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Abstract: The zebrafish (Danio rerio) is an ideal vertebrate model to investigate the developmental
molecular mechanism of organogenesis and regeneration. Recent innovation in genome editing
technologies, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases
(TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR
associated protein 9 (Cas9) system, have allowed researchers to generate diverse genomic
modifications in whole animals and in cultured cells. The CRISPR/Cas9 and TALEN
techniques frequently induce DNA double-strand breaks (DSBs) at the targeted gene, resulting in
frameshift-mediated gene disruption. As a useful application of genome editing technology, several
groups have recently reported efficient site-specific integration of exogenous genes into targeted
genomic loci. In this review, we provide an overview of TALEN- and CRISPR/Cas9-mediated
site-specific integration of exogenous genes in zebrafish.
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1. Introduction

The zebrafish is a useful model organism for basic biology and applied research, including in vivo
drug screening, owing to its remarkable characteristics, such as its small size, rapid generation time
and optical transparency during early embryogenesis [1,2]. Both knockdown and knockout analyses
are useful for examining the in vivo function of uncharacterized genes. The injection of antisense
morpholino oligonucleotides (MO) in zebrafish embryos, which causes suppression of translation
of the target gene, is generally used to knock down the endogenous target gene [3]. However,
undesirable off-target effects of MO injection have been reported and MO injection in zebrafish
embryos frequently gives rise to the ectopic induction of p53 [4]. In the case of knockout analysis,
genome editing technologies efficiently induce DNA double-strand breaks (DSBs) in the targeted
gene, leading to frameshift-mediated gene disruption [5,6]. Two groups firstly reported the zinc finger
nuclease (ZFN)-mediated gene disruptions in zebrafish [7,8]. Recent accumulating evidence shows
that genetically gene-disrupted mutants and morphants (MO-injected embryos) often exhibit distinct
phenotypes [4,9–11]. The complete suppression of maternal factors by MO is difficult, limiting the
use of MO-based knockdown analysis. The functional analysis of zebrafish maternal-zygotic mutants
established through genome editing technologies revealed novel developmental functions of maternal
factors [12,13]. Therefore, these technologies are indispensable for the loss-of-function analysis of
maternal and/or zygotic factors in zebrafish.

Int. J. Mol. Sci. 2016, 17, 727; doi:10.3390/ijms17050727 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2016, 17, 727 2 of 10

Genome editing technologies (ZFN, transcription activator-like effector nuclease (TALEN) and
clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9
(Cas9) enable us to manipulate various genomic modifications in model organisms and in cultured
cells [5,14–16]. Both ZFNs and TALENs are chimeric proteins fusing the DNA-binding domains
required for the protein-DNA interaction and the FokI nuclease catalytic domain [17–19]. Because FokI
nuclease functions as a dimer, DSBs are produced in the spacer region located between the DNA
recognition sites of a pair of ZFNs or TALENs. A ZFN possesses four to six Cys2-His2 zinc finger
motifs, one of which recognizes three nucleotides, and each zinc finger domain often interferes
with nucleotide recognition specificity [20]. Each TALEN possesses 14.5–19.5 TALE effector repeats,
one of which independently recognizes a single nucleotide. Each TALE repeat comprises 34 highly
conserved residues except the two repeat-variable di-residues (RVDs) at amino acid positions 12 and 13.
Therefore, the RVDs are essential for the nucleotide recognition specificity known as the TALE code:
NG = T, HD = C, NI = A, NN = G or A. Efficient assembly methods for ordering TALE repeats have
been developed [18,19,21,22]; therefore, the construction of functional TALENs is much easier than
the construction of functional ZFNs. Recently, the CRISPR/Cas9 system has emerged as a more
convenient technique for genome editing [15,23,24]. The type 2 CRISPR/Cas9 system originally
consisted of three components: a Cas9 nuclease and two short RNAs, the CRISPR RNA (crRNA) and
the trans-activating crRNA (tracrRNA) [15]. The crRNA is essential for the RNA–DNA interaction and
possesses a complementary stretch of RNA (20 bases) to generate specificity to the targeted genome
sequences followed by the protospacer-adjacent motif (PAM) sequence NGG (N: any nucleotide).
The tracrRNA is required to interact with the crRNA and Cas9 nuclease. We and another group have
reported a ready-to-use method consisting of synthetic crRNA, synthetic tracrRNA and recombinant
Cas9; this complex cleaves the targeted genomic locus with high frequency [25,26]. Importantly,
a single guide RNA (gRNA), combining the crRNA and tracrRNA, was elegantly developed and has
been widely used as a simplified two-component system [23,24]. More recently, Zetsche et al. reported
a novel class 2 CRISPR effector, Cpf1, which is a single RNA-guided endonuclease [27].

Genome editing technologies efficiently produce site-specific DSBs that are usually repaired by
non-homologous end joining (NHEJ), microhomology-mediated end joining (MMEJ) and homologous
recombination (HR) (Figure 1) [28,29]. In the absence of donor DNA templates, the error-prone NHEJ
pathway directly connects the ends of broken strands, leading to the production of insertion and/or
deletion (indel) mutations. DSBs can be repaired by HR in the presence of donor DNA templates with
large homology to the target site. Recently, an alternative end-joining pathway was characterized;
MMEJ joins the exposed ends at microhomology regions (five to 25 bases) on the target locus, which
are annealed and filled in by DNA polymerases. In mouse or rat, the HR-mediated knock-in of
homologous fragments derived from a donor vector functions well. However, HR-dependent knock-in
events are restricted in zebrafish as described below. One possible explanation of such a difference
is that initial mitoses of zebrafish embryonic cleavages occur faster than those of mouse. Here, we
review two HR-independent knock-in technologies, NHEJ- and MMEJ-mediated targeted integrations
of exogenous genes, in zebrafish (Figure 2).
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Figure 1. Targeted genomic modifications using genome editing technologies. DNA double-strand 
breaks (DSBs) induced by genome editing technologies are repaired by non-homologous end joining 
(NHEJ), microhomology-mediated end joining (MMEJ) and homologous recombination (HR). NHEJ 
repair, which connects the ends of the broken strands, leads to unpredictable insertion and/or 
deletion mutations (green bar), while MMEJ repair uses microhomology sequences (yellow box) and 
often causes a predictable small deletion. HR repair requires long double-strand DNA fragments 
(blue bar) that possess homology to the targeted genomic locus. Site-specific integrations of donor 
DNA are mediated by these DNA repair mechanisms. 

 

Figure 2. Strategy for establishing knock-in fish. Donor vector, gRNAs and Cas9 mRNA are injected 
into zebrafish embryos. The knock-in event is estimated by examining the expression of the 
fluorescent gene (green area). Potential F0 founders are mated with wild-type (WT) fish, and the 
knock-in lines expressing the fluorescent gene are selected. The targeted knock-in at the targeted 
locus is determined by genomic PCR and sequencing analysis. 

2. Genomic Insertion of Single-Stranded Oligodeoxynucleotides (ssODNs) 

It has been shown that short oligonucleotide templates, called single-stranded 
oligodeoxynucleotides (ssODNs), can be used to introduce genomic alterations, including single 
nucleotide substitutions, to model organisms and cultured cells [30,31]. Using TALENs and the 
CRISPR/Cas9 system, ssODNs can be integrated at a targeted genomic locus in zebrafish [30,32–34]. 

Figure 1. Targeted genomic modifications using genome editing technologies. DNA double-strand
breaks (DSBs) induced by genome editing technologies are repaired by non-homologous end
joining (NHEJ), microhomology-mediated end joining (MMEJ) and homologous recombination (HR).
NHEJ repair, which connects the ends of the broken strands, leads to unpredictable insertion and/or
deletion mutations (green bar), while MMEJ repair uses microhomology sequences (yellow box) and
often causes a predictable small deletion. HR repair requires long double-strand DNA fragments
(blue bar) that possess homology to the targeted genomic locus. Site-specific integrations of donor
DNA are mediated by these DNA repair mechanisms.

Int. J. Mol. Sci. 2016, 17, 727 3 of 10 

 

 
Figure 1. Targeted genomic modifications using genome editing technologies. DNA double-strand 
breaks (DSBs) induced by genome editing technologies are repaired by non-homologous end joining 
(NHEJ), microhomology-mediated end joining (MMEJ) and homologous recombination (HR). NHEJ 
repair, which connects the ends of the broken strands, leads to unpredictable insertion and/or 
deletion mutations (green bar), while MMEJ repair uses microhomology sequences (yellow box) and 
often causes a predictable small deletion. HR repair requires long double-strand DNA fragments 
(blue bar) that possess homology to the targeted genomic locus. Site-specific integrations of donor 
DNA are mediated by these DNA repair mechanisms. 

 

Figure 2. Strategy for establishing knock-in fish. Donor vector, gRNAs and Cas9 mRNA are injected 
into zebrafish embryos. The knock-in event is estimated by examining the expression of the 
fluorescent gene (green area). Potential F0 founders are mated with wild-type (WT) fish, and the 
knock-in lines expressing the fluorescent gene are selected. The targeted knock-in at the targeted 
locus is determined by genomic PCR and sequencing analysis. 

2. Genomic Insertion of Single-Stranded Oligodeoxynucleotides (ssODNs) 

It has been shown that short oligonucleotide templates, called single-stranded 
oligodeoxynucleotides (ssODNs), can be used to introduce genomic alterations, including single 
nucleotide substitutions, to model organisms and cultured cells [30,31]. Using TALENs and the 
CRISPR/Cas9 system, ssODNs can be integrated at a targeted genomic locus in zebrafish [30,32–34]. 

Figure 2. Strategy for establishing knock-in fish. Donor vector, gRNAs and Cas9 mRNA are injected
into zebrafish embryos. The knock-in event is estimated by examining the expression of the fluorescent
gene (green area). Potential F0 founders are mated with wild-type (WT) fish, and the knock-in lines
expressing the fluorescent gene are selected. The targeted knock-in at the targeted locus is determined
by genomic PCR and sequencing analysis.

2. Genomic Insertion of Single-Stranded Oligodeoxynucleotides (ssODNs)

It has been shown that short oligonucleotide templates, called single-stranded oligodeoxynucleotides
(ssODNs), can be used to introduce genomic alterations, including single nucleotide substitutions, to
model organisms and cultured cells [30,31]. Using TALENs and the CRISPR/Cas9 system, ssODNs can
be integrated at a targeted genomic locus in zebrafish [30,32–34]. Donor ssODNs possess approximately
20 to 50 base homologous sequences to the target site and the designed DNA fragments, such as loxP,
restriction enzyme sites and hemagglutinin (HA) tags. Precise genomic alteration with ssODNs
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can be introduced at the targeted loci, whereas undesired mutations, including indel mutations and
tandem integration of ssODNs, are simultaneously observed [30,32,33]. Interestingly, Yoshimi et al.
demonstrated that the CAG-GFP donor vector was efficiently integrated into the rat Rosa26 locus using
two ssODNs (80 bases) that bridged the linearized donor vector and the targeted genomic locus [31].
It is noteworthy that site-directed genomic modifications and donor DNA insertion using ssODNs are
useful to establish model organisms for human genetic diseases, which includes the various mutations
responsible for genetic disorders.

3. Precise Site-Specific Integration of Donor DNA by Homologous Recombination (HR)

Genome editing technologies (TALEN and CRISPR/Cas9) were applied to perform HR-mediated
integration of donor DNA templates because the HR of the donor vector at the target site is largely
enhanced by the production of site-specific DSBs. The eGFP reporter donor containing approximately
1 kb of homology arms was integrated at the target site using HR in zebrafish [35]; however, its efficacy
for knock-in use was relatively low to put into practical use. In this report, the authors confirmed the
germline transmission of the knock-in allele at the tyrosine hydroxylase locus in four of 275 potential F0
zebrafish founders. Subsequently, Shin et al. reported the efficient TALEN-mediated knock-in of donor
DNA templates by optimizing the length of the homology arms and the configuration of the donor
DNA construct [36]. They used various sizes of homology arms (ranging from 0.3 to 3.7 kb) in the
donor vectors and found that the long homology arms (more than 2 kb) may be sufficient to achieve
the HR-mediated knock-in. Additionally, superfolder GFP (sfGFP) was integrated by TALENs into
the sox2 locus, and 29 of 363 F0 founders produced sfGFP-positive F1 embryos. Furthermore, tandem
dimeric Tomato (tdTomato) was integrated into the gfap locus, and five of 44 F0 founders produced
tdTomato-positive F1 embryos [36]. More recently, Irion et al. reported the CRISPR/Cas9-mediated
knock-in of a donor vector [37]. To examine the knock-in efficacy, they chose the albino mutant (albb4),
which carries a nonsense mutation in the slc45a2 gene essential for melanin production. Because the
alb mutant embryos exhibit a pale phenotype with pigment defects, the phenotypic rescue by the
HR-mediated knock-in of a donor vector containing the wild-type slc45a2 gene is easily determined by
the appearance of the pigmented cells. They demonstrated that the frequency of phenotypic rescue
was increased using circular donor DNA containing CRISPR target sites. In the rescue experiment,
three of 28 F0 founders produced pigmented embryos with the wild-type phenotype [37]. Although the
construction of donor vectors containing long homology arms is very complicated and time-consuming,
HR-mediated genome editing in zebrafish is a powerful tool for precise genomic modifications.

4. Genomic Insertion of Donor DNA by Non-Homologous End Joining (NHEJ)

Recently, site-specific insertion via homology-independent repair mechanisms, presumably
mediated by NHEJ, was developed. When the targeted genomic locus and the donor vector
containing the ZFN or TALEN target sequences were simultaneously cleaved by ZFN or TALEN,
the NHEJ-mediated insertion of donor DNA was observed in cultured cells at the target site [38,39].
One advantage of this method is the simple construction of the donor vector because there is no
requirement for long homology arms. Auer et al. reported the efficient CRISPR/Cas9-mediated
knock-in of donor vectors at targeted sites in zebrafish [40]. In this case, the donor vector contained
a bait sequence efficiently cleaved by CRISPR/Cas9. When the donor vector containing a CRISPR
target site was co-injected with gRNAs and Cas9 mRNA, concurrent cleavage of the donor vector and
the targeted genomic locus caused the efficient genomic insertion of the donor vector at the target site.
The authors targeted the eGFP locus in an eGFP transgenic line, and the donor vector containing the
bait sequence and the transcriptional activator Gal4 gene was co-injected with gRNAs and Cas9 mRNA
into the embryos containing the eGFP and UAS promoter-RFP transgenes. Successful in-frame Gal4
integration, but not out-of-frame and reverse integration, was easily visualized by a switch from eGFP
to RFP expression. The authors demonstrated that the germline transmission rate of forward donor
DNA integration was 31% (9 of 29 F0 founders) [40]. When they selected the embryos expressing
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RFP and allowed them to grow into adult fish, the germline transmission rate of in-frame integration
increased to 40% (2 of 5 F0 founders). It should be noted that the ratio of in-frame integration of
the donor vector is theoretically one-sixth of all integration events because out-of-frame and reverse
integrations are not functional.

More recently, Kimura et al. improved the NHEJ-mediated knock-in of donor vectors for
establishing transgenic zebrafish [41]. They prepared the donor vector containing a heat shock
protein 70 (hsp) promoter and reporter/driver genes (fluorescent protein genes or the Gal4 gene)
(Figure 4) and designed gRNA targeting 200–600 bp upstream of the target gene transcription
start site. Because the hsp promoter in the donor DNA can receive the enhancer activity of the
endogenous target gene, both forward and reverse genomic integration of the donor DNA should
be functional. In fact, they established the Tg[evx2-hs:Gal4]; Tg[UAS:eGFP] knock-in line in the
reverse direction and the eGFP expression was comparable to the endogenous expression of the evx2
gene. Furthermore, the introduction of the hsp promoter usually enhances the basal expression of
the integrated reporter/driver gene. Immunostaining using an anti-Evx2 antibody revealed that
the eGFP expression generally overlapped with Evx2 protein expression. However, the expression
of the Evx2 protein was not detected in some of the eGFP-positive cells, presumably owing to
the enhanced leaky expression of the hsp-dependent promoter activity. Using this strategy, the
authors consistently established stable knock-in lines in four endogenous loci (evx2, eng1b, glyt2
and vglut2a) [41]. Importantly, the donor vector containing the reporter/driver gene is acceptable
for genomic integration of any target genes. This makes this technique very convenient compared
with the conventional BAC (bacterial artificial chromosome) method that requires complicated and
tailored BAC constructs to individual target genes [42]. The CRISPR/Cas9-mediated knock-in of donor
DNA becomes a powerful genetic tool for the generation of transgenic animals with cell-type-specific
gene expression.
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Figure 3. Site-specific insertion of the hsp promoter-Gal4 donor into the evx2 locus. The donor vector
consists of a bait sequence (blue box; target site B for Gbait-gRNA), the hsp promoter (light blue box),
a Gal4 driver (pink box) and a polyA signal (pA) (orange box). The target site A for evx2-gRNA (red box)
is located in the promoter region of the evx2 gene. When the CRISPR/Cas9 system simultaneously
cleaves the target site A and B, the Gal4 driver is unpredictably integrated into the evx2 locus. Not only
forward and reverse integrations but also tandem donor vector integrations can occur. We observed
eGFP expression in a subset of neurons of the Tg[evx2-hs:Gal4]; Tg[UAS:eGFP] transgenic line because
Gal4 driven by the endogenous evx2 enhancer induced eGFP expression as described previously [41].
Gray boxes; exons in the evx2 gene.

5. Precise Targeted Integration of Donor DNA by Microhomology-Mediated End Joining (MMEJ)

It has been recently shown that DSBs can be repaired by MMEJ that uses the existing
microhomology sequences (five to 25 bases) around the broken DNA ends [29]. Both Dr. Yamamoto’s
group and our group have developed novel knock-in methods acceptable for the precise targeted
integration of exogenous genes mediated by the MMEJ pathway [43–45]. Using TALEN or the
CRISPR/Cas9 system, they have succeeded in the MMEJ-mediated knock-in of donor vectors in
cultured cells and in animals, including silkworms and frogs [43,45]. We designed a more versatile
donor vector, which possesses a bait sequence (a functional gRNA target sequence) and short homology
arms (10–40 bp) flanking the targeted genomic locus. We prepared a control vector without homology
arms to examine the NHEJ-mediated knock-in of the donor vector. In the case of the tyrosinase locus,
the NHEJ-mediated knock-in of the donor vector in the forward direction was detected in 53% of
the injected F0 embryos using PCR, while the addition of 10–40 bp homology arms in the donor
vector increased its efficiency to 85%. Genomic sequence analysis revealed that the MMEJ-mediated
knock-in with precise targeted integration was 60%–77% of analyzed knock-in events. Therefore, the
introduction of short homology arms promotes precise targeted integration of exogenous genes.
In order to eliminate the undesired integration of the backbone vector sequences, we designed
an improved donor vector that configures the eGFP and polyA signal between two bait sequences
in the case of the keratin type 1 c19e/krtt1c19e locus (Figure 5). We observed eGFP expression in the
epidermis at a high frequency (201/529 injected F0 embryos). We established stable zebrafish lines
expressing eGFP in the epidermis, indicating that the MMEJ-mediated targeted integration of the
exogenous gene is heritable. We found that the pre-screening of F0 embryos exhibiting appropriate
eGFP expression is beneficial for the efficient identification of the knock-in allele. We propose that
the MMEJ-mediated targeted integration of exogenous genes is a powerful genetic tool for precise
genomic modifications in various model organisms.
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Figure 4. Precise site-specific integration of eGFP into the krtt1c19e locus. The donor vector consists of
two bait sequences (blue box; target site B for Gbait-gRNA), a left homology arm (yellow box; 40 bp),
and an eGFP (green box) and polyA signal (pA) (orange box) and right homology arm (light green
box). The target site A for krtt1c19e-gRNA (red box) is located near the stop codon of the krtt1c19e
gene. When the CRISPR/Cas9 system simultaneously cleaves the target sites A and B, the eGFP
reporter between the microhomology arms is precisely integrated into the krtt1c19e locus. Broad eGFP
expression was detected in the epidermis of the injected F0 embryo as described previously [44].
Gray boxes; exons in the krtt1c19e gene.

6. Concluding Remarks and Future Perspective

Genetic manipulation in whole organisms plays an important role in basic, applied and medical
sciences. Recent advances in genome editing technologies (ZFN, TALEN and CRISPR/Cas9) have
enabled researchers to make precise genomic modifications that were previously difficult or impossible
in various organisms including humans. In this review, we summarized the targeted integration
of exogenous genes using genome editing technologies mediated by DNA repair mechanisms,
such as NHEJ, MMEJ and HR. Because integration directions become random and various indel
mutations occur at the junction in the process of NHEJ-mediated knock-in, we recommend that
MMEJ-mediated knock-in technology is suitable for the precise targeted integration of donor DNA
templates. Furthermore, the construction of a donor vector for MMEJ-mediated knock-in is much
easier than that of HR-mediated knock-in. Therefore, we predict that the MMEJ-mediated targeted
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integration could be widely applied in various organisms. Importantly, genome editing technologies
can be used to precisely model human genetic disorders in animals including zebrafish, which could
lead to novel findings with respect to the molecular mechanisms of human diseases. Furthermore,
these technologies make it easier to correct serious genetic disorders in affected patients and in induced
pluripotent stem (iPS) cells derived from patients. Further innovation of genome editing technologies
will accelerate various applications in basic biology, biotechnology and medicine, including potential
therapeutic strategies for human genetic disorders.
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Abbreviations
ZFN zinc finger nuclease
TALEN transcription activator-like effector nuclease
CRISPR clustered regularly interspaced short palindromic repeats
MO morpholino oligonucleotide
RVD repeat-variable di-residue
crRNA CRISPR RNA
tracrRNA trans-activating crRNA
PAM protospacer-adjacent motif
gRNA guide RNA
DSB double-strand break
NHEJ non-homologous end joining
MMEJ microhomology-mediated end joining
HR homologous recombination
indel insertion and/or deletion
ssODN single-stranded oligodeoxynucleotide
HA hemagglutinin
BAC bacterial artificial chromosome
iPS induced pluripotent stem
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