our method can be
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further viewed as a systems genetic approach by assessing the effect of variants in a gene as a whole.
It can be easily extended to model genes in a pathway and identify pathway-environment interaction
effects from a systems genetics perspective.

In the real data analysis, we identified one gene that passed the genome-wide significance level
and found one suggestive gene. The results of single SNP based analysis (Figure 6) agree with the
non-zero loadings of the identified sPCs. Based on our model, if a sparse PC is statistically significant,
then SNPs with non-zero loadings in that sPC should be important and contribute to the effect of
the sPC. Figure 6 matches the results in the supplemental file very well. The real data analysis
demonstrates the utility of the proposed method. However, one has be to cautious about the statistical
significance and biological significance. Further experimental validation is needed to confirm that the
identified gene(s) has(have) real biological meaning.

4. Methods and Materials

4.1. The Model

Let Y be a complex quantitative trait. Consider a gene which contains p SNP variants, denoted by
G = (G1, · · · , Gp)T . Let U denote an environmental variable that is continuously measured. We further
assume that U (non)linearly modifies the gene effect to affect Y. Following [7], the relationship between
Y and {G, U} can be modeled by the following additive varying coefficient (VC) model, i.e.,

Y =
p

∑
j=0

β j(U)Gj + ε, (3)

where G0 is a column of 1s. The varying coefficients β j(·) are typically estimated through
nonparametric techniques such as B-splines. With the spline expansion, the number of unknown
parameters for each β(U) can be large depending on the number of interior knots and the spline order.
To assess the gene effect, one can test H0 : β1(·) = · · · = βp(·) = 0.

Given that the number of SNP variables in a gene could be large, model (3) could easily run into
the issue of “curse of dimensionality". In addition, the large number of parameters could end up with
a large degree of freedom, hence reduced power to detect the interaction effect. One solution to this
problem is to do a principal component analysis for SNPs in a gene to reduce the SNP dimension.
Let W1, · · · , Wp denote the principal components that are linear combinations of the original U
variables. By selecting the first K PCs, which explain ≥ 80% of the total variance, the model (3) can be
rewritten as:

Y = β0(U) +
K

∑
k=1

βk(U)Wk + ε. (4)

PCA based analysis has been proposed to assess the association of an SNP set [16]. Due to linkage
disequilibrium among SNPs within a gene, a PCA analysis can substantially reduce the dimension
of a gene. However, the PCA based dimension reduction method faces the issue of interpretability.
For example, if some PCs are significantly associated with the trait Y, how one can tell which SNPs
contribute to the significant effect of the corresponding PCs. To aid the interpretation of the results,
we propose to conduct a sparse PCA analysis first. Let W̃1, · · · , W̃K denote the first K sparse principal
components, then model (4) can be rewritten as,

Y = β0(U) +
K

∑
k=1

βk(U)W̃k + ε. (5)

Then, testing gene association modified by the environmental variable U can be formulated
as H0 : β1(·) = · · · = βK(·) = 0 based on model (5). We refer model (4) as the varying-coefficient
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principal component regression (VC-PCR) model and model (5) as the varying-coefficient sparse
principal component regression (VC-sPCR) model.

Methods for sparse PCA (sPCA) have been developed [17–19]. They all implement a penalized
method to shrink the PC loadings. sPCA has been applied to genetic association studies to identify
ancestry-informative markers [20]. Here, we apply the R package elasticnet to get the sparse PCs
W̃k, k = 1, · · · , K. The results of the sPCA algorithm is a list of PCs with sparse loadings. That is,
unimportant SNPs will have zero loadings in the corresponding sPC, and the size of the loadings will
tell the relative importance of the SNP in that sPC.

4.2. Parameter Estimation

We do not specify any structure for the smooth functions {βk(·)}K
k=0 in model (5); rather, we

estimate them with nonparametric techniques. Without loss of generality, suppose that U ∈ [0, 1].
This can be achieved in real data by performing a data transformation for U if it is not uniformly
distributed. Let δk be a partition of the interval [0,1], with kn uniform interior knots

δk = {0 = δk,0 < δk,1 < . . . < δk,kn < δk,kn+1 = 1}, for k = 0, · · · , K.

Let Fn be a collection of functions on [0,1] satisfying: (1) the function is a polynomial of degree r
or less on subintervals Is = [δk,s, δk,s+1), s = 0, . . . , kn − 1 and Ikn = [δj,kn , δj,kn+1); and (2) the functions
are r− 1 times continuously differentiable on [0,1]. Let B̃(·)k = {B̃kl(·)}L

l=1 be a set of normalized B
spline basis in Fn. Then, for k = 0, . . . , K, the VC functions can be approximated by basis functions
βk(U) ≈ ∑L

l=1 λ̃kl B̃kl(U), where L is the number of basis functions in approximating the function
βk(U). With the spline expansion, model (5) becomes

Y =
L

∑
l=1

λ0l B̃0l(U) +
K

∑
k=1

L

∑
l=1

λkl B̃kl(U)W̃k + ε. (6)

Let λ = (λ0, · · · , λK)
T where λk = (λk1, · · · , λkL)

T , k = 0, 1, · · · , K, and B̃(u) = (B̃1(u), · · · , B̃L(u))T .
By Schumaker [21], there exists a transformation matrix Γ such that ΓB̃ = (1, B̄T)T . Let B = ΓB̃. We can
rewrite the coefficients to be βk(U) ≈ ∑L

l=1 λkl Bkl(U) = λk1 + B̄Tλk∗, where λk∗ = (λk2∗, · · · , λkL∗)T .
By doing the transformation, the function βk(U) is partitioned into two parts, one for a constant and
one for a nonlinear function. Thus, model (6) can be rewritten as:

Y =
L

∑
l=1

λ0l B̃0l(U) +
K

∑
k=1

λk1W̃k +
K

∑
k=1

L

∑
l=1

λkl∗ B̄kl(U)W̃k + ε. (7)

Let λ = (λT
0 , · · · , λT

K)
T , where λk = (λk1, λT

k∗)
T . Note that λk1 corresponds to the constant

part of coefficient and λk∗ corresponds to the varying part. Model (7) has nice interpretation since
λk1, k = 1, · · · , K, gives the main effect of the kth sparse PC, and λk∗ gives the corresponding (non)linear
G×E interaction effect. Inference based on λk1 and λk∗ can be done to assess if there is main genetic
effect as well as G×E interaction effect.

Based on model (7), a least-squares technique can be applied to estimate the unknown parameters
λ. The B-spline coefficients λ can be estimated by

λ̂ = arg min
λ

R(λ),

where R(λ) = ∑n
i=1

[
Yi −∑L

l=1 λ0l B̃0l(Ui)−∑K
k=1 λk1W̃ik −∑K

k=1 ∑L
l=1 λkl∗ B̄kl(Ui)W̃ik

]2
. When the

number of PCs is relatively large, it is computationally infeasible to select both the number of interior
knots (N) and the order of basis function (r) for each PC. Therefore, we first select N based on the
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marginal function β0(u). Bayesian Information Criterion (BIC) is used to select N and r with the
marginal only model E[Y|X, U] = β0(U). Specifically, we minimize the following criterion:

(N, r) = arg min
N∈{2,3,4,5},r∈{1,2,3}

log(n−1RSS(λ̌0)) + n−1 log(n)(N + r),

where RSS(λ̌0) = ∑n
i=1{Yi − β̌0(Ui)}2, and β̌0(u) is the estimate based on model E[Y|X, U] = β0(U).

The selected knots N is then fixed when estimating functions βk(·), k = 1, · · · , K, to save computational
time. We use the similar BIC criterion to select the order of basis function when estimating each function
βk(·), k = 1, · · · , K.

4.3. Hypothesis Testing

Once the parameters are estimated, we proceed to test if there is a gene effect associated with the
disease trait by testing the hypothesis H0 : β1(·) = · · · = βK(·) = 0. This is equivalent to test

HO
0 : λ1 = · · · = λK = 0 v.s. HO

1 : at least one is not equal zero. (8)

We term this test as the overall gene effect test. We adopt the log-likelihood ratio test (LRT) to
conduct the hypothesis testing. Under HO

0 , we can estimate λ0 by

λ̂0 = arg min
λ0

R(λ0),

where R(λ0) = ∑n
i=1
[
Yi − B(Ui)

Tλ0
]2. The LRT is defined as LO = −2(`0(λ̂0)− `1(λ̂)), where `1(λ̂)

is the log-likelihood under the full model. LO asymptotically follows a χ2-distribution with KL degrees
of freedom. Failure to reject HO

0 indicates that the effects on Y are not significant. Note that, although
our main interest is to assess the significance of G×E effect, testing the overall gene effect is the first
step to start with. Only when the above null hypothesis is rejected, one continues to the next step to
test the significance of G×E effect, as stated in the following.

If one rejects HO
0 , it implies that the gene is significantly associated with the trait Y. To further

assess if a significant G×E interaction effect exists, we propose to test the following hypothesis:

H I
0 : λ1∗ = · · · = λK∗ = 0 v.s. H I

1 : at least one is not equal zero. (9)

Again, a likelihood ratio test is applied which asymptotically follows a χ2
K(L−1) distribution. If H I

0
is rejected, then one can proceed to test which component is significant by applying the same likelihood
ratio test idea. Failure to reject H I

0 indicates no significant gene-based G×E interaction.
One can also test if a main gene effect on the trait Y exists by testing the hypothesis: HM

0 :
λ11 = · · · = λ1K = 0. Failure to reject the null indicates no significant main effect of the tested gene.
Otherwise, one can proceed with assessing which PC has a significant main effect.

Remark 1. With the sparse loadings of each PC, we have a nice interpretation of the results. For example,
suppose the first PC has a significant main and interaction effect after testing HM

0 and H I
0. Then, we

can go back to check the loadings of each SNP in that PC. Since only SNPs with non-zero loadings
contribute to the PC, it implies that they are associated with the trait Y. Based on the loadings of
the significant sPCs, we can make interpretation of the gene result by tracing back to individual
SNPs. A regular PCR analysis will not lead to this nice interpretation in terms of individual SNP effects.

5. Conclusions

We proposed a gene-based nonlinear gene-environment interaction model. The model treats each
gene as a unit to identify how an environmental variable nonlinearly modifies a gene effect to affect
disease risk. In addition, we incorporated the sparse PCA analysis into the gene model, hence the
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sparse coefficient loadings imply the relative contribution of individual SNPs. With the method, one
can do: (1) a gene based G×E analysis; (2) identify the relative contribution of single SNPs in each
gene; and (3) detect any potential nonlinear G×E effect. Our method provides a testable framework to
understand G×E interaction from a gene-centric perspective.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
6/882/s1
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BIC Bayesian Information Criterion
G×E Gene-environment interaction
GWAS Genome-wide association study
OGTT oral glucose tolerance test
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LRT Likelihood ratio test
MAF Minor allele frequency
PCR Principal components regression
SNP Single nucleotide polymorphism
SNP×E SNP by environment interaction
sPC Sparse principal components
T2D Type 2 diabetes
VC Varying coefficient
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