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Abstract: TLRs are important receptors of cells of the innate immune system since they recognize
various structurally conserved molecular patterns of different pathogens as well as endogenous
ligands. In cancer, the role of TLRs is still controversial due to findings that both regression and
progression of tumors could depend on TLR signaling. In the present study, M13SV1-EGFP-Neo
human breast epithelial cells, MDA-MB-435-Hyg human breast cancer cells and two hybrids
M13MDA435-1 and -3 were investigated for TLR4 and TLR9 expression and signaling. RT-PCR
data revealed that LPS and CpG-ODN induced the expression of pro-inflammatory cytokines, like
IFN-β, TNF-α, IL-1β and IL-6 in hybrid cells, but not parental cells. Interestingly, validation of RT-PCR
data by Western blot showed detectable protein levels solely after LPS stimulation, suggesting that
regulatory mechanisms are also controlled by TLR signaling. Analysis of pAKT and pERK1/2 levels
upon LPS and CpG-ODN stimulation revealed a differential phosphorylation pattern in all cells.
Finally, the migratory behavior of the cells was investigated showing that both LPS and CpG-ODN
potently blocked the locomotory activity of the hybrid cells in a dose-dependent manner. In summary,
hybrid cells exhibit differential TLR4 and TLR9 signaling.
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1. Introduction

TLRs are type I transmembrane receptors that belong to the innate immune system [1–3]. They are
chiefly expressed by immune competent cells, like macrophages, dendritic cells, B- and T-lymphocytes,
and they do recognize structurally conserved pathogen derived molecules, so-called PAMPs [1–3].
To date, 10 different TLRs have been identified in humans so far, each possessing a specificity for
a certain ligand or ligands. For instance, TLR4 recognizes bacterial lipopolysaccharides and TLR5
bacterial flagella, whereas TLR9 binds unmethylated CpG-DNA of bacterial origin [1–3]. However,
within the past few years it has become evident that TLRs also recognize endogenous ligands, also
named DAMPs, such as extracellular matrix components (TLR4), heat shock proteins (TLR2/4), HMGB1
(TLR4) and self DNA (TLR9) [2]. Usually, the recognition of DAMPs plays a crucial role in identifying
and removing cell debris and inducing wound healing in response to non-pathogen-induced tissue
damage [4]. Due to recognizing intracellular proteins to be released and presented by necrotic,
apoptotic and/or necroptotic cells, DAMPs and its receptors play a crucial role in chronic inflammatory
diseases including rheumatoid arthritis [5] and even cancer [6]. It is well recognized that the tumor
microenvironment resembles chronically inflamed tissue and thus cancer has been called “wounds
that do not heal” [7].
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However, the role of TLRs in cancer is much debated due to contradictory reports. Some studies
provided evidence that TLR ligands, such as LPS from Gram negative bacteria or CpG-ODN, might
be efficacious in the treatment of various cancer types, including colorectal cancer, glioblastoma,
hepatocellular carcinoma and myeloma [8–12]. On the contrary, several reports demonstrated that TLR
expression of cancer cells might be rather associated with tumor progression. For instance, LPS could
induce epithelial-to-mesenchymal transition (EMT) in cancer cells and has been associated with cancer
cell invasion and metastasis in a TLR4 dependent manner [13–15]. Moreover, TLR4 expression in breast
cancer and ovarian cancer has been correlated to paclitaxel chemoresistance [16,17]. Likewise, TLR9
agonists like CpG-ODN or even DNA from dead cells could promote cancer cell invasion [18–20]. TLR9
has also been suggested as a prognostic factor in breast cancer, whereas Tuomela et al. demonstrated
that rather low TLR9 levels define an aggressive subtype of triple-negative breast cancer [21].

Cell fusion has been suggested as a driving force in cancer progression because a plethora of
data provided evidence that hybrid cells derived from tumor cells and tumor cells or tumor cells
and normal cells, like macrophages [22,23] or epithelial cells [24–26], could exhibit novel properties,
such as an enhanced drug resistance or an increased metastatic activity (for review see: [27–31]).
We thus investigated M13MDA435-1 and -3 hybrid cells in comparison to their parental cells (human
M13SV1-EGFP-Neo breast epithelial cells and human MDA-MB-435-Hyg breast cancer cells) [25,32]
for TLR expression and signaling. We have recently demonstrated that LPS potently induced apoptosis
in M13MDA435 hybrid cell clones, but not in parental cells [33]. Here, we additionally investigated
the cells for TLR9 expression and signaling.

2. Results

2.1. M13MDA435 Hybrid Cells Respond Differently to CpG-ODN and LPS Stimulation

In accordance to recently published data MDA-MB-435-Hyg human breast cancer cells and
M13MDA435-1 and -3 hybrid cells exhibited comparable expression levels of TLR4, TLR9, TRIF, Myd88,
and TRAF6 (Figure 1A). In contrast to this, the expression of these proteins was rather moderate to
low in M13SV1-EGFP-Neo human breast epithelial cells (Figure 1A). However, all cell lines showed
comparable IRAK1 expression levels (Figure 1A). Stimulation of cells with either 100 ng/mL CpG-ODN
and 100 ng/mL LPS, respectively, revealed a differential IRF7 and NF-κB activation. In accordance
with recently published data [33], LPS treatment resulted in NF-κB activation in both hybrid cells, but
not in parental cells (Figure 1B). On the contrary, stimulation of cells with 100 ng/mL CpG-ODN did
not activate NF-κB signaling in all cell lines (Figure 1B). Analysis of IRF7 activation upon CpG-ODN
and LPS stimulation indicated that the cells responded differently. While in M13SV1-EGFP-Neo cells
and M13MDA435-3 hybrid cells both CpG-ODN and LPS stimulation resulted in IRF7 activation,
no nuclear translocation of this transcription factor was detected in MDA-MB-435-Hyg breast cancer
cells and M13MDA435-1 hybrid cells (Figure 1B).

2.2. M13MDA435 Hybrid Cells and Parental Cells Respond Differently to LPS and CpG-ODN Stimulation

Next, the expression of NF-κB and IRF7 target genes was investigated by RT-PCR and Western
blot in MDA-MB-435-Hyg human breast cancer cells, M13SV1-EGFP-Neo human breast epithelial cells
and M13MDA435-1 and -3 hybrid cells that were stimulated with LPS and CpG-ODN for 2, 6, 12, 24
and 48 h.

We recently demonstrated that LPS stimulation lead to the induction of TNF-α and IFN-β in
M13MDA435-1 and -3 hybrid cells, but not parental cells [33], which could be reproduced in this study
(Figure 2). Even though both hybrid cell lines responded similarly in the overall expression of target
genes in response to LPS stimulation, they differed markedly in the kinetics of gene/protein expression
(Figure 2). For instance, a permanent LPS induced expression of IL-1β was detected in M13MDA435-1
hybrid cells on both mRNA and protein, whereas in M13MDA435-3 hybrid cells, IL-1β expression was
solely detected after 2 to 6 h of LPS treatment (Figure 2). A marked expression of TNF-α was detected
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in both hybrid cell lines after 2 h of LPS stimulation (Figure 2). On the contrary, RT-PCR data showed a
sustained of IFN-β expression in both hybrid cell lines after LPS stimulation with a first peak maximum
after 2 h and a second one after 12 h (Figure 2A). However, IFN-β protein expression in dependence
of LPS was solely detected after 2 h in the hybrid cells (Figure 2B). Differential mRNA and protein
levels were further observed for IL-6, MCP-1 and TRAIL in both hybrid cell lines. For instance, rather
sustained IL-6 and TRAIL mRNA levels in response to LPS stimulation were detected in M13MDA435-1
hybrid cells, whereas the peak maximum of IL-6 protein expression was observed between 2 h and
6 h (Figure 2B). Prolonged stimulation of M13MDA435-1 hybrid cells with LPS was correlated with a
decreasing IL-6 protein expression (Figure 2B). Likewise, TRAIL protein expression was solely observed
between 6 h to 12 h in LPS treated M13MDA453-1 hybrid cells (Figure 2B).
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was induced in LPS treated parental cell lines. However, in contrast to M13MDA435-1 and -3 hybrid 
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(Figure 2B). Only a slight TRAIL expression was detected in M13SV1-EGFP-Neo breast epithelial 
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Figure 1. Expression of TLR4 and TLR9 and components of the TLR signal transduction cascade.
(A) M13SV1-EGFP-Neo breast epithelial cells express lower levels of TLR4, TLR9, TRIF, Myd88
and TRAF6 in comparison to the other cells; (B) Nuclear translocation of IRF7 was found in
LPS and CpG-ODN (CpG) treated M13SV1-EGFP-neo cells and M13MDA435-3 hybrid cells, but
not MDA-MB-435-Hyg breast cancer cells and M13MDA435-1 hybrid cells. By contrast, nuclear
translocation of NF-κB was solely detected in LPS treated hybrid cells. Shown are representative
Western blots of at least three independent experiments.

RT-PCR analysis revealed that both parental cells responded differentially to LPS stimulation with
the expression of appropriate target genes. In MDA-MB-435-Hyg breast cancer cells increased mRNA
levels of MCP-1 and TRAIL were observed after LPS stimulation (Figure 2A). Increased mRNA levels
of IL-6, MCP-1 and TRAIL were observed in LPS treated M13SV1-EGFP-Neo breast epithelial cells
(Figure 2A) indicating that these cells exhibit a functional TLR4 signaling despite rather low expression
levels of TLR4 and components of the TLR4 signal transduction cascade (Figure 1A). In accordance
to previously published data [33], neither TNF-α nor IFN-β expression was induced in LPS treated
parental cell lines. However, in contrast to M13MDA435-1 and -3 hybrid cells, virtually no target
gene protein expression was observed in LPS stimulated parental cells (Figure 2B). Only a slight
TRAIL expression was detected in M13SV1-EGFP-Neo breast epithelial cells treated for 48 h with LPS
(Figure 2B).
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Figure 2. RT-PCR and Western blot analysis of target genes expressed in response to LPS 
stimulation. (A) RT-PCR data (B) Western blot data. All cell lines were treated with 100 ng/mL LPS 
for up to 48 h. Results show that the cell lines responded uniquely to LPS stimulation, which 
particularly applies for protein translation. Whereas in M13MDA435-1 and -3 hybrid cells most of the 
transcribed genes are expressed as proteins, protein expression is lacking in parental cells, which is 
putatively attributed to miRNA or lncRNA dependent mechanisms. Shown are representative 
RT-PCR and Western Blot data of three independent experiments. 

It is well recognized that the expression of proteins is also controlled by miRNAs or lncRNAs, 
which either block expression by degrading the mRNA or by blocking translation at the  
ribosome [34]. We thus conclude that the non-expression of target genes despite detectable mRNA 
levels might be attributed to such as a regulatory mechanism. This may particularly apply for 
MCP-1. Increased MCP-1 mRNA levels in response to LPS stimulation were found in all investigated 
cell lines, whereas no MCP-1 protein expression was observed (Figure 2). 

Treatment of cells with CpG-ODN was markedly different from LPS stimulation. Albeit 
CpG-ODN stimulation resulted in increased target gene mRNA levels in both hybrid cell lines and 
the M13SV1-EGFP-Neo breast epithelial cell line (Figure 3A) all analyzed target genes, with 
exception of TRAIL, were not expressed on a protein level (Figure 3B). On the one hand, these data 
indicate that the cells exhibit functional TLR9 signaling, but at present it remains unknown why a 
protein translation did not occur in CpG-ODN-treated cells. As mentioned above, we conclude that 
most likely miRNA or lncRNA based regulatory processes are responsible for this observation. 

Figure 2. RT-PCR and Western blot analysis of target genes expressed in response to LPS stimulation.
(A) RT-PCR data (B) Western blot data. All cell lines were treated with 100 ng/mL LPS for up to 48 h.
Results show that the cell lines responded uniquely to LPS stimulation, which particularly applies for
protein translation. Whereas in M13MDA435-1 and -3 hybrid cells most of the transcribed genes are
expressed as proteins, protein expression is lacking in parental cells, which is putatively attributed to
miRNA or lncRNA dependent mechanisms. Shown are representative RT-PCR and Western Blot data
of three independent experiments.

It is well recognized that the expression of proteins is also controlled by miRNAs or lncRNAs,
which either block expression by degrading the mRNA or by blocking translation at the ribosome [34].
We thus conclude that the non-expression of target genes despite detectable mRNA levels might be
attributed to such as a regulatory mechanism. This may particularly apply for MCP-1. Increased
MCP-1 mRNA levels in response to LPS stimulation were found in all investigated cell lines, whereas
no MCP-1 protein expression was observed (Figure 2).

Treatment of cells with CpG-ODN was markedly different from LPS stimulation. Albeit
CpG-ODN stimulation resulted in increased target gene mRNA levels in both hybrid cell lines and the
M13SV1-EGFP-Neo breast epithelial cell line (Figure 3A) all analyzed target genes, with exception of
TRAIL, were not expressed on a protein level (Figure 3B). On the one hand, these data indicate that the
cells exhibit functional TLR9 signaling, but at present it remains unknown why a protein translation
did not occur in CpG-ODN-treated cells. As mentioned above, we conclude that most likely miRNA
or lncRNA based regulatory processes are responsible for this observation.
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(Figure 4A,B). In contrast to parental cells BAX expression levels remained unaltered in both 
CpG-ODN and LPS treated M13MDA435-1 and -3 hybrid cell clones (Figure 4A,B). Likewise, a slight 
to moderate up-regulation of BCL-2 was observed in LPS treated hybrid cells (Figure 4A,B). This, 
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in M13MDA435-1 and -3 hybrid cells, but not parental cells [33]. It is well recognized that BCL-2 
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Figure 3. RT-PCR and Western blot analysis of target genes expressed in response to CpG-ODN
stimulation. (A) RT-PCR data (B) Western blot data. All cell lines were treated with 100 ng/mL
CpG-ODN for up to 48 h and exhibit a functional TLR9 signaling as indicated by induction of target
gene expression. Interestingly, only TRAIL protein expression in response to CpG-ODN stimulation
was detected in parental cell lines and M13MDA435-1 hybrid cells, suggesting that the translation of
other analyzed target genes is impaired by miRNA or lncRNA dependent mechanisms. Shown are
representative RT-PCR and Western blot data of three independent experiments.

2.3. Expression of Pro-Inflammatory and Apoptosis-Inducing Cytokines in Hybrid Cells Does Not Correlate
with BAX and BCL-2 Expression Levels

We have recently demonstrated that LPS potently induced apoptosis in M13MDA435-1 and -3
hybrid cells in an IFN-β dependent manner [33]. Because of that BAX and BCL-2 protein levels were
determined by Western Blot of both CpG-ODN and LPS treated cells (Figure 4). The pro-apoptotic
acting protein BAX was induced by both CpG-ODN and LPS in MDA-MB-435-Hyg breast cancer
cells, whereas only LPS stimulation caused increased BAX levels in M13SV1-EGFP-Neo breast
epithelial cells (Figure 4A,B). Interestingly, M13SV1-EGFP-Neo breast epithelial cells lack BCL-2
expression (Figure 4A,B). In contrast to parental cells BAX expression levels remained unaltered in
both CpG-ODN and LPS treated M13MDA435-1 and -3 hybrid cell clones (Figure 4A,B). Likewise,
a slight to moderate up-regulation of BCL-2 was observed in LPS treated hybrid cells (Figure 4A,B).
This, however, is contrary to our previously published data showing that LPS potently induced
apoptosis in M13MDA435-1 and -3 hybrid cells, but not parental cells [33]. It is well recognized that
BCL-2 belongs to the group of anti-apoptotic proteins [35].
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2.4. CpG-ODN and LPS Both Induce AKT and ERK1/2 Signaling in Parental Cells and Hybrid Cells

It is well recognized that stimulation of TLR4 and TLR9 also result in the engagement
of MAPK signaling via TRAF6 mediated activation on TAB2/TAB3/TAK1 [3]. Conjointly,
Bauerfeld et al. demonstrated that TLR4 signaling could also activate AKT via a Myd88/TRIF dependent
mechanism [36]. Similar findings were reported for TLR9 signaling [37]. We thus investigated
whether stimulation of MDA-MB-435-Hyg human breast cancer cells, M13SV1-EGFP-Neo human
breast epithelial cells and their hybrids resulted in activation of AKT and ERK1/2 signaling. In fact,
increased pAKT (S473 and T308) and pERK1/2 levels were detected in all cell lines upon CpG-ODN
and LPS stimulation (Figure 5A,B), whereby the analyzed cell lines differed markedly in the kinetics
of AKT and ERK1/2 phosphorylation. In parental cells, both CpG and LPS resulted in increased
pAKT S473 levels, but not pAKT T308 levels (Figure 5A,B). On the contrary, increased pAKT S473 and
pAKT T308 levels were detected in both hybrid cell lines stimulated with CpG and LPS (Figure 5A,B).
Phosphorylation of AKT at positions T308 and S473 is regulated via different signal transduction
pathways [38]. While phosphorylation of the activation loop of AKT at T308 is facilitated by PDK1 in
a PI3K dependent manner, phosphorylation of AKT on the hydrophobic motif S473 is mediated by
mTORC2 [38]. Thus, two different AKT activating pathways are engaged in hybrid cells by TLR4 and
TLR9 signaling. Interestingly, pAKT S473 levels were rather low to moderate in MDA-MB-435-Hyg
human breast cancer cells, whereas in M13SV1-EGFP-Neo human breast epithelial cells higher pAKT
S473 levels were detected with a maximum after 6 and 12 h (Figure 5A,B). On the contrary, markedly
higher pAKT S473 levels were detected in M13MDA435-1 and -3 hybrid cells. Comparison of the
kinetics of T308 and S473 AKT phosphorylation in M13MDA435-1 and -3 hybrid cells revealed a
rather identical phosphorylation pattern in M13MDA435-3 hybrid cells (Figure 5A,B). Here, markedly
increased pAKT T308 and S473 levels were detected after 6 and 24 h of CpG-ODN and LPS stimulation
(Figure 5A,B). On the contrary, in CpG treated M13MDA435-1 hybrid cells highest pAKT S473 were
observed after 2 to 6 h, whereas the maximum peak level of pAKT T308 was observed after 24 h
(Figure 5A). Both parental cell lines showed a similar ERK1/2 phosphorylation in response to both
CpG-ODN and LPS. Increased pERK1/2 were observed after 2, 6 and 48 h of stimulation with either
CpG-ODN and LPS, respectively (Figure 5A,B). On the contrary, both hybrid cell clones exhibited
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a unique ERK1/2 activation profile in response to CpG-ODN and LPS stimulation. For instance,
a CpG-ODN dependent ERK1/2 phosphorylation was first detected after 48 h in M13MDA435-1
hybrids, whereas in LPS treated cells pERK1/2 were observed after 24 h (Figure 5A,B). On the contrary,
ERK1/2 phosphorylation in response to CpG-ODN stimulation was detected after 6, 12, 24 and 48 h in
M13MDA435-3 hybrid cells (Figure 5A). Likewise, increased LPS-mediated pERK1/2 levels were found
after 6 and 48 h (Figure 5B). These data show that hybrid cell clones exhibit unique kinetics of AKT
and ERK1/2 activation in response to CpG-ODN and LPS stimulation.
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2.5. The Migratory Activity of Parental Cells and Hybrid Cells is Impaired by CpG-ODN in a
Dose-Dependent Manner

TLR4 and TLR9 signaling have been associated with breast cancer progression due to findings
revealing that both LPS and CpG-ODN could promote breast cancer cell migration, invasion and
metastatic spreading [13,15,20]. We thus analyzed the cells locomotory activity within a 3D collagen
matrix in dependence of different CpG-ODN and LPS concentrations. However, in contrast to studies
providing evidence that LPS and CpG-ODN could foster breast cancer cell migration our migration data
rather indicated an inhibitory effect of both compounds on the cells motility. The migratory activities of
MDA-MB-435-Hyg human breast cancer cells and M13MDA435-1 and -3 hybrid cells were impaired by
LPS in a dose dependent manner, whereas the migratory activity of M13SV1-EGFP-Neo breast epithelial
cells remained unaffected in the presence of LPS (Figure 6). On the contrary, CpG-ODN inhibited
the migratory activity of all investigated cell lines in a dose-dependent manner (Figure 6). As shown
recently, LPS potently induced apoptosis in M13MDA4351 and -3 hybrid cells, but not parental cells [33],
suggesting that the decreased migratory activity of hybrid cells within the presence of LPS might be
attributed to an increased number of apoptotic cells. However, the viability of MDA-MB-435-Hyg cells
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was not affected by LPS, which also applies to CpG-ODN for all cell lines. Thus, the means by which
LPS and CpG-ODN impairs the migration of the cells remains to be elucidated.Int. J. Mol. Sci. 2016, 17, 726 8 of 17 

 
Figure 6. Cell migration data. (A) MDA-MB-435-Hyg human breast cancer cells; (B) M13SV1-EGFP-Neo 
human breast epithelial cells; (C) M13MDA435-1 hybrid cells; (D) M13MDA435-3 hybrid cells. Cells 
were stimulated with either LPS or CpG-ODN (CpG). CpG inhibited the migratory activity of all 
cells in a dose dependent manner. The mean locomotory activity ± S.E.M. of the cells is displayed as 
BoxPlots. Statistical Significance was calculated using the Mann-Whitney-U-test (*** <0.01). Shown 
are the means of at least three independent experiments. 

3. Discussion 

In the present study, human M13SV1-EGFP-Neo breast epithelial cells, human 
MDA-MB-435-Hyg and two of their hybrids M13MDA435-1 and -3 [25,32] were analyzed for TLR4 
and TLR9 expression and signaling. Our data show that although all cell lines express both 
receptors, they differed markedly in the kinetics of TLR specific signal transduction cascades and 
target gene expression. On the contrary, stimulation of TLR4 or TLR9 signaling with LPS or 
CpG-ODN, respectively, resulted in a decreased locomotory activity of all investigated cells. 

The finding that LPS stimulation resulted in a time-dependent expression of LPS target genes, 
like IL-1β, IL-6 and TRAIL in M13MDA435 hybrid cells, but not parental cells, is in line with 
previously published data [33]. Of interest in this context is the correlation of RT-PCR data and 
Western Blot data revealing marked differences. For instance, LPS-induced and sustained TRAIL 
mRNA levels were detectable in M13MDA435-1 hybrid cells for up to 48 h, whereas a maximum of 
TRAIL expression on a protein level was observed between 6 and 12 h (Figures 2B and 3B). Similar 
findings were found for LPS-induced TRAIL expression in M13SV1-EGFP-Neo cells. Here, an 
increased TRAIL expression was found upon 48 h of LPS stimulation while TRAIL mRNA levels 
were already detected after 2 h of LPS stimulation (Figures 2B and 3B). Likewise, MCP-1 expression 
was solely detected by RT-PCR, but not Western blot analysis (Figures 2B and 3B), which 

Figure 6. Cell migration data. (A) MDA-MB-435-Hyg human breast cancer cells;
(B) M13SV1-EGFP-Neo human breast epithelial cells; (C) M13MDA435-1 hybrid cells;
(D) M13MDA435-3 hybrid cells. Cells were stimulated with either LPS or CpG-ODN (CpG).
CpG inhibited the migratory activity of all cells in a dose dependent manner. The mean locomotory
activity ˘ S.E.M. of the cells is displayed as BoxPlots. Statistical Significance was calculated using the
Mann-Whitney-U-test (*** <0.01). Shown are the means of at least three independent experiments.

3. Discussion

In the present study, human M13SV1-EGFP-Neo breast epithelial cells, human MDA-MB-435-Hyg
and two of their hybrids M13MDA435-1 and -3 [25,32] were analyzed for TLR4 and TLR9 expression
and signaling. Our data show that although all cell lines express both receptors, they differed markedly
in the kinetics of TLR specific signal transduction cascades and target gene expression. On the contrary,
stimulation of TLR4 or TLR9 signaling with LPS or CpG-ODN, respectively, resulted in a decreased
locomotory activity of all investigated cells.

The finding that LPS stimulation resulted in a time-dependent expression of LPS target genes,
like IL-1β, IL-6 and TRAIL in M13MDA435 hybrid cells, but not parental cells, is in line with previously
published data [33]. Of interest in this context is the correlation of RT-PCR data and Western Blot data
revealing marked differences. For instance, LPS-induced and sustained TRAIL mRNA levels were
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detectable in M13MDA435-1 hybrid cells for up to 48 h, whereas a maximum of TRAIL expression
on a protein level was observed between 6 and 12 h (Figures 2B and 3B). Similar findings were found
for LPS-induced TRAIL expression in M13SV1-EGFP-Neo cells. Here, an increased TRAIL expression
was found upon 48 h of LPS stimulation while TRAIL mRNA levels were already detected after 2 h of
LPS stimulation (Figures 2B and 3B). Likewise, MCP-1 expression was solely detected by RT-PCR, but
not Western blot analysis (Figures 2B and 3B), which particularly applies for IFN-β, IL-1β, and IL-6
expression in CpG-ODN treated hybrid cells (Figures 2B and 3B). These findings indicate that LPS
and CpG-ODN not only induce target gene expression by activation of transcription factors, but most
likely also by modulating the expression or the activation state of regulating molecules, like miRNA or
lncRNA. Both, miRNAs and lncRNAs are well-known modulators of gene expression [39,40].

The finding that LPS potently induced apoptosis in M13MDA435-1 and -3 hybrid cells via an
IFN-β dependent mechanism [33] still remains ambiguous, which also applies for the role of LPS and
TLR4 signaling in breast cancer. As mentioned in the introduction, TLRs do not only recognize PAMPs,
but also DAMPs, which are derived from necrotic, apoptotic and necroptotic cells [4]. It would thus be
of interest to study the impact of endogenous TLR4 ligands, like extracellular matrix components or
heat shock proteins, on parental cells and hybrid cells and whether they do also induce a differential
TLR4 signaling concomitant with a differential expression of specific target genes and induction of
apoptosis in hybrid cells as compared to parental cells. In this context, it would be of interest to
investigate whether necrotic, apoptotic and necroptotic cell-derived DAMPs could stimulate cells in a
paracrine manner.

Stimulation of M13MDA435-1 and -3 hybrid cells with LPS resulted in the expression of
pro-inflammatory cytokines including IL-1β, TNF-α, and IL-6. Whether the expression levels of
these cytokines would be sufficient to activate macrophages or to direct macrophage differentiation
towards a “M1-macrophage” or “classical activated macrophage” phenotype [4,41] remains to be
elucidated. Tumor-associated macrophages have been identified as a double-edged sword in cancer
progression [42]. “M1-macrophage” or “classical activated macrophage”, which are commonly present
in acute inflammatory conditions [4,41,43,44], have been generally associated with “tumor rejection”
and thus a better prognosis [41,45]. On the contrary, “M2-macrophages” or “wound-healing/resolution
macrophages” secrete a variety of growth factors, like EGF, FGF and VEGF, and immunosuppressive
factors including IL-10, PGE2 and TGF-β, thus providing a tumor-friendly micromilieu concomitant
with a much worse prognosis for the afflicted patients [41,43–45]. However, whether LPS (or more
likely endogenous TLR4 ligands) will cause a rather acute inflammatory tumor micromilieu remains
unclear. As shown here, induction of pro-inflammatory cytokines was solely induced in hybrid cells,
but not parental cells. Thus, more breast cancer cells as well as breast cancer ˆ normal cell hybrids have
to be analyzed first. Conjointly, the role of IL-6 in breast cancer has to be further clarified since recent
studies revealed that IL-6 appears to play a critical role in the growth and metastasis of breast cancer
cells, renewal of breast cancer stem cells and drug resistance of breast cancer stem cells [46]. Thus,
activation of TLR4 signaling by LPS or endogenous ligands may foster the renewal and expansion
of breast cancer stem cells. It would also be worthwhile to speculate about the role of TNF-α, which
is not only a pro-inflammatory cytokine, but which has also been determined as a pro-fusogenic
factor [47–49]. For instance, we have recently demonstrated that the fusion of M13SV1 breast epithelial
cells and MDA-MB-231 and MDA-MB-435 breast cancer cells is promoted by TNF-α [47]. Thus,
secretion of TNF-α either induced by LPS or endogenous ligands could promote the fusion of tumor
cells and other cells.

In accordance to the differential expression of LPS and CpG-ODN target genes both compounds
also induced a differential AKT and ERK1/2 signaling in the cells. Interestingly, both parental cells
showed a similar ERK1/2 activation pattern, with a peak maximum after 2, 6 and 48 h of CpG-ODN and
LPS stimulation, whereas in M13MDA435-3 hybrid cells the peak maximum of ERK1/2 phosphorylation
was detected after 6 h and 48 h. Conjointly, AKT S473 and AKT T308 phosphorylation induced by
CpG and LPS stimulation was solely detected in M13MDA435-1 and -3 hybrid cells, but not parental
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cells. It is well recognized that AKT is a central signaling node being involved in various cellular
functions including metabolism, proliferation and survival [38]. Western blot data demonstrated
that LPS induced AKT phosphorylation both at position S473 and T308 (Figure 5B), representing
the two activation sites of AKT [38]. Thus, stimulation of M13MDA435-1 and -3 hybrid cells with
LPS should result in full AKT activation concomitant with the induction of AKT mediated cellular
processes including survival [38]. However, as shown recently, LPS potently induced apoptosis in
M13MDA435-1 and -3 hybrid cells [33]. It can thus be concluded that two opposing signal transduction
pathways regulating cell survival are engaged by LPS in M13MDA435-1 and -3 hybrid cells. This
would also apply to the transcription factor NF-κB. On the one hand, LPS induced TLR4 signaling leads
to nuclear translocation of NF-κB concomitant with IFN-β expression and induction of apoptosis [33].
These data are in view with findings of Jung and colleagues demonstrating that the LPS induced
apoptosis of cultured microglia cells was not only dependent on IFN-β, but was also dependent on
NF-κB activation mediating NO synthesis (via inducible NO synthase (iNOS) induction, caspase-11
induction and its subsequent activation [50]. On the contrary, survival of endothelial cells is mediated
by TNF-α in a NF-κB dependent mechanism, whereby constitutive or inducible NF-κB-independent
pathway(s) protects HUVECs from cell death [51]. Likewise, a link between Bcl-2 and NF-κB signaling
and suppression of apoptosis in ventricular myocytes has been reported [52], suggesting that NF-κB
plays a dual role in both inducing and preventing apoptosis. The finding that LPS potently induced
apoptosis in M13MDA435-1 and -3 hybrid cells albeit pro-survival pathways are simultaneously
engaged might be thus attributed to a differential kinetics and strength of the different TLR4 induced
pathways. In M13MDA435-1 and -3 hybrid cells activation of AKT (and possibly NF-κB) may thus not
be strong enough to counteract LPS induced pro-apoptotic pathways, thus preventing cell death.

Whether the differential AKT activation in M13MDA435-1 and -3 hybrids in comparison to the
parental cells might also be attributed to differential receptor expression levels remains to be elucidated.
As shown in Figure 1A M13SV1-EGFP-Neo human breast epithelial cells expressed markedly lower
levels of TLR4, TLR9, TRIF, Myd88 and TRAF6 suggesting that rather weak AKT T308 levels as
well as the lower induction of target gene expression in response to LPS and CpG (Figures 2 and 3)
might be attributed to the cells overall lower receptor and signaling protein expression. However,
markedly enhanced pAKT S473 levels were detected in LPS and CpG treated M13SV1-EGFP-Neo
cells indicating that despite lower TLR4 and TLR9 expression levels activation of AKT at position
S473 is potently induced. Moreover, TLR4 and TLR9 as well as TRIF, Myd88 and TRAF6 expression
levels of MDA-MB-435-Hyg breast cancer cells were comparable to M13MDA435-1 and -3 hybrid cells.
Nonetheless, rather weak AKT S473 to rather low AKT T308 levels were observed in LPS and CpG
treated MDA-MB-435-Hyg cells, revealing that the activation of signal transduction cascades does not
only depend on the expression levels of receptors and signal transduction proteins, but most likely
also to other regulatory mechanisms.

Cell migration studies revealed that the locomotory activities of the parental cell lines and
hybrid cell clones were significantly blocked by LPS and CpG-ODN, which is contrary to findings
revealing that both LPS and CpG-ODN could promote tumor cell invasion and even metastasis
formation [13–15,18–20,53]. On the contrary, other studies pointed out that e.g., silencing of TLR4
increased tumor progression and lung metastases in a murine model of breast cancer [54] and that TLR9
agonists could induce apoptosis in A20 lymphoma cells [55] and neuroblastoma cells [56]. Because
LPS potently induced apoptosis in M13MDA435-1 and -3 hybrid, we assume that the LPS-impaired
migratory behavior of the cells was rather attributed to an increased number of apoptotic cells in
the assay. However, it cannot be ruled out completely that LPS might induce signal transduction
pathways and/or might cause an altered gene expression profile that ultimately impairs the migratory
activity of the cells. This assumption would be in line with the finding that the locomotory activity of
MDA-MB-435-Hyg breast cancer cells was significantly impaired within the presence of 150 ng/mL
LPS. As published recently, the viability of MDA-MB-435-Hyg was not affected by LPS [33]. Because
the cell viability was also not affected by CpG-ODN, we conclude that the TLR9 dependent inhibition
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of cell migration was as well attributed to intracellular signaling and/or an altered gene expression
profile caused by CpG-ODN induced TLR9 signaling. In fact, various data revealed that TLR agonists
could inhibit chemotaxis of monocytes through inhibition of receptor expression [57] or endocytic
clearance of receptors from the plasma membrane [58]. Additionally, TLR signaling could impair
monocyte chemotaxis independent of receptor downmodulation through synergized effects of p38
MAPK and global Rap-1 activation, which ultimately abolished actin reorganization [59]. Whether a
similar mechanism might be responsible for the CpG-ODN dependent inhibition of the migration of
the investigated cells remains to be elucidated.

4. Materials and Methods

4.1. Cell Culture

All cell lines were cultivated at 37 ˝C and 5% CO2 in a humidified atmosphere as recently
described [25,26,33]. Human M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell properties
were derived from human M13SV1 cells (kindly provided by James E. Trosko, Michigan State
University, East Lansing, MI, USA [60]) by stable transfection with the pEGFP-Neo plasmid [25].
Cells were cultivated in MSU-I basal media (Biochrom GmbH, Berlin, Germany) supplemented
with 10% fetal calf serum (FCS) (Biochrom GmbH, Berlin, Germany), 1% Penicillin/Streptomycin
(100 U/mL Penicillin, 0.1 mg/mL Streptomycin; Sigma-Aldrich, Taufkirchen, Germany), 10 µg/mL
human recombinant EGF, 5 µg/mL human recombinant Insulin, 0.5 µg/mL Hydrocortisone, 4 µg/mL
human Transferrin, 10 nM β-Estrogen (all reagents were purchased from Sigma Aldrich, Taufkirchen,
Germany), and 400 µg/mL G418 (Biochrom GmbH, Berlin, Germany). MDA-MB-435-Hyg human
breast cancer cells were derived from MDA-MB-435 cells (HTB 129; LGC Standards GmbH, Wesel,
Germany) by stable transfection with the pKS-Hyg vector. Cells were cultured in DMEM (Sigma
Aldrich, Taufkirchen, Germany) supplemented with 10% FCS (Biochrom AG, Berlin, Germany),
1% Penicillin/Streptomycin (Sigma Aldrich, Taufkirchen, Germany) and 200 µg/mL Hygromycin
B (Pan-Biotech, Aidenbach, Germany). M13MDA435-1 and -3 hybrid cell clones were derived from
spontaneous fusion events between M13SV1-EGFP-Neo cells and MDA-MB-435-Hyg cells [25,32].
Hybrid cells were cultured in DMEM (Sigma Aldrich, Taufkirchen, Germany) supplemented with 10%
FCS (Biochrom GmbH, Berlin, Germany), 1% Penicillin/Streptomycin (Sigma Aldrich, Taufkirchen,
Germany), 400 µg/mL G418 (Biochrom GmbH, Berlin, Germany) and 200 µg/mL Hygromycin B
(Pan-Biotech, Aidenbach, Germany).

4.2. RT-PCR

Total RNA was isolated from cells (1 ˆ 106) by using the NucleoSpinR® RNA Kit II
(Macherey-Nagel GmbH, Düren, Germany) in accordance to the manufacturer’s instructions. cDNA
was reverse transcribed from mRNA using the RevertAid™ First Strand cDNA Synthesis Kit (VWR
International, Darmstadt, Germany) are referred to instruction manual. For PCR (total volume 25 µL
per reaction) 1.25 U Taq Polymerase, 1ˆ reaction buffer, 2 mM MgCl2, 2 µM dNTPs (all reagents
from VWR International, Darmstadt, Germany) and 100 µM primers (Life Technologies, Darmstadt,
Germany) were used. The cycling conditions comprised of an initial denaturation step (5 min at 95 ˝C),
35 cycles of amplification (30 s 94 ˝C; 30 s appropriate annealing temperature; 30 s 72 ˝C) and final
elongation (10 min 72 ˝C). PCR products were separated on a 1% TAE agarose gel. PCR bands were
visualized by GelRed™ staining (VWR International GmbH, Darmstadt, Germany) and the GelDocTM

EZ Imager System (Bio-Rad, Munich, Germany). Primer pairs used in this study are summarized in
Table 1.
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Table 1. Used primer sequences for PCR.

Target Primer Sequence 51-31 Annealing Tempeature ˝C Amplicon (bp)

IFN-β F: AGTAGGCGACACTGTTCGTG
60 174R: AGCCTCCCATTCAATTGCCA

IL-1β F 1: AGCCATGGCAGAAGTACCTG
54 219R: TCCATGGCCACAACAACTGA

IL-6
F: ATGAACTCCTTCTCCACAAGCGC

60 628R: GAAGAGCCCTCAGGCTGGACTG

MCP-1
F: CCCCAGTCACCTGCTGTTAT

60 135R: AGATCTCCTTGGCCACAATG

TNF-α
F: AACATCCAACCTTCCCAAACG

54 109R: GACCCTAAGCCCCCAATTCTC

TRAIL
F: GAGCTGAAGCAGATGCAGGAC

60 137R: TGAGGAGTTGCCACTTGACT

β-actin
F: GTGACGTTGACATCCGTAAAGACC

55 290R: TCAGTAACAGTCCGCCTAGAAGCA
1 F = Forward Primer, R = Reverse Primer.

4.3. Extraction of Nuclear Proteins

Harvested cells (2 ˆ 106) were resuspended in culture media and were treated with 100 ng/mL
LPS (Sigma-Aldrich, Taufkirchen, Germany) or 100 ng/mL CpG-ODN (Invivogen, San Diego, CA,
USA), respectively, for 2 h at 37 ˝C and 5% CO2 in a humidified atmosphere. Non-stimulated cells
served as a control. The NE-PER Nuclear and Cytoplasmic Extraction Reagent Kit (Thermo Fischer
Scientific, Bonn, Germany) was used for purification of NF-κB and IRF-7 from nuclear extracts in
accordance to the manufacturer’s instructions. Nuclear extracts were boiled in 3ˆ Laemmli Sample
Buffer (5 min, 95 ˝C) [61] and stored at ´80 ˝C prior to SDS-PAGE and Western Blot analysis.

4.4. Western Blot Analysis

Cells (2 ˆ 105) were seeded in 6-well plates and were stimulated with either 100 ng/mL
LPS (Sigma-Aldrich, Taufkirchen, Germany) or 100 ng/mL CpG-ODN (Invivogen, San Diego, CA,
USA), respectively, for 2, 4, 6, 12, 24, and 48 h at 37 ˝C and 5% CO2 in a humidified atmosphere.
Subsequently, cells were harvested and lysed in 3 ˆ Laemmli Sample Buffer (5 min, 95 ˝C) [61].
Samples were separated on a 10% or 12%, respectively, SDS-PAGE and transferred to an Immobilon
PVDF nitrocellulose membrane (EMD Millipore, Darmstadt, Germany) under semi-dry conditions.
Membranes were blocked with 10% (w/v) not-fat milk powder or 5% BSA in TBS-T. Bands were
visualized using the Pierce ECL Western Blotting Substrate (Thermo Fischer Scientific, Bonn, Germany)
in accordance to the manufacturer’s instruction and the Aequoria Macroscopic Imaging System
(Hamamatsu Photonics Germany, Herrsching am Ammersee, Germany). Antibodies used for Western
blot analysis are listed in Table 2.

4.5. 3D-Collagen Matrix Migration Assay

The migratory behavior of the cells in response to LPS and CpG-ODN was performed by using
the 3D-collagen matrix migration assay as described recently [24–26,62–64]. Briefly, cells (4 ˆ 104 to
6 ˆ 104) were mixed with liquid collagen solution (Purecol; Nutacon BV, Leimuiden, The Netherlands)
was mixed with 10ˆ MEM (Sigma-Aldrich, Taufkirchen, Germany), and 7.5% sodium bicarbonate
solution (Sigma-Aldrich, Taufkirchen, Germany). In dependence of the experimental setting different
concentrations of either LPS or CpG-ODN were added. The cell ˆ collagen mixture was filled in
self-constructed cell migration chambers and the collagen was allowed to polymerize. Subsequently,
cell migration chambers were placed under a microscope in a compartment tempered to 37 ˝C.
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The migration of the cells was recorded by time-lapse video microscopy overnight (at least 15 h).
To analyze the migration of the cells, in each experiment 30 cells were randomly selected and the paths
of the cells were tracked in 15 min real-time intervals using a manual cell tracking software application.

Table 2. Antibodies used.

Antibody Manufacturer

AKT, rabbit monoclonal Cell Signaling 1

pAKT S473, rabbit monoclonal Cell Signaling 1

pAKT T308, rabbit monoclonal Cell Signaling 1

BAX, rabbit monoclonal Cell Signaling 1

BCL-2, mouse monoclonal Cell Signaling 1

ERK1/2, rabbit polyclonal Cell Signaling 1

pERK1/2, rabbit polyclonal Cell Signaling 1

Histone H3, rabbit polyclonal Abcam 2

IFN-β, mouse monoclonal Biozol 3

IL-1β, rabbit monoclonal Cell Signaling 1

IL-6, rabbit monoclonal Cell Signaling 1

IRAK1, mouse monoclonal Abgent Inc. 4

IRF7, rabbit polyclonal Cell Signaling 1

MCP-1, rabbit polyclonal Cell Signaling 1

Myd88, rabbit monoclonal Cell Signaling 1

NF-κB p65, rabbit polyclonal Santa Cruz Biotech 5

TLR4, rabbit polyclonal Santa Cruz Biotech 5

TLR9, rabbit polyclonal ProSci Inc. 6

TNF-α, rabbit monoclonal Cell Signaling 1

TRAIL, rabbit monoclonal Cell Signaling 1

TRAF6, rabbit monoclonal Cell Signaling 1

TRIF, rabbit polyclonal Cell Signaling 1

elf4E, rabbit monoclonal Cell Signaling 1

β-actin, rabbit monoclonal Cell Signaling 1

anti-mouse-IgG-HRP-linked Cell Signaling 1

anti-rabbit-IgG-HRP-linked Cell Signaling 1

1 New England Biolabs GmbH, Frankfurt am Main, Germany; 2 Abcam, Cambridge, UK; 3 Biozol Diagnostica
Vertrieb GmbH, Eching, Germany; 4 Abgent Inc., San Diego, CA, USA; 5 Santa Cruz Biotech, Heidelberg,
Germany; 6 ProSci Inc., Poway, CA, USA.

4.6. Statistical Analysis

Statistical significance of the cell migration data was calculated using the Mann-Whitney U-test.

5. Conclusions

In summary, here we have shown that M13MDA435-1 and -3 hybrid cells derived from
MDA-MB-435-Hyg human breast cancer cells and M13SV1-EGFP-Neo breast epithelial cells exhibit
a differential TLR4 and TLR9 signaling, which is in view with the cell fusion hypothesis that hybrid
cells could exhibit novel properties. Cell fusion is a random and unpredictable process that is chiefly
attributed to HST representing the merging of the parental nuclei—a process which is characterized
by loss of whole chromosomes, unequal and random segregation of chromosomes to the daughter
cells and even chromothripsis [28,29,65–67]. The random distribution of parental chromosomes to
daughter cells was recently visualized by Zhou and colleagues, which further showed that hybrid
cells exhibited a greater extent of DNA double strand breaks [66]. Thus, cell fusion and HST might be
associated with chromothripsis specifying the shattering and random rearrangement of one or more
chromosomes [67]. Chromothripsis is a common phenomenon in many (if not all) cancers and has
been associated with the loss of tumor suppressors, dysregulation of genes with known cancer links
and oncogene amplification [67]. Moreover, chromosome segments that fail to get reincorporated
can circularize to become double minutes, which are frequently amplified [67]. Karyotypes of hybrid
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cells derived from the fusion of hamster cells and human tumor cells revealed the existence of a
series of small unidentifiable chromosomes/chromosomal structures [68] that may have originated
from chromothripsis.

Consequently, cell fusion is a potent mechanism that gives rise to unique hybrid cells that,
concomitant with their progenies, will increase the heterogeneity of the tumor mass. How these cells
ultimately behave in the tumor microenvironment and react to surrounding stimuli strongly depends
on the cells receptor repertoire and kinetics of signal transduction cascade controlled by the cells’
genetic and epigenetic background concomitant.
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CpG-ODN CpG-oligodeoxynucleotide
DAMPs danger-associated recognition patterns
HST heterokaryon-to-synkaryon transition
lncRNA long non-coding RNA
LPS lipopolysaccharide
miRNA microRNA
mTORC2 mechanistic target of Rapamycin complex 2
PAMPs pathogen-associated recognition patterns
PDK1 phosphoinositide-dependent kinase-1
PI3K phosphatidylinositol 3-kinase
PIP3 phosphatidylinositol-3,4,5-triphosphate
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