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Abstract: Protein-Protein Interactions (PPIs) play essential roles in most cellular processes.
Knowledge of PPIs is becoming increasingly more important, which has prompted the development
of technologies that are capable of discovering large-scale PPIs. Although many high-throughput
biological technologies have been proposed to detect PPIs, there are unavoidable shortcomings,
including cost, time intensity, and inherently high false positive and false negative rates. For the
sake of these reasons, in silico methods are attracting much attention due to their good performances
in predicting PPIs. In this paper, we propose a novel computational method known as RVM-AB
that combines the Relevance Vector Machine (RVM) model and Average Blocks (AB) to predict PPIs
from protein sequences. The main improvements are the results of representing protein sequences
using the AB feature representation on a Position Specific Scoring Matrix (PSSM), reducing the
influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector
Machine (RVM) based classifier. We performed five-fold cross-validation experiments on yeast and
Helicobacter pylori datasets, and achieved very high accuracies of 92.98% and 95.58% respectively,
which is significantly better than previous works. In addition, we also obtained good prediction
accuracies of 88.31%, 89.46%, 91.08%, 91.55%, and 94.81% on other five independent datasets C. elegans,
M. musculus, H. sapiens, H. pylori, and E. coli for cross-species prediction. To further evaluate the
proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier
on the yeast dataset. The experimental results demonstrate that our RVM-AB method is obviously
better than the SVM-based method. The promising experimental results show the efficiency and
simplicity of the proposed method, which can be an automatic decision support tool. To facilitate
extensive studies for future proteomics research, we developed a freely available web server called
RVMAB-PPI in Hypertext Preprocessor (PHP) for predicting PPIs. The web server including source
code and the datasets are available at http://219.219.62.123:8888/ppi_ab/.

Keywords: relevance vector machine; average blocks; PSSM; protein sequence

1. Introduction

Proteins are fundamental molecules of living organisms that participate in nearly all cell functions
in an organism. Protein-protein interactions (PPIs) play an essential role in many biological processes.
Thus, detection the interactions of proteins become more and more important. Knowledge of PPIs can
provide insight into the molecular mechanisms of biological processes, lead to a better understanding
of disease mechanisms, and suggest novel methods for practical medical applications. In recent years,
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a number of high-throughput technologies, such as immunoprecipitation [1], protein chips [2], and
yeast two-hybrid screening methods [3,4], have been developed for detecting the large-scale PPIs.
However, there are some disadvantages of these experimental approaches, such as time-intensiveness
and high cost. In addition, the aforementioned methods suffer from high rates of false positives and
false negatives. For these reasons, predicting unknown PPIs is considered a difficult task using only
biological experimental methods. Therefore, there is a stronger motivation to exploit computational
methods for PPIs.

As a result, a number of computational methods have been proposed to infer PPIs from different
sources of information, including tertiary structures, phylogenetic profiles, protein domains, and
secondary structures. However, these approaches cannot be employed when prior-knowledge about
a protein of interest is not available. With the rapid growth of protein sequence data, the protein
sequence-based method is becoming the most widely used tool for predicting PPIs. Consequently,
a number of protein sequence-based methods have been developed for predicting PPIs. For example,
Martin et al. proposed the method that uses a novel descriptor called signature product to predict
PPIs [5]. The descriptor is extended to protein pairs by using signature product. The signature product
is implemented within a support vector machine (SVM) classifier as a kernel function. Nanni and
Lumini [6] used the method based on an ensemble of K-local hyperplane distance nearest neighbor
(HKNN) classifiers to predict PPIs, where each classifier is trained using a different physicochemical
property of the amino acids. Bock and Gough [7] proposed a method that an SVM is used and combined
with several structural and physiochemical descriptors to predict PPIs. Chou and Cai [8] used the
approach based on the gene ontology and the approach of pseudo-amino acid composition, where
a predictor called “GO-PseAA” predictor was established to predict PPIs. Shen et al. [9] proposed a
method based on a support vector machine (SVM) combined with a kernel function and a conjoint
triad feature for describing amino acids to infer human PPIs. Guo et al. [10] proposed a sequence-based
method that used a support vector machine (SVM) combined with feature representation of auto
covariance (AC) descriptor to predict yeast PPIs. Chen et al. [11] used a domain-based random forest of
decision trees to infer protein interactions. Licamele and Getoor [12] proposed several novel relational
features, where they used a Bagging algorithm to predict PPIs. Several other methods based on protein
amino acid sequences have been proposed in previous works. In spite of this, there is still space to
improve the accuracy and efficiency of the existing methods.

In this paper, a novel computational method was proposed, which can be used to predict PPIs
using only protein sequence data. The main aim of this study is to improve the accuracy of predicting
PPIs. The main improvements are the results of representing protein sequences using the Average
Blocks (AB) feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence
of noise by using a Principal Component Analysis (PCA), and using a Relevance Vector Machine
(RVM) based classifier. More specifically, we first represent each protein using a PSSM representation.
Then, an Average Blocks (AB) descriptor is employed to capture useful information from each protein
PSSM and generate a 400-dimensional feature vector. Next, dimensionality reduction method PCA is
used to reduce the dimensions of the AB vector and the influence of noise. Finally, the RVM model is
employed as the machine learning approach to carry out classification. The proposed method was
executed using two different PPIs datasets: yeast and Helicobacter pylori. The experimental results
are found to be superior to SVM and other previous methods. In addition, cross-species experiments
were also performed on five independent datasets C. elegans, M. musculus, H. sapiens, H. pylori, and
E. coli. Thus, we also obtained good prediction accuracy in the cross-species experiments. The achieved
results show that the proposed method is fit for predicting PPIs. These experimental results prove that
the proposed method performs incredibly well in predicting PPIs.
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2. Results and Discussion

2.1. Performance of the Proposed Method on Yeast and H. pylori Datasets

In the paper, to prevent the over-fitting of the proposed prediction model and test the reliability
of our proposed method, five-fold cross validation was applied in our experiment. More specifically,
the whole dataset was divided into five parts; four parts of them were employed for the training
model, and one part of them was used for testing. We obtained five models from the yeast and
Helicobacter pylori datasets by using the above mentioned method, and each model was executed alone
in the experiment. In order to ensure fairness, the related parameters of the RVM model were set up
the same for the two different datasets, yeast and Helicobacter pylori. Here, we selected the “Gaussian”
function as the kernel function and choose the following parameters: width = 1 initapla = 1/N2, and
beta = 0, where width represent the width of the kernel function, N is the number of training samples,
and the value of beta was defined as zero, which represents classification. The experimental results of
the prediction models of the RVM classifier combined with Average Blocks and the Position Specific
Scoring Matrix and principal component analysis based on the information of protein sequence on
yeast and Helicobacter pylori datasets are listed in Tables 1 and 2.

Table 1. Five-fold cross validation results shown using our proposed method on yeast dataset.
Ac: Accuracy; Sn: Sensitivity; Pe: Precision; Mcc: Matthews’s correlation coefficient.

Testing Set Ac (%) Sn (%) Pe (%) Mcc (%)

1 93.12 92.46 93.64 87.18
2 94.32 94.77 94.02 89.29
3 92.00 92.21 91.96 85.28
4 92.00 91.38 92.14 85.26
5 93.48 93.11 93.94 87.11

Average 92.98 ˘ 0.99 92.79 ˘ 1.2 93.14 ˘ 1.00 86.82 ˘ 1.66

Table 2. Five-fold cross validation results shown using our proposed method on H. pylori dataset.

Testing Set Ac (%) Sn (%) Pe (%) Mcc (%)

1 95.54 97.53 93.56 91.47
2 95.71 94.70 96.95 91.79
3 97.08 97.25 96.92 94.34
4 94.17 94.14 93.45 88.98
5 95.38 94.50 96.69 91.16

Average 95.58 ˘ 1.0 95.62 ˘ 1.6 95.51 ˘ 1.83 91.55 ˘ 1.91

When performing the proposed method on the yeast dataset, we achieved the prediction results
of average accuracy, precision, sensitivity, and Matthews’s correlation coefficient (Mcc) of 92.98%,
93.14%, 92.79%, and 86.82%. The standard deviations of these criteria values were 0.99%, 1.00%,
1.2%, and 1.66%, respectively. Similarly, we also gained good prediction results of average accuracy,
precision, sensitivity, and MCC of 95.58%, 95.51%, 95.62%, and 91.55% on the Helicobacter pylori dataset.
The standard deviations of these criteria values were 1.00%, 1.83%, 1.60%, and 1.91%, respectively.

It can be seen from Tables 1 and 2 that these experiment results demonstrated that the proposed
method is accurate, robust, and effective for predicting PPIs. The better performance of prediction
PPIs may be attributed to the feature extraction and the choice of classifier of the proposed method.
The feature extraction is novel and effective, and the choice of the classifier is accurate. The proposed
feature extraction method contains three data processing steps. First, the PSSM matrix not only
describes the order information for the protein sequence but also retains sufficient prior information;
thus, it is widely used in other proteomics research. As a result, we converted each protein sequence to
a PSSM matrix that contains all the useful information from each protein sequence; Second, because
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Average Blocks method based on the residue conservation tendencies in the same domain family
are similar and the locations of domains in the same family are closely related to the length of the
sequence, information can be effectively captured from the PSSMs using the Average Blocks method;
Finally, while meeting the condition of maintaining the integrity of the information in the PSSM,
we reduced the dimensions of each AB vector and reduced the influence of noise using principal
component analysis. Consequently, the sample information that was extracted using the proposed
feature extraction method is very suitable for predicting PPIs.

2.2. Comparison with the Support Vector Machine (SVM)-Based Method

Although our results suggest that the proposed method can obtain good prediction results, to
further evaluate the effectiveness of the proposed approach, we compared the prediction accuracy
of the proposed method with that of the state-of-the-art support vector machine (SVM) classifier.
More specifically, we compared the classification performances between SVM and RVM model on
the yeast dataset by using the same feature extraction method. The LIBSVM tool [13] was employed
to carry out classification in SVM. A grid search method was used to optimize the corresponding
parameters of SVM(c = 0.9, g = 0.6). At the same time, we used a radial basis function as the kernel
function in the experiment.

The prediction results of the SVM and RVM methods are summarized in Table 3 on the yeast
dataset, and the Receiver Operating Curve (ROC) curves are displayed in Figure 1. From Table 3,
the prediction results of the SVM method achieved 85.49% average accuracy, 85.52% average sensitivity,
85.39% average precision, and 75.20% average Mcc, while the prediction results of the RVM method
achieved 92.98% average accuracy, 92.79% average sensitivity, 93.14% average precision, and 86.82%
average Mcc. The comparison verified that the RVM classifier is significantly better than the SVM
classifier. In addition, the ROC curves were analyzed in Figure 1, showing that the ROC curve of the
RVM classifier is variously better than that of the SVM classifier. This clearly indicates that the RVM
classifier of the proposed method is an accurate and robust classifier for predicting PPIs. There are
two possible reasons that the RVM classifier yields significantly better prediction results than the SVM
classifier. (1) RVM has a computational advantage that the calculation amount of the kernel function is
greatly reduced; (2) RVM overcomes the shortcoming of the kernel function being required to satisfy
the condition of Mercer. Because of these reasons, the RVM classifier is significantly better than the
SVM classifier. At the same time, we concluded that the proposed method can gain the high prediction
accuracy for PPIs.
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Figure 1. Comparison of Receiver Operating Curve (ROC) curves performed between Relevance Vector
Machine (RVM) and support vector machine (SVM) on yeast dataset.
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Table 3. Five-fold cross validation results shown using our proposed method on yeast dataset.
SVM: Support Vector Machine; PSSM: Position Specific Scoring Matrix; AB: Average Blocks;
RVM: Relevance Vector Machine.

Testing Set Ac (%) Sn (%) Pe (%) Mcc (%)

SVM + PSSM + AB

- 84.49 84.65 84.27 73.79
- 87.22 88.04 86.81 77.69
- 84.09 84.41 84.11 73.23
- 85.47 85.05 85.12 75.15
- 86.16 85.47 86.63 76.15

Average 85.49 ˘ 1.26 85.52 ˘ 1.46 85.39 ˘ 1.28 75.20 ˘ 1.80

RVM + PSSM + AB

- 93.12 92.46 93.77 87.18
- 94.32 94.77 93.86 89.29
- 92.00 92.21 91.79 85.28
- 92.00 91.38 92.59 85.26
- 93.48 93.11 93.86 87.11

Average 92.98 ˘ 0.99 92.79 ˘ 1.2 93.14 ˘ 1.00 86.82 ˘ 1.66

2.3. Performance on Independent Dataset

Since reasonably good prediction results have been yielded by using the proposed method for
predicting PPIs, we switched to evaluate its prediction performance on five other independent datasets.
It is known that the biological hypothesis of mapping PPIs from one species to another species is
that a large number of physically interacting proteins in one organism have “coevolved” so that their
respective orthologues in other organisms interact as well. Consequently, we used the train prediction
model of the yeast dataset to predict PPIs on five other independent datasets using our prediction
model. In the experiment, we selected all 11188 protein pairs of yeast dataset as the training dataset
and choose the function “Gauss” as the kernel function and set the optimal parameters “width = 7,
initapla = 1/N”. We also used the feature extraction based on PSSM combined with Average Blocks
and Principal Component Analysis to convert protein pairs of the other five independent datasets into
feature vectors that were employed as the testing datasets of RVM classifier. The prediction results of
the five cross-species experiments are shown in Table 4. It can be seen from Table 4 that the proposed
prediction model obtained good prediction accuracy of 88.31%, 89.46%, 91.08%, 91.55%, and 94.81% on
C. elegans, M. musculus, H. sapiens, H. pylori, and E. coli dataset, respectively. It shows that the Meta
model has the ability to predict well the PPIs of five independent datasets with the accuracy of over
88.31%, while the high accuracy of 94.81% has been achieved on E. coli dataset.

Table 4. Prediction performance on five species based on our model. PPV: Positive Predictive Value;
NPV: Negative Predictive value; F1: F-Score.

Testing Set Ac (%) Sn (%) PPV (%) NPV (%) F1 (%)

H. pylori 91.55 91.55 100% 0 95.59
M. musculus 89.4 89.46 100% 0 94.44

H. sapiens 91.08 91.08 100% 0 95.33
E. coli 94.81 94.81 100% 0 97.34

C. elegans 88.31 88.31 100% 0 93.79

Interestingly, through these experiment results, it can be proved that the yeast dataset is able to
predict the PPIs of other species. In addition, we can find that our prediction model has a strong ability
to predict PPIs. The proposed model can be used to discover the organisms whose PPIs data are not
available and provided certain assistance for further research.
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2.4. Comparison with Other Methods

A number of prediction methods based on protein sequences for PPIs have been proposed.
To evaluate the effectiveness of our propose method, we compared the prediction ability of our
proposed method with existing methods on yeast and Helicobacter pylori datasets, respectively. It is
shown in Table 5 that five different ways obtained an average prediction accuracy between 75.08%
and 89.33% on the yeast dataset, while the proposed method achieved the average prediction accuracy
of 95.58%, which obviously higher than that of other five different methods. Similarly, the precision
and sensitivity of our proposed method are also superior to those of the other methods. The average
prediction accuracy between the five different ways and the proposed method on the Helicobacter pylori
dataset is displayed in Table 6. From Table 6, we can see that the average prediction accuracies of
other five different methods are between 83% and 87.5%. None of these methods obtains higher
prediction accuracy than that of 92.68% of our proposed method. It is obvious from Tables 5 and 6
that the proposed method yielded significantly better prediction results than other existing methods.
All these results indicate that the RVM classifier combined with average blocks and the position
specific scoring matrix and principal component analysis can improve the prediction accuracy relative
to current state-of-the-art methods. Due to using a correct classifier and a novel feature extraction
method that captures the useful evolutionary information, thus, the proposed method can gain high
prediction accuracy.

Table 5. Predicting ability of different methods on the yeast dataset. ACC: Auto Covariance; LD: Local
Description; PCA: Principal Component Analysis; EELM: Ensemble Extreme Learning Machines;
N/A: No Available.

Model Testing Set Ac (%) Sn (%) Pe (%) Mcc (%)

Guos’ work [10]
ACC 89.33 ˘ 2.67 89.93 ˘ 3.60 88.77 ˘ 6.16 N/A
AC 87.36 ˘ 1.38 87.30 ˘ 4.68 87.82 ˘ 4.33 N/A

Zhous’ work [14] SVM + LD 88.56 ˘ 0.33 87.37 ˘ 0.22 89.50 ˘ 0.60 77.15 ˘ 0.68

Yangs’ work [15]

Cod1 75.08 ˘ 1.13 75.81 ˘ 1.20 74.75 ˘ 1.23 N/A
Cod2 80.04 ˘ 1.06 76.77 ˘ 0.69 82.17 ˘ 1.35 N/A
Cod3 80.41 ˘ 0.47 78.14 ˘ 0.90 81.66 ˘ 0.99 N/A
Cod4 86.15 ˘ 1.17 81.03 ˘ 1.74 90.24 ˘ 1.34 N/A

Yous’ work [16] PCA-EELM 87.00 ˘ 0.29 86.15 ˘ 0.43 87.59 ˘ 0.32 77.36 ˘ 0.44

Proposed method RVM 92.98 ˘ 0.99 92.79 ˘ 1.2 93.14 ˘ 1.00 86.82 ˘ 1.66

Table 6. Predicting ability of different methods on the H. pylori dataset.

Model Ac (%) Sn (%) Pe (%) Mcc (%)

Nanni [17] 83 86 85.1 N/A
Nanni [18] 84 86 84 N/A

Nanni and Lumini [6] 86.6 86.7 85 N/A
Z-H You [16] 87.5 88.95 86.15 78.13
L Nanni [18] 84 84 86 N/A

Proposed method 95.58 95.62 95.51 91.55

3. Experimental Section

3.1. Dataset

In the paper, we evaluated the proposed method using seven publicly available datasets yeast,
H. pylori, C. elegans, E. coli, H. sapiens, and M. musculus. Yeast and Helicobacter pylori are composed of
positive datasets and negative datasets, the rest five datasets only consist of positive datasets. All the
datasets were obtained from the Database of Interaction Proteins (DIP). In order to better execute
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the proposed method, 5594 positive protein pairs were selected to build the positive pairs dataset
and 5594 negative protein pairs build the negative pairs dataset from the yeast dataset. Similarly,
we selected 1458 positive protein pairs to build the positive pairs dataset and 1458 negative protein
pairs to build the negative pairs dataset from the H. pylori dataset. Consequently, the yeast dataset
contains 11,188 protein pairs and the H. pylori dataset contains 2916 protein pairs. For the other
five independent datasets only contains positive dataset, we selected 4013, 6954, 1420, 1412, and
313 positive protein pairs from C. elegans, E. coli, H. pylori, H. sapiens, and M. musculus, respectively.

3.2. Position Specific Scoring Matrix

Position Specific Scoring Matrix (PSSM) was first used to detect distantly related proteins, which
can be created from a set of sequences proteins [19]. A Position Specific Scoring Matrix (PSSM) for
a query protein is a Mˆ 20 matrix Y “

 

Yij : 1 “ 1 . . . M, j “ 1 . . . 20
(

, where M is the length of the
protein sequence, and 20 represents the 20 amino acids. The PSSM assigns a score Yij for the jth amino
acid in the ith position of the given protein sequence. The score Yij of the position of a given protein
sequence can be expressed as Yij “

ř20
k“1 p pi, kq ˆ q pj, kq, where p pi, kq is the ratio of the frequency of

the kth amino acid appearing at position i of the probe to be the total number of probes, and q(j,k) is
the value of Dayhoff’s mutation matrix between the jth and kth amino acids. As a result, a large score
represents a highly conserved position and a small score represents a weakly conserved position.

It is useful for PSSMs to predict protein quaternary structural attributes, disulfide connectivity,
and folding patterns [20–23]. Here, we also use PSSMs to predict PPIs. In this work, we used the
Position Specific Iterated BLAST (PSI-BLAST) [24] to build PSSMs for each protein sequence. In order
to obtain broadly and highly homologous sequences, the default value of PSI_BLAST were chosen,
that is, the e-value parameter was set as 0.001 and three iterations were selected in the proposed
method. The resulting PSSMs can be represented as 20-dimensional matrices. Each matrix is composed
of L ˆ 20 elements, where L is the total number of residues in a protein. The rows of the matrix
represent the protein residues, and the columns of the matrix represent the 20 amino acids.

3.3. Average Blocks

The characteristics of the Average Blocks (AB) was originally described in the literature [25].
Because of each protein has different numbers of amino acids, we cannot directly transform the
PSSMs to feature vectors, which will lead to different sizes of feature vectors. To solve the problem,
the features are averaged over a local region in PSSMs, which is called as averaged PSSM profile over
blocks (Average Blocks), each with 5 percent of a protein sequence. Thus, regardless of the length of a
protein sequence, a protein sequence is divided into 20 blocks and every block composes 20 features
derived from the 20 columns in PSSMs by using the feature extract method [21]. Related mathematical
formula is as follows:

AB pkq “ 20
N

N
20
ř

p“1
Mtpp` pi´ 1q ˆ N

20 , jq

i “ 1, . . . , 20; j “ 1, . . . , 20; k “ j` 20 ˆ pi´ 1q ,

(1)

where N
20 represents the size of the jth block, which is 5 percent of the length of a sequence.

Where Mt
´

p` pi´ 1q ˆ N
20 , j

¯

is defined as a 1ˆ 20 vector extracted from the PSSM profile at the
ith positon in the jth block. As a result, each sequence has 20 blocks and can be expressed as a
400-dimensional vector by using the method of Average Blocks. The rationale behind Average Blocks
is that the residue conservation tendencies in the same domain family are similar, and the locations of
domains in the same family are closely related to the length of the sequence [25]. In the paper, finally,
each protein sequence of seven datasets was converted into a 400-dimensional vector by using the
feature extraction method of Average Blocks.
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3.4. Principal Component Analysis

Principal component analysis (PCA) is a useful tool to process data. It can analyze the main
influencing factors from multiple dimensional datasets and simplify the complex problems. In this
way, high-dimensional data can be projected to lower dimensions by computing principal components,
which can retain the main information of the original dataset and wipe off the useless information
of the original dataset. The useless information called the noise. The basic fundamental of PCA is
as follows:

A multivariate dataset can be represented as the following matrix P:

P “

¨

˚

˝

p p1q
. . .

p pNq

˛

‹

‚

, p ptq “ rp1 ptq . . . ps ptqs , qt “ 1, . . . Nq (2)

where s is the count of variables, and N is the number of sampling of each variable. PCA is closely
related to singular value decomposition (SVD) of matrix and the singular value decomposition of
matrix P as follows:

P “
s
ÿ

i“1

xiyizT
i (3)

where zi represents feature vector of PT P and yi represents feature vector of PPT, and xi is a singular
value. If there are m linear relationships between s variables, then the m singular value is zero. Any row
of P can be expressed as feature vector pq1, q2, . . . , qkq

PT ptq “
k
ÿ

i“1

xiyizi “
k
ÿ

i“1

ri ptq qi (4)

where ri ptq “ p ptq qi is the of projection p ptq on qi, feature vector pq1, q2, . . . , qkq is load vector,
and ri ptq is score.

When there is a certain degree of linear correlation between the variables of matrix, then the
projection of final several load vectors of matrix X will be small enough, resulting from measurement
noise. As a result, the principal decomposition of matrix X represented by

P “ r1qT
1 ` r2qT

2 ` . . .` rkqT
k ` E (5)

where E is a noise matrix and can be ignored. This does not result in the obvious loss of useful
information of dataset.

As a result, when large multivariate datasets are analyzed, PCA is often desirable to reduce
their dimensionality, which can integrate the useful information and reduce the influence of noise for
improving the efficiency of data processing. In this paper, in order to reduce the influence of noise
and improve the prediction accuracy, we reduce dimensions of the seven datasets from 400 to 350 in
the proposed method by using PCA. It can be seen from Table 7 that PCA significantly improves the
prediction accuracy by integrating the useful information and reducing the influence of noise.

Table 7. Five-fold cross validation results shown using our proposed method on yeast dataset.

Dataset Testing Set Ac (%)

The Original Dataset

1 87.66
2 88.16
3 87.17
4 87.84
5 85.92

The Dataset Processed
by Using PCA

1 93.12
2 94.32
3 92.00
4 92.00
5 93.48
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3.5. Relevance Vector Machine

The related theory of the Relevance Vector Machine (RVM) model has been described in detail in
the literature [26]. It is assumed that the training sample sets are tan, tnu

N
n“1 for binary classification

problems, an P Rd is the training sample, tn P t0, 1u represents the training sample label, ti represents
the testing sample label, and ti “ bi ` εi, where bi “ wT ϕ paiq “

řN
j“1 wjK

`

ai, aj
˘

`w0 is classification
prediction model; εi is additional noise, with a mean value of zero and a variance of σ2, where
εi „ N

`

0, σ2˘ , ti „ N
`

bi, σ2˘. Assuming that the training sample sets are independent and identically
distributed, the observation of vector t obeys the following distribution:

m
´

t
ˇ

ˇ

ˇ
a, c, σ2

¯

“

´

2πσ2
¯´N{2

expr´
1

2σ2 ||t´ Bc||2s (6)

where B is defined as follows:

B “

¨

˚

˝

1 k pa1, a1q ¨ ¨ ¨ k pa1, aNq

. . . . . . . . .
1 k paN , a1q . . . k paN , aNq

˛

‹

‚

(7)

The RVM uses sample label t to predict the label t˚ of the testing sample, given by

m pt˚|tq “
ż

p
´

t˚
ˇ

ˇ

ˇ
c, σ2

¯

ppc, σ2|tqdwdσ2 (8)

In order to make the value of most components of the weight vector w zero and reduce the
computational work of the kernel function, the weight vector w is subjected to additional conditions.
Assuming that ci obeys a distribution with a mean value of zero and a variance of x´1

i , the mean

ci „ N
´

0, x´1
i

¯

, p pw|xq “
śN

i“0 ppci|xiq, where x is a hyper-parameters vector of the prior
distribution of the weight vector c.

m pt˚|tq “
ż

p
´

t˚
ˇ

ˇ

ˇ
w, x, σ2

¯

ppc, x, σ2|tqdwdadσ2 (9)

m
´

t˚
ˇ

ˇ

ˇ
c, x, σ2

¯

“ N
´

t˚
ˇ

ˇ

ˇ
b pa˚; cq , σ2q (10)

Because p
`

c, x, σ2
ˇ

ˇt
˘

cannot be obtained by an integral, it must be resolved using a Bayesian
formula, given by

m
´

c, x, σ2
ˇ

ˇ

ˇ
t
¯

“ p
´

x
ˇ

ˇ

ˇ
x, σ2, t

¯

ppx, σ2
ˇ

ˇ

ˇ
tq (11)

m
´

c
ˇ

ˇ

ˇ
x, σ2, t

¯

“ p
´

t
ˇ

ˇ

ˇ
c, σ2

¯

p pc|xq {p
´

t
ˇ

ˇ

ˇ
x, σ2

¯

(12)

The integral of the product of ppt
ˇ

ˇx, σ2q and p pc|xq is given by

m
´

t
ˇ

ˇ

ˇ
x, σ2

¯

“ p2πq´N{2
|Ω|´1{2 expp´

tTΩ´1t
2

q (13)

Ω “ σ2 I ` BA´1BT , A “ diag px0,x1, . . . , xNq (14)

m
´

c
ˇ

ˇ

ˇ
x, σ2, t

¯

“ p2πq´pN`1q{2
|Σ|´1{2 expp´

pc´ uqT pc´ uq
2

q (15)

Σ “ pσ´2BTB ` Aq
´1

(16)

u “ σ´2ΣBTt (17)
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Because mpx, σ2
ˇ

ˇt9m
`

t
ˇ

ˇx, σ2˘m pxqm
`

σ2˘ ) and mpx, σ2
ˇ

ˇt ) cannot be solved by means of
integration, the solution is approximated using the maximum likelihood method, represented by

´

xMP, σ2
MP

¯

“ arg
x,σ2

maxppt|x, σ2q (18)

The iterative process of xMP and σ2
MP is as follows:

$

’

’

’

&

’

’

’

%

xnew
i “

γi
µ2

i

pσ2q
new

“
||t´Bµ||2

N´
řN

i“0 µi

γi “ 1´ xi
ř

i, i

(19)

where
ř

i, i is ith element on the diagonal of Σ, and the initial value of a and σ2 can be determined
via the approximation of aMP and σ2

MP by continuously updating using formula (19). After enough
iterations, most of xi will be close to infinity, the value of the corresponding parameters in ci will be
zero, and other xi values will be close to finite. The resulting corresponding parameters ai of xi are
referred to as the relevance vector now.

3.6. Procedure of the Proposed Method

In the study, the proposed method contains as follows three steps: feature extraction, dimensional
reduction using PCA, and sample classification. The feature extraction step contains two steps:
(1) a PSSM matrix is used to represent each protein sequence from the datasets; (2) the PSSM matrix of
each protein sequence is expressed as a 400-dimensional vector by using the Average Blocks method.
Dimensional reduction of the original feature vector is achieved using the PCA method. Finally, sample
classification occurs in two steps: (1) the RVM model is employed to implement classification based
on the datasets from yeast, Helicobacter pylori, C. elegans, M. musculus, H. sapiens, H. pylori and E. coli
whose features have been extracted; (2) the SVM model is used to carry out classification on the yeast
dataset. The flow chart of the proposed method is shown in Figure 2.
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3.7. Performance Evaluation

To evaluate the feasibility and efficiency of the proposed method, four parameters, the accuracy
of prediction (Ac), sensitivity (Sn), precision (Pe), and Matthews’ correlation coefficient (Mcc), were
computed. They are represented as follows:

Ac “
TP` TN

TP` FP` TN` FN
(20)
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Sn “
TP

TP` FN
(21)

Pe “
TP

FP` TP
(22)

Mcc “
pTPˆ TNq ´ pFPˆ FNq

a

pTP` FNq ˆ pTN` FPq ˆ pTP` FPq ˆ pTN` FNq
(23)

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives,
respectively. True positives represent the number of true interacting pairs correctly predicted.
True negatives are the number of true non-interacting pairs predicted correctly. False positives stand
for the number of true non-interacting pairs falsely predicted, and false negatives are the number of
true interacting pairs falsely predicted to be non-interacting pairs. Moreover, we used the Receiver
Operating Curve (ROC) to evaluate the performance of our proposed method.

4. Conclusions

Although many computational methods have been used to predict PPIs, the effectiveness and
robustness of previous prediction models can still be improved. The main objective of this study
is to improve prediction accuracy using the proposed approach. In the work, we explore a novel
computational method using an RVM classifier combined with Average Blocks and a position specific
scoring matrix. From the experimental results, it can be seen that the prediction accuracy of the
proposed method is obviously higher than that of previous methods. In addition, our proposed method
has also obtained good prediction accuracy on cross-species experiments of five other independent
datasets. All these results demonstrated that our proposed method is a very promising and useful
support tool for future proteomics research. The main improvements of the proposed method come
from adopting an effective feature extraction method that can capture useful evolutionary information.
Moreover, the results showed that PCA significantly improves prediction.
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